
Chapter 14
Functional Regression

14.1 Principles of Functional Linear Regression Analyses

The general functional linear regression model with scalar response (Y) and one
functional covariate (x(�)) is defined by

Y ¼ μþ
Z T

0
x tð Þβ tð Þdt þ E, ð14:1Þ

where x(t) and β(t) are a centered functional covariate and the functional coefficient
regression, respectively, and E is a random error often assumed to have a normal
distribution with mean 0 and variance σ2. Functional regression replaces the linear
predictor of a linear regression model by integrating the product of a coefficient
function β(t) and centered covariate x(t), which corresponds to a continuous
non-delaying process.

Determining the infinite-dimensional beta coefficients β(t) from a finite number
of observations of the model (1) is a very difficult task. Indeed, it is almost always
possible to find a function β(t) satisfying the model with an error equal to 0, and there
is an infinite number of these functions that give the same predictions (Ramsay et al.
2009). There are several procedures to solve this problem (Cardot and Sarda 2006);
one of them is based on basis expansion (Fourier, B-splines, etc.) and will be adopted
and described here.

A basis expansion solution is obtained by first representing the beta coefficient
function β(t) as

β tð Þ ¼
XL1

l¼1
βlϕl tð Þ, ð14:2Þ

where ϕl(�), l ¼ 1, . . ., L1, is a collection of functions corresponding to the first L1
elements of basis for a function space and βl are constants that depend on the

© The Author(s) 2022
O. A. Montesinos López et al., Multivariate Statistical Machine Learning Methods
for Genomic Prediction, https://doi.org/10.1007/978-3-030-89010-0_14

579

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89010-0_14&domain=pdf
https://doi.org/10.1007/978-3-030-89010-0_14#DOI

function to be represented (Ramsay et al. 2009). Then, by assuming this form for
β(t), model (14.1) can be expressed as

Y ¼ μþ
XL1

l¼1
βl

Z T

0
x tð Þϕl tð Þdt þ E ¼ μþ xTβ0 þ E

¼ x�Tβþ E, ð14:3Þ

where x� ¼ [1, xT]T, x ¼ x1, . . . , xL1½ �T, xl ¼
R T
0 x tð Þϕl tð Þdt, l ¼ 1, . . ., L1. So, if yi,

i ¼ 1, . . ., n, are independent observations of model (14.1), corresponding to
covariate functions xi(�), i ¼ 1, . . ., n, a basis expansion solution for the beta
coefficient function is obtained by estimating the parameters involved in model

(14.3), and then substituting bβ ¼ μ,bβ1, . . . , bβL1h iT
in (14.2) to obtain a basis-

based estimation of β(t):

bβ tð Þ ¼
XL1

l¼1
bβlϕl tð Þ:

When smoothing in the function coefficient is desired, one way to take more
control of this is by using a roughness penalty, which combined with a high-
dimensional basis could reduce the possibility of not considering some important
features or taking into account some extraneous features (Ramsay et al. 2009).
However, sometimes we can obtain good results without recurring to this, if the
number of basis functions is smaller than the number of individuals in the sample
(Ramsay et al. 2009).

Assuming that random errors are independently and identically distributed as a
normal random variable with mean 0 and variance σ2, E1, . . . , En � iid N 0, σ2ð Þ, then
Yi ¼ μþPL1

l¼1xilβl þ Ei � N μþPL1
l¼1xilβl, σ

2
� �

, xil ¼
R T
0 xi tð Þϕl tð Þdt , i ¼ 1, . . .,

n, l ¼ 1, . . ., L1. So, the maximum likelihood estimation of parameters β and σ2

is given by

bβ ¼ X�TX�� ��1
X�Ty ð14:4Þ

bσ2 = 1
n

y� X�bβ� �T
y� X�bβ� �

, ð14:5Þ

where X� = [1n X], X = [x1, . . ., xn]
T is assumed to be of full column rank (n > L1),

1n is a vector of dimension n � 1 with all its entries equal to 1 and xi ¼
xi1, . . . , xiL1½ �T, i ¼ 1, . . . , n:
However, in practice, the functional covariate is often unknown and not contin-

uously observed. Usually, it is only measured in a finite number of points
t1 < t2 < . . . < tm in time or another domain. So, to complete the solution described
before, the usual approach is also to assume that the covariate function can be
represented as a linear combination of a set of basis functions (ψ l(�), l ¼ 1, . . ., L2)

580 14 Functional Regression

xi tð Þ ¼
XL2

o¼1
cioψo tð Þ, ð14:6Þ

where cio, o ¼ 1, . . ., L2, are constants to be determined for each observation, i ¼ 1,
. . ., n. Usually, this is determined by least squares, in which case, by assuming that
all curves were observed at the same time points, this can be computed as

bci ¼ bci1, . . . ,bciL2½ �T ¼ ΨTΨ
� ��1ΨTxi tð Þ, ð14:7Þ

where Ψ is a matrix of dimension m 3 L2 given by

Ψ=

ψ1 t1ð Þ ⋯ ψL2 t1ð Þ
ψ1 t2ð Þ ⋱ ψL2 t2ð Þ
⋮ ⋮ ⋮

ψ1 tmð Þ ⋯ ψL2 tmð Þ

26664
37775 ð14:8Þ

and xi(t)= [xi(t1), . . ., xi(tm)]
T is the vector with the actual values where the covariate

curve of individual i was observed. With this, the elements of xi ¼ xi1, . . . , xiL1½ �T,
xil ¼

R T
0 xi tð Þϕl tð Þdt, can be re-expressed as xil ¼

R T
0 xi tð Þϕl tð Þdt ¼PL2

o¼1bcioR T0 ψo tð Þϕl tð Þdt ¼ x��Tl bci , with x��l ¼ x�l1, . . . , x
�
lL2

h iT
and x�lo ¼R T

0 ϕl tð Þψo tð Þdt, o ¼ 1, . . ., L2 and l ¼ 1, . . ., L1. From here, xi can be expressed as

xi =

x��T1 bci
⋮

x��TL1
bci

264
375= x��T1

⋮
x��TL1

264
375bci =

R T
0 ϕ1 tð Þψ1 tð Þdt ⋯

R T
0 ϕ1 tð ÞψL2 tð Þdt

⋮ ⋱ ⋮R T
0 ϕL1 tð Þψm tð Þdt ⋯

R T
0 ϕL1 tð ÞψL2 tð Þdt

264
375bci =Qbci,

where

Q=

R T
0 ϕ1 tð Þψ1 tð Þdt ⋯

R T
0 ϕ1 tð ÞψL2 tð Þdt

⋮ ⋱ ⋮R T
0 ϕL1 tð Þψm tð Þdt ⋯

R T
0 ϕL1 tð ÞψL2 tð Þdt

264
375:

Now, matrix X� can be computed as

X� ¼ 1n X½ �, ð14:9Þ

where

14.1 Principles of Functional Linear Regression Analyses 581

X ¼
xT1
⋮
xTn

264
375 ¼

bcT1QT

⋮bcTnQT

264
375 ¼

bcT1
⋮bcTn

264
375QT ¼

x1 tð ÞTΨ ΨTΨ
� ��1

⋮
xn tð ÞTΨ ΨTΨ

� ��1

264
375QT

¼ X��Ψ ΨTΨ
� ��1

QT

with X�� = x1 tð Þ ⋯ xn tð Þ½ �T: Finally, the complete practical solution of the
parameter estimates is obtained with (14.4) and (14.5) but replacing X� as computed
in (14.9).

There are several proposals to choose the “optimal” number of bases (L1) to
represent the β(�) function coefficient. One way is by means of the Bayesian
information criterion (Górecki et al. 2018), which is defined as follows:

BIC ¼ �2ℓ bβ,bσ2; y� �
þ L1 þ 1ð Þ log nð Þ,

where ℓ bβ,bσ2; y� �
is the log-likelihood evaluated in the maximum likelihood esti-

mation of parameters β and σ2. This is a compromise between the fit of the model
(first term) and its complexity (second term, the number of parameters in the model).
In general, the model with the lowest BIC is preferred. In particular, with this
criterion, the “optimal” number of basis functions corresponds to the lowest BIC.

When smoothing is required in the curve to be estimated, one way to control it is
through the introduction of a penalty term, as will be described later. However,
sometimes good results can be obtained without the need for this, as long as the
number of basis functions relative to the amount of data is kept small (Ramsay et al.
2009).

To choose the “optimal” number of basis functions (L2) to represent the func-
tional covariate data, we can also use the BIC criteria. To do this, consider that each
curve is observed with error under the following model:

xi t j
� � ¼XL2

o¼1
cioψo t j

� �þ Eij,

where for each i ¼ 1, . . ., n, Eij, j ¼ 1, . . ., m, are independent random variables with
distribution N 0, σ2x

� �
. Then the likelihood of the parameters to be estimated

(ci ¼ ci1, . . . , ciL2ð ÞT and σ2x) is given by

582 14 Functional Regression

L ci, σ
2
x ; xi tð Þ

� �¼ Ym
j¼1

f nxi t jð Þ xi t j
� �� �

¼ 1
2πσ2x

� �m=2

exp � 1
2σ2x

Xm
j¼1

xi t j
� ��XL2

o¼1

cioψo t j
� � !2

24 35:
From this, the maximum likelihood of the parameters of ci and σ2x are bci ¼bci1, . . . ,bciL2½ �T ¼ ΨTΨ

� �2 1ΨTxi tð Þ and bσ2x = 1
m

Pm
j¼1 xi t j

� ��PL2
o¼1bcioψo t j

� �� �2
,

respectively. So, before fitting the regression model, the “optimal” value of L2 that
will represent each curve in the sample can be chosen with the smallest value of BIC
in the corresponding model:

BIC ¼ �2 log L bci,bσ2x ; xi tð Þ� �h i
þ L2 þ 1ð Þ log mð Þ:

A global value of L2 can be adopted as suggested by Górecki et al. (2018), and the
mode of the “optimal” values obtained across all the represented curves. Note that
the maximum likelihood estimate of ci is the same as the least square estimate
mentioned above.

Another alternative to the BIC approach is to choose the “optimal” number of
basis functions by estimating the predictive ability obtained by using different values
of L2 and selecting the value with the best predictive performance (Ruppert et al.
2003). One way to do this is by using the leave-one-out cross-validation (LOOCV)
with mean squared error of prediction as the criterion to measure the predictive
performance:

CV1 L2ð Þ ¼
Xm

j¼1
x t j
� �� bx�j t j

� �� �2
,

where bx�j t j
� �

is the predicted value of point j, x(tj), obtained by doing the represen-
tation of the function with L2 bases but without this point, that is,

bx�j t j
� � ¼XL2

o¼1
bc�j,oψo t j

� �
,

where bc�j = bc�j
1 , . . . ,bc�j

L2

h iT
= ΨT

�jΨ2 j

� �2 1
ΨT

2 jx�j and Ψ2j is a matrix of dimen-

sion (m � 1) � L2, like the matrix design basis defined in (14.8) over L2 basis
functions, but without row j, and x�j is the same as the vector that contains the
observed values of the latent function, x(t), but removing the value of its position j.
For a specific basis, the optimal number of basis is the one with the lowest value of
CV1(L2).

14.1 Principles of Functional Linear Regression Analyses 583

14.2 Basis Functions

A “base” is a set of basis functions (ϕl, l¼ 1, 2, 3, . . .) such that “any” function (x(t))
can be approximated as well as required, by means of a linear combination of L2 of
these functions:

x tð Þ ¼
XL2

l¼1
clϕl tð Þ,

where cl are values that will determine the function.
In general, to represent data in functions by means of basis functions, you need to

(a) Choose suitable basis functions (polynomial basis, Fourier basis, B-spline basis,
etc.).

(b) Determine the number of basis functions to consider (L2).
(c) Estimate the coefficients cl, l ¼ 1, . . ., L2.

The degree of smoothness of function x(t) depends on the value of L2 that is
chosen (a small value of L2 causes more smoothing of the curves) and the optimum
value for L2 selected using the Bayesian information criterion (BIC) (Górecki et al.
2018) or with cross-validation, as described before.

14.2.1 Fourier Basis

The Fourier basis is often used for periodic or near-periodic data and is often useful
for expanding functions with weak local characteristics and with an approximately
constant curvature. It is not appropriate for data with discontinuities in the function
or in low order derivatives (Ramsay et al. 2009).

The Fourier basis is created by the following functions:

ϕ1 tð Þ ¼ 1ffiffiffi
P

p ,ϕ2 tð Þ ¼ 1ffiffiffi
P
2

q sin ωtð Þ,ϕ3 ¼ 1ffiffiffi
P
2

q sin ωtð Þ,ϕ4 tð Þ ¼ 1ffiffiffi
P
2

q cos 2ωtð Þ,

ϕ5 ¼ 1ffiffiffi
P
2

q cos 2ωtð Þ,ϕ6 tð Þ ¼ 1ffiffiffi
P
2

q cos 3ωtð Þ, ϕ7 ¼ 1ffiffiffiffiffiffiffiffi
P=2

p cos 3ωtð Þ, . . . ,

where ω is related to period P by ω¼ 2π/P, and in practical applications, this is often
taken as the range of t values where the data are observed (Ramsay et al. 2009).

The graph on interval (0,8) of the first five of these functions (0, 8) with period 4 is
given in Fig. 14.1. The vertical dotted lines are the end of the subinterval that
corresponds to the period of each function. This figure can be reproduced by the
following R code:

584 14 Functional Regression

library(fda)
BF = create.fourier.basis(rangeval=c(0,8),nbasis=5,period=4)
plot(BF,xlab='t',ylab=expression(phi[i](t)),ylim=c(-.7,.9), lty=1:
5,lwd=1)
abline(v=seq(4,8,4),lty=3,lwd=3)
legend('topright',paste('i = ',1:5,sep=''),lty=1:5,col=1:5,
bty='n',lwd=1,ncol=3)

14.2.2 B-Spline Basis

A B-spline basis is typically used for nonperiodic data where the underlying function
is locally smooth. The coefficients of a B-spline basis can be calculated quickly; they
form a very flexible system because very good approximations of functions can be
obtained even with a relatively small number of basis functions.

A B-spline is a type of spline that is a piecewise-polynomial continuous function
and has a specific number of continuous derivatives on an interval. Specifically, a
q + 1-order spline with interior knots Tj, j ¼ 1, . . ., K (usually placed to take into
account the data change points) on the observation interval [0, T] ¼ (0, T1] [(T1,
T2] [. . . [(TK,T] is a continuous function sq such that in each subinterval (Tj � 1,Tj]
there is a polynomial of degree q+1 that has continuous derivatives of order q�1 in

Fig. 14.1 Graph of the first five elements of the Fourier basis with period 4 on interval (0,8)

14.2 Basis Functions 585

each knot, that is, the dth derivate of sd, s dð Þ
q T j

� �
, is a continuous function in each

knot, for each d ¼ 1, . . ., q � 1 (Quarteroni et al. 2000; Hastie et al. 2009).
Indeed, a q + 1-order B-spline basis is a basis for the q + 1-order spline function

space on a given sequence of knots, that is, any spline function of order q + 1 can be
represented as a linear combination of B-splines, and unlike other bases, the trun-
cated power basis, for example, is very attractive numerically (Quarteroni et al.
2000; Hastie et al. 2009).

Once chosen, the order (q + 1) and the interior knots Tj, j ¼ 1, . . ., K,of a spline,
because we need K + 1 polynomials (one for each of the K + 1 intervals) and Kq
constraints (continuity of the B-spline in its interior knots + continuity of derivatives
of order q � 1 in each knot), the number of basis functions is given by

L ¼ qþ 1ð Þ K þ 1ð Þ � Kq ¼ qþ K þ 1 ¼ order þ number of interior knots:

Practically, the position of the knots can be chosen according to the data change
points or by allowing the observation time to determine their positions at appropriate
percentiles (Fig. 14.2). For example, in R, if we want a B-spline of order 4 on the
interval (0, 12) with three specific interior knots (T1 ¼ 3, T2 ¼ 6, T3 ¼ 9), this can be
defined, plotted, and evaluated by applying the following code:

Order = 4 ; breaks = seq(0,12,3)
BS = create.bspline.basis(rangeval=c(0,12),norder=Order, breaks=breaks)
#Number of basis functions: 4 + 3
BS$nbasis
#Graphic of the seven basis functions
plot(BS,xlab='t')

#Evaluation of these seven basis functions in
tv= seq(0,12, length=100)
EBS = eval.basis(tv, basisobj=BS)
head(EBS)
matplot(tv,EBS,add=TRUE,type='o',pch='+')

Alternatively, if we want a B-spline basis of some order (q + 1) with a specific
number of basis (L2), in R it can be obtained similarly as before (Fig. 14.3). For
example, a B-spline of order 4 with six bases will contain two (6–4) interior knots
equally spaced and can be obtained with the following code:

Order = 4; nbasis = 6
BS = create.bspline.basis(rangeval=c(0,12),norder = Order,nbasis =
nbasis)
#Graphic of the 6 basis functions
plot(BS,xlab='t')
#Evaluation of this 6 basis functions in
tv= seq(0,12,length=100)
EBS = eval.basis(tv, basisobj=BS)
head(EBS)
matplot(tv,EBS,add=TRUE,type='o',pch='+')

586 14 Functional Regression

A B-spline basis of the same order and the same number of basis functions
(Fig. 14.4), but with specific positions of the interior knots (T1 ¼ 2 and T2 ¼ 7),
can be obtained by adding the argument breaks ¼ c(0,2,7,12) to the function create.
bspline.basis:

breaks = c(0,2,7,12)
Order = 4; nbasis = 6
BS = create.bspline.basis(rangeval=c(0,12),norder = Order,nbasis =
nbasis,

breaks= breaks)
#Graphic of the six basis functions
plot(BS,xlab='t')

Fig. 14.2 Graphic of the seven B-spline basis functions of order 4 on interval (0,12) and interior
knots T1 ¼ 3, T2 ¼ 6, and T3 ¼ 9

14.2 Basis Functions 587

Fig. 14.3 Graphic of the six B-spline basis functions of order 4 on interval (0,12)

Fig. 14.4 Graphic of the six
B-spline basis functions of
order 4 on interval (0,12)
with specific interior knots:
T1 ¼ 2 and T2 ¼ 7

588 14 Functional Regression

14.3 Illustrative Examples

Example 14.1
To illustrate how to use and get a better picture of the performance of Fourier and
B-spline basis to represent functions, suppose that there is information on only
30 (tv) equispaced evaluations (xv) of an unknown function in interval (0,12):

tv ¼ seq(0,12,length ¼ 30)
xv¼ c(0.9, 0.924, 0.9461, 0.9658, 0.983, 0.9971, 1.008, 1.0152, 1.0187, 1.0181,

1.0133, 1.0042, 0.9906, 0.9727, 0.9504, 0.9237, 0.8928, 0.8579, 0.8192, 0.777,
0.7314, 0.683, 0.632, 0.5788, 0.5238, 0.4675, 0.4103, 0.3526, 0.2949, 0.2376).

The graphical representation of this information is given in Fig. 14.5, together
with three representations of this using Fourier basis (5, 21, and 29 basis functions)
with period 30 (range of the observation domain). From this we can see that a poor
representation was obtained with five basis functions, while with the other numbers
of basis used (21 and 29), almost equal and reasonable representations were
obtained, except in the boundaries of the interval, which is related to the Gibbs

Fig. 14.5 Graphical representation of 30 evaluations (points) of a function in 30 equispaced time
points in interval (0, 12), and representation of this using 5 (in black), 21 (in red), and 29 (in green)
Fourier basis functions

14.3 Illustrative Examples 589

phenomenon, a spurious oscillation at the interval boundaries of an expansion in a
Fourier series of a nonperiodic function (Shizgal and Jung 2003).

Figure 14.6 shows the same data but now together with representations of the latent
function obtained by using B-splines of order 2, 3, 4, and 5, all with two interior
knots (T1 ¼ 4 and T2 ¼ 8), to which correspond 2 + 2 ¼ 4, 2 + 3 ¼ 5, 2 + 4 ¼ 6, and
2 + 5 ¼ 7 basis functions, respectively. From this figure we can observe that the
representation of order 3 is satisfactory, and this almost coincides with the repre-
sentations obtained with orders 4 and 5.

#R code for B-spline representation
plot(tv,xv,type='p',xlab='t',ylab='x(t)')
breaks = seq(0,12,length=4)
Orderv = 2:5
for(i in 1:4)
{

#A linear B-spline with two interior knots
Order = Orderv[i]
Degree = Order-1
#No of basis functions= Order + length(breaks)-2
nB = Order + length(breaks)-2
BBS = create.bspline.basis(rangeval=c(0,12),norder=Order,
breaks=breaks)

Fig. 14.6 Graphical representation of 30 evaluations (points) of a function in 30 equispaced time
points in interval (0, 12), and representation of this using B-splines of order 2 (shown in black),
3 (in red), 4 (in green), and 5 (in blue), each with two interior knots at T1 ¼ 4 and T2 ¼ 8

590 14 Functional Regression

EBBS = eval.basis(tv, basisobj=BBS)
cv = solve(t(EBBS)%*%EBBS)%*%t(EBBS)%*%xv
xv_p = EBBS%*%cv
lines(tv,xv_p,col=i)

}
legend('topright',c('2 order B-spline (Linear)', '3 order B-spline
(Quadratic)',

'4 order B-spline (Cubic)','5 order B-spline'),
lty=c(1,1,1,1),col=1:4,bty='n')

Now, by using 3, 5, 7, and 10 B-spline basis of orders 2, 3, 4, and 5, respectively,
the resulting representations are shown in Fig. 14.7. From this we can see that with
five B-spline basis of order 3 (only two interior knots equally spaced were required),
the representation started to be satisfactory, indicating flexibility in the B-spline
basis.

R code to reproduce Fig. 14.7

plot(tv,xv,type='p',xlab='t',ylab='x(t)')
Orderv = 2:5
#No of basis functions = Order + length(breaks)-2
nBv = c(3,5,7,10)
#Interior points
K = nBv - Orderv
for(i in 1:4)
{

BBS = create.bspline.basis(rangeval=c(0,12),nbasis=nBv[i],
norder=Orderv[i])

EBBS = eval.basis(tv, basisobj=BBS)
cv = solve(t(EBBS)%*%EBBS)%*%t(EBBS)%*%xv
xv_p = EBBS%*%cv

Fig. 14.7 Graphical
representation of
30 evaluations (points) of a
function in 30 equispaced
time points in interval
(0,12), and B-spline
representation using 3, 5,
7, and 10 basis functions of
orders 2, 3, 4, and
5, respectively

14.3 Illustrative Examples 591

lines(tv,xv_p,col=i)
}
legend('topright',paste(nBv,' basis - order ', Orderv,sep=''),

lty=c(1,1,1,1),col=1:4,bty='n')

In general, more flexible curves can be obtained by increasing the order or the
number of knots in the B-spline. However, overfitting and an increase in the variance
can occur if the number of knots is increased, while an inflexible function with more
bias may result by decreasing the number of knots (Perperoglou et al. 2019).

Example 14.2
Now to illustrate how to use the BIC and LOOCV as criteria to choose the number of
basis functions in a Fourier or B-spline (for a chosen order) representation, we retake
the data points in Example 14.1 but perturbed by a random Gaussian noise (see
Fig. 14.8).

For these data, Fig. 14.9 shows the value of the BIC criterion corresponding to the
use of different numbers of basis functions in Fourier and B-spline representations.
In both cases, the lowest value of this criterion was obtained with five basis functions
and in all cases, the BIC criterion was better with the B-spline. The representation of
the data points with this optimal number of basis functions is also shown in Fig. 14.8,
where we can visually judge the better representation of the B-spline, because
this resembles the non-perturbed latent function presented in Example 14.1.
Similar results were obtained when using the LOOCV strategy: 7 and 6 basis for
Fourier and B-spline were required, respectively, and the implied representation can
also be observed in Fig. 14.9. These figures can be reproduced by the following
R code:

Fig. 14.8 Graphical representation of the perturbed 30 data points in Example 14.1 and Fourier and
B-spline representations using 5, 6, and 7 basis functions (L2) in both. The left panel is the optimal
representation obtained with the BIC and the right panel corresponds to the optimal representation
obtained with the LOOCV

592 14 Functional Regression

rm(list=ls())
#------
#Example 14.2: Perturbed data points of Example 14.1
#------
library(fda)
#Time points where the functions was observed
tv = seq(0,12,length=30)
#Values of the function in 30 points
xv = c(0.9, 0.924, 0.9461, 0.9658, 0.983, 0.9971, 1.008, 1.0152, 1.0187,
1.0181, 1.0133, 1.0042, 0.9906, 0.9727, 0.9504, 0.9237, 0.8928, 0.8579,
0.8192, 0.777, 0.7314, 0.683, 0.632, 0.5788, 0.5238, 0.4675, 0.4103,
0.3526, 0.2949, 0.2376)
set.seed(1)
xv = xv + rnorm(length(xv),0,0.10*mean(xv))
#plot(tv,xv,type='p',xlab='t',ylab='x(t)')
#Fourier
library(fda)
m = length(xv)
nbFv = seq(5,m-1,2)
BICFv = rep(0, length(nbFv))
AICFv = BICFv
for(l in 1:length(nbFv))
{ BF=create.fourier.basis(rangeval=c(0,12),nbasis=nbFv[l],
period=diff(range(tv)))

Fig. 14.9 Behavior of the BIC for different numbers of basis functions (L2) in Fourier and B-spline
representations, for the perturbed data set of Example 14.1

14.3 Illustrative Examples 593

EBF = eval.basis(tv, basisobj=BF)
cv = solve(t(EBF)%*%EBF)%*%t(EBF)%*%xv
xv_p = EBF%*%cv
sigma2 = mean((xv-xv_p)^2)
ll = sum(dnorm(xv,xv_p,sqrt(sigma2),log = TRUE))
BICFv[l] = -2*ll+(dim(EBF)[2]+1)*log(m)
AICFv[l] = -2*ll+2*(dim(EBF)[2]+1)

}
#B-spline
library(fda)
Order = 4
#No of basis functions = Order + length(breaks)-2
nbBSv = (Order+1):(m-4)
BICBSv = rep(0,length(nbBSv))
for(l in 1:length(nbBSv))
{
BBS = create.bspline.basis(rangeval=c(0,12),norder=Order,nbasis =
nbBSv[l])
EBBS = eval.basis(tv, basisobj=BBS)
cv = solve(t(EBBS)%*%EBBS)%*%t(EBBS)%*%xv
xv_p = EBBS%*%cv
muv = EBBS%*%cv
sigma2 = mean((xv-muv)^2)
ll = sum(dnorm(xv,muv,sqrt(sigma2),log = TRUE))
BICBSv[l] = -2*ll+(nbBSv[l]+1)*log(m)
}
#Behavior of the BIC for different models obtained using various
#number of Fourier or B-spline basis functions
par(mfrow=c(1,2))
plot(nbFv,BICFv,xlab='Number of basis functions (L2)', ylab='BIC',

main='Fourier basis')
plot(nbBSv,BICBSv,xlab='Number of basis functions (L2)',ylab='BIC',

main='B-spline basis')
#Fourier and B-spline representations with optimal number of
#basis functions as chosen by BIC
#Fourier
nboF_BIC = nbFv[which.min(BICFv)]
nboF_BIC
plot(tv,xv,type='p',xlab='t',ylab='x(t)',

main='')#Optimal representation using BIC')
BF = create.fourier.basis(rangeval=c(0,12),nbasis=nboF_BIC,

period=diff(range(tv)))
EBF = eval.basis(tv, basisobj=BF)
cv = solve(t(EBF)%*%EBF)%*%t(EBF)%*%xv
xv_p = EBF%*%cv
lines(tv,xv_p,col=1)
#B-spline
nboB_BIC = nbBSv[which.min(BICBSv)]
nboB_BIC
BBS = create.bspline.basis(rangeval=c(0,12),norder=Order,

nbasis = nboB_BIC)
EBBS = eval.basis(tv, basisobj=BBS)
cv = solve(t(EBBS)%*%EBBS)%*%t(EBBS)%*%xv

594 14 Functional Regression

xv_p = EBBS%*%cv
lines(tv,xv_p,col=2)
legend('topright',paste(c('Fourier (','B-Spline ('),

c(nboF_BIC,nboB_BIC),c(')',')'),sep=''),
col=1:2,lty=rep(1,2),bty='n')

#Choosing the optimal number of basis functions using 1FCV
PRESS_f<-function(A)
{
Res = residuals(A)
sum((Res/(1-hatvalues(A)))^2)

}
#Fourier basis
CVFv = nbFv
for(l in 1:length(nbFv))
{ BF=create.fourier.basis(rangeval=c(0,12),nbasis=nbFv[l],
period=diff(range(tv)))
EBF = eval.basis(tv, basisobj=BF)
A = lm(xv~0+EBF)
CVFv[l] = PRESS_f(A)

}
plot(nbFv,CVFv,xlab='No. of basis functions',ylab='PRESS')
nboF = nbBSv[which.min(CVFv)]
nboF

#B-spline basis
CVBSv = nbBSv
for(l in 1:length(nbBSv))
{
BBS = create.bspline.basis(rangeval=c(0,12),norder=Order,nbasis =
nbBSv[l])
EBBS = eval.basis(tv, basisobj=BBS)
A = lm(xv~0+EBBS)
CVBSv[l] = PRESS_f(A)

}
plot(nbBSv[1:5],CVBSv[1:5],xlab='No. of basis',ylab='PRESS')
nboBS = nbBSv[which.min(CVBSv)]
nboBS

#Fourier and B-spline representations with optimal number of
#basis functions as choosen by BIC
par(mfrow=c(1,2))
plot(tv,xv,type='p',xlab='t',ylab='x(t)',

main='BIC')
#Fourier
BF = create.fourier.basis(rangeval=c(0,12),nbasis=nboF_BIC,

period=diff(range(tv)))
EBF = eval.basis(tv, basisobj=BF)
cv = solve(t(EBF)%*%EBF)%*%t(EBF)%*%xv
xv_p = EBF%*%cv
lines(tv,xv_p,col=1)
#B-spline
BBS = create.bspline.basis(rangeval=c(0,12),norder=Order,

nbasis = nboB_BIC)

14.3 Illustrative Examples 595

EBBS = eval.basis(tv, basisobj=BBS)
cv = solve(t(EBBS)%*%EBBS)%*%t(EBBS)%*%xv
xv_p = EBBS%*%cv
lines(tv,xv_p,col=2)
legend('topright',paste(c('Fourier (','B-Spline ('),c(5,5),

c(')',')'),sep=''),
col=1:2,lty=rep(1,2),bty='n')

#Optimal representation with 1FCV
plot(tv,xv,type='p',xlab='t',ylab='x(t)',

main='LOOCV')
#Fourier
BF = create.fourier.basis(rangeval=c(0,12),nbasis=nboF,

period=diff(range(tv)))
EBF = eval.basis(tv, basisobj=BF)
cv = solve(t(EBF)%*%EBF)%*%t(EBF)%*%xv
xv_p = EBF%*%cv
lines(tv,xv_p,col=1)
#B-spline
BBS = create.bspline.basis(rangeval=c(0,12),norder=Order,

nbasis = nboBS)
EBBS = eval.basis(tv, basisobj=BBS)
cv = solve(t(EBBS)%*%EBBS)%*%t(EBBS)%*%xv
xv_p = EBBS%*%cv
lines(tv,xv_p,col=2)
legend('topright',paste(c('Fourier (','B-Spline ('),c(nboF,nboBS),

c(')',')'),sep=''),
col=1:2,lty=rep(1,2),bty='n')

Example 14.3
Now we will consider the prediction of wheat grain yield (tons/ha) using hyper-
spectral image data. For this example, we consider part of the data used in
Montesinos-López et al. (2017a, b): 20 lines and three environments. For each
individual plant, the reflectance, x(tj), of its leaves was measured at m ¼ 250
wavelengths (from 392 to 851 nm were measured) and at different stages of its
growth, but the information used here corresponds to one of these stages.

Figure 14.10 shows the measured reflectance corresponding to 60 observations,
where the colors of these observations indicate that they belong to the same
environment. The Fourier and B-spline representations of all these curves are
shown in Fig. 14.11, where the number of basis used in each case were 29 and
16, respectively; they are the medians of the most frequently selected number of
basis functions (29 for Fourier, and 12, 16, and 73 for B-spline) by the BIC across all
the curves (see Appendix 1 for the R code to reproduce these results).

The observed values versus the predicted values of the response, corresponding to
the Fourier and B-spline representations of the covariate, are shown in Fig. 14.12; in
both cases, L1 ¼ 21 basis functions were used to represent the beta coefficient

596 14 Functional Regression

function β(t). The fitted model appears to give almost the same results with both
representations.

To let the data speak for themselves about a reasonable value for L1 to represent
β(t), the BIC was used in both representations. For the Fourier case, L1 ¼ 11 was the
optimal value, while L1 ¼ 14 was the optimal value for the B-spline basis (see
Appendix 1 for the R code). The predicted and residual values obtained with these
optimal representations are shown in Fig. 14.13, from which it is difficult to choose
the best one because they gave almost the same results.

Because the B-spline appears to give a better covariate representation (see
Fig. 14.11) and a similar predicted value as that given by the Fourier basis
(Fig. 14.13), we can take a more informed decision in terms of the prediction
accuracy of the response, with both representations. To this end, we used ten random
partitions, where in each partition, 20% of the total data set was used to measure
prediction accurary and the rest was used to fit (train) the model. The results are
shown in Table 14.1 and we can see that, on average, the Fourier basis was favored,

Fig. 14.10 Reflectance of leaves of 60 individuals measured in 250 wavelengths (29, 394, 394, . . .,
851). The colors indicate the environment where the individuals were measured

14.3 Illustrative Examples 597

because on average across all the partitions, this type of basis provided lower MSE in
6 out of 10 partitions; for this reason, it is considered the best option. The same
conclusion was reached by comparing the BIC values of the corresponding Fourier
(149.8048) and B-spline (159.5854) representations.

14.4 Functional Regression with a Smoothed Coefficient
Function

As mentioned earlier, in the representation of the functional predictor (x(t)), one way
to control the smoothness when determining the beta coefficient function, β(t), is by
introducing a regularization term:

Fig. 14.11 Fourier and B-spline representations with the “optimal” number of basis functions
obtained with the BIC across all the curves

598 14 Functional Regression

SSEλ βð Þ ¼
Xn

i¼1
yi � μ�

XL1

l¼1
xilβl

� �2
þ λJβ, ð14:10Þ

where Jβ is the penalty term and λ is a smoothing parameter that represents a
compromise between the fit of the model to the data (first term) and the smoothness
of the function β(�) (second term). When λ¼ 0, the problem is reduced to that of least
squares (or maximum likelihood under normal errors) where there is no penalty, and
when λ increases, the roughness is highly penalized to the extent that β(t) can be
constant.

Fig. 14.12 Graph displaying the observed versus fitted values with two functional regression
models: the left panel was obtained by using 29 Fourier basis functions for the covariate function
and 21 Fourier basis functions for β(t); the right panel was obtained by using 16 B-spline basis
functions for the covariate function and 21 B-spline basis functions for β(t)

14.4 Functional Regression with a Smoothed Coefficient Function 599

Fig. 14.13 Observed versus predicted values and normal Q-Q plot of the residuals obtained with
Fourier (above) and B-spline (below) representations of both sets of covariates (L2¼29 Fourier
basis functions and L2¼16 B-spline basis functions) and beta coefficient functions (L1 ¼ 11 Fourier
basis functions and L1 ¼ 14 B-spline Fourier basis functions)

Table 14.1 Mean square
error (MSE) of prediction for
10 random partitions for
Fourier and B-spline
representations

Partition Fourier B-spline

MSE MSE

1 0.1717 0.2993

2 0.6049 0.6487

3 0.4385 0.4559

4 0.5006 0.4910

5 0.6164 0.6048

6 0.5403 0.6453

7 0.1456 0.1396

8 0.5004 0.5737

9 0.7551 0.7435

10 0.8042 0.9250

Average (SD) 0.5077 (0.216) 0.5526 (0.2221)

600 14 Functional Regression

Often the penalty term Jβ is based on the integrated pth order derivatives (Usset
et al. 2016):

Jβ ¼
Z T

0

dp

dtp
β tð Þ

	
2
dt, ð14:11Þ

where dp

dtp β tð Þ is a derivative of order p of the function β(t). With the representation
(14.2) of β(t), Jβ can be expressed as

Jβ ¼ βTPβ,

where P is a square matrix with entries Pij ¼
R T
0 ϕ

pð Þ
i tð Þϕ pð Þ

j tð Þ, i, j ¼ 1, . . ., L1, and

ϕ pð Þ
i tð Þ is a derivate of order p of ϕi(t). Typical chosen values of p are 1 and 2.
A smoothed solution of the function β(t) can be obtained by minimizing (14.10)

with respect to the parameters βl, l ¼ 1, . . ., L1. However, because this solution
depends on the smoothing parameter, this needs to be determined. For this reason, as
in the Ridge and Lasso regression models described in early chapters, here a cross-
validation method is adopted first, and a Bayesian approach will be described later.

Under the penalty term (14.11), the penalized sum of squared errors (14.10) can
be written as

SSEλ βð Þ ¼ y� 1nμ� X�β�j jj j2 þ λβ�TD β� ¼ SSEλ β�ð Þ, ð14:12Þ

where X� = XΓ, β� = ΓTβ, and P = ΓDΓT is the spectral decomposition of the
penalty matrix P. Note that when the matrix P is not of full rank, the penalty term in
(14.12) is reduced to λβ�TD β� ¼ λβ�T1 D1 β

�
1, where D1 is D but without the rows and

columns corresponding to the eigenvalues equal to 0 of P. So, the corresponding
smoothed solution of β(t) can be obtained as

bβ tð Þ ¼
XL1

l¼1
bβlϕl tð Þ,

where bβ ¼ Γbβ� and bβ� is the solution of (14.12), which also can be obtained with the
glmnet R package.

Example 14.4
To exemplify the penalized estimation of functional regression (14.10) with penalty
(14.11), here we retake the data used in Example 14.3. To compare the prediction
accuracy of this with the non-penalized functional regression described in the
previous section, 100 random partitions were used, and in each, 80% of the data
set was used to train the model and the rest to evaluate the prediction performance.
When training the model, an inner five-fold cross-validation was used to choose the
optimal parameter (λ) and estimate the βl’s coefficients. This was done using Fourier
and B-spline basis in the representation of the beta function, and in both cases, two

14.4 Functional Regression with a Smoothed Coefficient Function 601

basis were used. In both cases, the penalty matrix (14.11) and the elements of its
spectral decomposition (14.12) can be computed in R as

#Penalty matrix of derivative of order p
P_mat = eval.penalty(basisobj =Phi,Lfdobj=p)
ei_P = eigen(P_mat)
#Espectral descompositin of P_mat
gamma = ei_P$vectors #Γ
dv = ei_P$values#Eigenvalues of P_mat, elements of diagonal of D
dv = ifelse(dv<1e-10,0,dv)

where Phi is a created basis in R (Fourier or B-spline) and p is a nonnegative integer
for the order of the derivative in the penalty matrix to be used. Once the penalty
matrix is computed, the training of the model in (14.12) can be done in R as

Xa = X_F%*%gamma
A_PFR = cv.glmnet(x =Xa,y = y ,alpha = 0, nfolds=k, penalty.factor=dv,

standardize=FALSE,maxit=1e6)

where Xa is X�, y is the vector with the corresponding values of the response
variable, k is an integer used to specify the inner k cross-validation to train the
model and choose the “optimal” value of the smoothing parameter, and dv are the
eigenvalues of the penalty matrix used to indicate different penalties of the β�j as
required in (14.12), and standardize ¼ FALSE to indicate the non-required stan-
dardization of the columns of X�. See Appendix 2 for a complete R code used to
obtain the results of this example.

When using Fourier representation and first derivative penalization, for the
100 random partitions, in Fig. 14.14 is shown the MSE obtained with the penalized
functional regression (PFR) against the MSE corresponding to the non-penalized
functional regression (FR): in 78 out of 100 partitions, the PFR resulted in a better
MSE (0.7465 vs. 0.5545 on average). Furthermore, in the partitions where the FR
was better (20%), the average MSE of the PFR was 35.48% greater
(0.4051 vs. 0.5561), while in those where the PFR was better, the average MSE
obtained with the FR was 51.55% greater (0.8428 vs. 0.5561).

Now, for the B-spline representation and first derivative penalization, the
corresponding results are also shown in Fig. 14.14. In this case, in 55 out of
100 partitions, the PFR resulted in a better MSE (0.5822 vs. 0.5630 on average).
Furthermore, in the partitions where the FR was better (20%), the average MSE of
the PFR was 27.18% greater (0.4887 vs. 0.6216), while in those where the PFR was
better, the average MSE obtained with the FR was 27.87% greater
(0.6587 vs. 0.5151). So, for the Fourier basis representation, the results obtained
when using penalization in the estimation of the beta function β(�) differ from those
obtained when no penalization is used, while with the B-spline representation the
difference is negligible. This is perhaps because of the natural smoothing of the
B-spline relative to the Fourier basis.

602 14 Functional Regression

For second derivative penalization using Fourier representation, in 74 out of
100 partitions and on average, the MSE of PFR also resulted better than the FR
(0.7465 vs. 0.5754). Indeed, in the cases where PFR was worse, the average MSE of
this was 34.87% greater than the corresponding FR, and in the cases where FR was
worse, the average MSE was 51.78% greater.

For B-spline basis with second derivative penalization, on average the FR was
better than the PFR (0.5822 vs. 0.6009), but this resulted in a smaller MSE only in
50 out of 100 partitions. Additionally, in the case where FR was better, the average
MSE of the PFR was 34.48% greater than the average of FR, while in the other half
of the cases, the average MSE of the FR was only 24.25% greater than the average
MSE of PFR.

Fig. 14.14 Mean square error (MSE) of prediction for penalized functional regression (PFR)
versus MSE of functional regression (FR). Shown in green are the cases where the MSE obtained
with the PFR is less than the FR

14.4 Functional Regression with a Smoothed Coefficient Function 603

14.5 Bayesian Estimation of the Functional Regression

Similar to what was done in Chaps. 3 and 6, the penalized sum squared of error
solution in (14.12) with penalty term (14.11) coincides with the mean/mode of the
posterior distribution of β, in the multiple linear regression yi ¼ μþPL1

l¼1xilβl þ Ei
(y ¼ 1nμ + Xβ + e), with prior distribution β � N 0, σ2βP

�1
� �

, with σ2β ¼ λ
σ2. So, from

here a Bayesian formulation (PBFR) for the smoothed solution of the coefficient
function (β(t)) in the functional regression model (14.1) can be completed by
assuming the following priors for the rest of the parameters: σ2 � χ�2

v,S and σ2β �
χ�2
vβ , Sβ

, where χ�2
v,S denotes a scaled inverse Chi-squared distribution with shape

parameter v and scale parameter S. When P is not of full rank, little change is needed
over the prior distribution of the β coefficients: for example, in the Fourier basis, the
first element of this is the constant function, so entries in the first row and first
column of P are equal to 0.

Similarly, the Bayesian formulation of regression models can be expressed as

y ¼ 1nμ + X�β� + e, with the same prior distribution, except that now β� �
N 0, σ2βIL1
� �

and X� ¼ XΓD21/2, where D�1
2 is the inverse of the squared root matrix

ofD. This equivalence is the same as Bayesian Ridge Regression (BRR) described in
Chap. 6, so this can be implemented with the BGLR R package.

Example 14.5
Here we continue with the data set of Example 14.3, but now in another 100 random
partitions, we added the Bayesian prediction to explore the prediction performance.
Part of the code for implementing this model is given next, but the complete code
used is given in Appendix 3.

#Number of Fourier and B-spline basis functions to represent the
covariable
#function
nbFo = 29
nbBSo = 16

#Functional regression with Fourier and B-splines
#Computing X for Fourier representation with L1 = 21 Fourier basis
functions
#for the beta function
L1 = 21
P = diff(range(Wv))
Psi_F = create.fourier.basis(range(Wv), nbasis = nbFo,

period = P)
SF_mat = smooth.basisPar(argvals = Wv,

y =t(X_W), fdobj = Psi_F,lambda=0,
Lfdobj = 0)

Phi_F = create.fourier.basis(range(Wv), nbasis = L1,
period = P)

604 14 Functional Regression

https://doi.org/10.1007/978-3-030-89010-0_3
https://doi.org/10.1007/978-3-030-89010-0_6
https://doi.org/10.1007/978-3-030-89010-0_6

Q = inprod(Phi_F,Psi_F)
c_mat = t(SF_matfdcoefs)
X_F = c_mat%*%t(Q)
dim(X_F)

#Computing X for B-spline representation with L1 = 21 B-spline basis
functions
#for the beta function
L1 = 21
Psi_BS = create.bspline.basis(range(Wv), nbasis = nbBSo)
SBS_mat = smooth.basisPar(argvals = Wv,

y =t(X_W), fdobj = Psi_BS,lambda=0,
Lfdobj = 0)

Phi_BS = create.bspline.basis(range(Wv), nbasis = L1,
norder= 4)

Q = inprod(Phi_BS,Psi_BS)
c_mat = t(SBS_matfdcoefs)
X_BS = c_mat%*%t(Q)
dim(X_BS)

#Smoothing estimation using Fourier representation for the functional
#covariable and L1 = 21 Fourier basis functions for the beta function
par(mfrow=c(1,2))
library(glmnet)
#Penalization with first derivate
P_mat_F = eval.penalty(Phi_F,Lfdobj=1)
ei_P = eigen(P_mat_F)
gamma = ei_P$vectors
dv = ei_P$values
dv = ifelse(dv<1e-10,0,dv)

X_Fa = X_F%*%gamma

#Grid of lambda values obtained by varying the proportion of variance
explained
#by the functional predictor
lamb_FR_f<-function(Xa,dv,K=100,li=1e-1,ls=1-1e-12)
{
Pos = which(dv<1e-10)
D_inv = diag(1/dv[-Pos])
PEV = seq(li,ls,length=K)
Xa = Xa[,-Pos]
lambv = (1-PEV)/PEV*mean(diag(Xa%*%D_inv%*%t(Xa)))
lambv = exp(seq(min(log(lambv)),max(log(lambv)),length=K))
sort(lambv,decreasing = TRUE)

}
lambda = lamb_FR_f(X_Fa,dv,K=1e2)

y=yv
library(BGLR)
#Linear predictor specification in BGLR for the PBFR model
Pos = which(dv>0)

14.5 Bayesian Estimation of the Functional Regression 605

#Matrix design for the non-penalized columns of X^a
X_Fa1 = X_Fa[,-Pos]
#Matrix design for the penalized columns of X^a
X_Fa2 = X_Fa[,Pos]%*%diag(1/sqrt(dv[Pos]))
ETA = list(list(X=X_Fa1,model='FIXED'),list(X=X_Fa2,model='BRR'))

#Linear predictor specification in BGLR for the BFR model
ETA_NP = list(list(X=X_F[,1],model='FIXED'),list(X=X_F[,-1],
model='BRR'))

#Random cross-validation
RP = 100
set.seed(1)
MSEP_df = data.frame(RP=1:RP,MSEP_PFR=NA,MSEP_FR=NA,lamb_o=NA)
for(p in 1:RP)
{
Pos_tst = sample(n,0.20*n)
X_F_tr = X_F[-Pos_tst,]; n_tr = dim(X_F_tr)[1]
y_tr = y[-Pos_tst]; y_tst = y[Pos_tst]

#FR
dat_df = data.frame(y=y,X=X_F)
A_F = lm(y~.,data=dat_df[-Pos_tst,])
yp_tst = predict(A_F,newdata = dat_df[Pos_tst,])
MSEP_df$MSEP_FR[p] = mean((y_tst-yp_tst)^2)

#PFR with first derivative
A_PFR = cv.glmnet(x =X_Fa[-Pos_tst,],y = y[-Pos_tst] ,alpha = 0,

nfolds=5,lambda=lambda/n_tr,
penalty.factor=dv,
standardize=FALSE,maxit=1e6)

MSEP_df$lamb_o[p] = A_PFR$lambda.min
yp_tst = predict(A_PFR,newx=X_Fa[Pos_tst,], s="lambda.min")[,1]
MSEP_df$MSEP_PFR[p] = mean((y_tst-yp_tst)^2)

#BGLR
y_NA = y
y_NA[Pos_tst] = NA
A_BGLR = BGLR(y_NA,ETA= ETA,nIter=1e4, burnIn = 1e3,verbose=FALSE)
yp_tst = A_BGLR$yHat[Pos_tst]
MSEP_df$MSEP_BGLR[p] = mean((y_tst-yp_tst)^2)

A_BGLR = BGLR(y_NA,ETA= ETA_NP,nIter=1e4, burnIn = 1e3,
verbose=FALSE)
yp_tst = A_BGLR$yHat[Pos_tst]
MSEP_df$MSEP_BGLR_NP[p] = mean((y_tst-yp_tst)^2)

cat('Partition = ', p,'\n')

}
MSEP_df

606 14 Functional Regression

With the Fourier basis and first derivative penalization, the average MSE
(SD) across 100 random partitions were 0.7744(0.3412), 0.6338(0.2871), 0.8585
(0.2929), and 0.8092(0.2848) for the functional regression (FR), penalized func-
tional regression (PFR), penalized Bayesian functional regression (PBFR), and

Bayesian functional regression (BFR, β � N 0, σ2βIL1
� �

), respectively. In 75, 81,

and 77 out of the 100 random partitions, the MSE of the PFR was better than the
partitions obtained with the FR, PBFR, and BFR, respectively. And only in 5 out of
100 cases, the MSE of the PBFR was better than the BFR, making the penalty term
in the Bayesian estimation non-important and indeed harmful (see Appendix 3 for
the R code used).

With the B-spline basis and first derivative penalization, the PFR (0.5718
(0.2669)) also resulted better on average than FR (0.6012(0.2681)), PBFR (0.8475
(0.3333)), and BFR (0.7982(0.3112)). Here, in 62 out of 100 random partitions, the
MSE of the PFR was less than the MSE of the FR, while in 84 and 80 out of the
100 random partitions, they were better than the PBFR and BFR, respectively. Also,
taking into account the penalty term in the Bayesian prediction was not so important
because in only 8 out of the 100 random partitions, the MSE of the PBFR was less
than the MSE corresponding to the BFR (see Appendix 3 for the R code used).

When using the penalty matrix based on second derivatives, in each case (Fourier
and B-spline), the results were similar.

The Bayesian formulation can be extended easily to take into account the effects
of other factors. For example, in Example 14.5, the effects of the environment can be
added as

y ¼ 1nμþ XEβE þ Xβþ e, ð14:13Þ

where XE is the design matrix of the environments and βE is the vector with the
environment effects, and the Bayesian formulation can be completed by assuming a
prior distribution for βE. As was described in Chap. 6 in the BGLR package, there are
several options for this: FIXED, BRR, BayesA, BayesB, BayesC, and BL. In the
next example, the first one is used.

Example 14.6
This is a continuation of Example 14.5 used to illustrate the performance when
adding environmental information to the prediction task by using the Bayesian
formulation (14.13). The resulting models were evaluated with 100 random parti-
tions with both Fourier and B-spline basis and first derivative penalization.

The key code for implementing this example is given below.

For Fourier basis:
#Matrix design of environment
X_E = model.matrix(~0+Env,data=dat_F)[,-1]
#Linear predictor to PBFR + Env effect
ETA = list(list(X=X_E,model='FIXED'),list(X=X_Fa1,model='FIXED'),
list(X=X_Fa2,model='BRR'))

14.5 Bayesian Estimation of the Functional Regression 607

https://doi.org/10.1007/978-3-030-89010-0_6

Linear predictor to BFR + Env effect
ETA_NP = list(list(X=X_E,model='FIXED'),list(X=X_F[,1],

model='FIXED'),list(X=X_F[,-1],model='BRR'))

For B-spline basis:
#Matrix design of environment
X_E = model.matrix(~0+Env,data=dat_F)[,-1]
#Linear predictor to PBFR + Env effect
ETA = list(list(X=X_E,model='FIXED'),list(X=X_Fa1,model='FIXED'),

list(X=X_Fa2,model='BRR'))
#Linear predictor to BFR + Env effect
ETA_NP = list(list(X=X_E,model='FIXED'),list(X=X_BS,model='BRR'))

#Random cross-validation
RP = 100
set.seed(1)
MSEP_df = data.frame(RP=1:RP,MSEP_PFR=NA,MSEP_FR=NA,lamb_o=NA)
for(p in 1:RP)
{
Pos_tst = sample(n,0.20*n)
X_F_tr = X_F[-Pos_tst,]; n_tr = dim(X_F_tr)[1]
y_tr = y[-Pos_tst]; y_tst = y[Pos_tst]

#FR
dat_df = data.frame(y=y,X=X_F)
A_F = lm(y~.,data=dat_df[-Pos_tst,])
yp_tst = predict(A_F,newdata = dat_df[Pos_tst,])
MSEP_df$MSEP_FR[p] = mean((y_tst-yp_tst)^2)

#PFR with first derivative
A_PFR = cv.glmnet(x =X_Fa[-Pos_tst,],y = y[-Pos_tst] ,alpha = 0,

nfolds=5,lambda=lambda/n_tr,
penalty.factor=dv,
standardize=FALSE,maxit=1e6)

MSEP_df$lamb_o[p] = A_PFR$lambda.min
yp_tst = predict(A_PFR,newx=X_Fa[Pos_tst,], s="lambda.min")[,1]
MSEP_df$MSEP_PFR[p] = mean((y_tst-yp_tst)^2)

#BGLR
y_NA = y
y_NA[Pos_tst] = NA
A_BGLR = BGLR(y_NA,ETA= ETA,nIter=1e4, burnIn = 1e3,verbose=FALSE)
yp_tst = A_BGLR$yHat[Pos_tst]
MSEP_df$MSEP_BGLR[p] = mean((y_tst-yp_tst)^2)

A_BGLR = BGLR(y_NA,ETA= ETA_NP,nIter=1e4, burnIn = 1e3,
verbose=FALSE)
yp_tst = A_BGLR$yHat[Pos_tst]
MSEP_df$MSEP_BGLR_NP[p] = mean((y_tst-yp_tst)^2)
cat('Partition = ', p,'\n')

}

608 14 Functional Regression

The results are shown in Table 14.2, where the third and fourth rows correspond
to the average (Mean) and standard deviation (SD) of the MSE, when using Fourier
basis (L2¼29 for covariate representation and L1 ¼ 21 for the beta function β(�)) in
the four fitted models (PFR, FR, PBFR, and BFR, with the environment effects
added in the predictor of the model). With respect to the classical functional
regression models (PFR and FR), both Bayesian models with environment (PBFR
and BFR) effects resulted in a better performance, but again, the Bayesian model
without penalization matrix was better (0.4382 vs. 0.4580) (see Appendix 4 for the
whole code).

For the B-spline basis, similar results were obtained, but again, the difference
between the PFR and FR was not so important as observed before (see Appendix 4).
So, in both cases (Fourier and B-spline), adding the environment information to the
model improved the prediction performance. In general, the extra information can be
added and explored easily with the BGLR package to determine the importance of
this in the prediction task of interest.

Further information can be easily added to the model without many complica-
tions. See Chap. 6 for more detailed information on how to do this with the BGLR R
package.

Example 14.7
This example is an extension of Example 14.6 by adding the interaction of the
environment with the hyper-spectral data (the functional covariable) in the predictor
of the model. The corresponding term is given byZ T

0
x tð Þβe tð Þdt,

where βe(t) is the coefficient function corresponding to the functional part that
represents the interaction between the eth environment and reflectance for wave-
length t (in general, the functional covariate measured in time t), to allow the effect of
reflectance to vary by environment (see Montesinos-López et al. 2017b). By assum-
ing that there are ne observations in environment e, e ¼ 1, . . ., I, the corresponding

Table 14.2 Mean square error (MSE) of prediction for 100 random partitions for Fourier and
B-spline representations, where the PFR and FR are classic functional regression models used in

Example 14.4, and PBFR and BFR are model (14.13) with prior β � N 0, σ2βP
�1

� �
(with penali-

zation matrix based on the first derivative) and β � N 0, σ2βIL1
� �

(without penalization), respec-

tively, for the functional term

PFR FR PBFR BFR

Fourier Mean 0.6029 0.7797 0.4580 0.4382

SD 0.2988 0.3593 0.2058 0.1986

B-spline Mean 0.6138 0.6133 0.4304 0.4176

SD 0.2695 0.2568 0.1729 0.1668

14.5 Bayesian Estimation of the Functional Regression 609

https://doi.org/10.1007/978-3-030-89010-0_6

re-expressed model after representing the coefficient function βe(t) in terms of the
same basis functions used for β(t), βe tð Þ ¼PL1e

l¼1βelϕl tð Þ, is given by

y= 1nμþ XEβE þ Xβþ XEFβEF þ e, ð14:14Þ

where 1n is a vector of dimension n � 1 with all its entries equal to
1, X= x1, . . . , xn½ �T and xi ¼ xi1, . . . , xiL1½ �T, i ¼ 1, . . . , n ¼ n1 þ⋯þ nI , as
defined in (14.4) and (14.5), XE is the design matrix of the environments and βE is
the vector with the environment effects (see 14.13), XEF is the design matrix of the
interaction effecs of enviroment-reflectance and βEF is the corresponding interaction
effects of environment-reflectance, as given by

XEF ¼

xT1 0 ⋯ 0

⋮ ⋮ ⋮ ⋮
xTn1 0 ⋯ 0

0 xTn1þ1 ⋮ 0

⋮ ⋮ ⋮ ⋮
0 xTn1þn2

⋯ 0

⋮ ⋮ ⋮ ⋮
0 0 0 xTn�nIþ1

⋮ ⋮ ⋮ ⋮
0 0 0 xTn

266666666666666666664

377777777777777777775

and βEF =

β1
β2
⋮
βI

26664
37775:

This model was also evaluated with 100 random partitions with both Fourier and
B-spline basis and with (PBFR (14.14)) and without (BFR (14.14)) first derivative
penalization. The results are shown in Table 14.3, together with the prediction
performance of the model with no interaction term (model 14.13). We can observe
that by adding the interaction of environment with the functional covariate, both
Bayesian models (PBFR and BFR) resulted in a reduction on average of about 35%
of the MSE (PBFR (14.13) vs. PBFR (14.14) and BFR (14.13) vs. BFR (14.14)), and
again the Bayesian model without penalization matrix was better (0.2955 vs. 0.2899)

Table 14.3 Mean squared error of prediction (MSE) for 100 random partitions for Fourier and
B-spline representations, where PBFR (14.13) and BFR (14.13) are MSE of the model (14.13) with
and without penalization matrix based on the first derivative in the functional term (Xβ), and PBFR
(14.14) and BFR (14.14) are for model (14.14) with and without penalization matrix based on the
first derivative in the functional terms (Xβ,XEFβEF)

PBFR (14.13) BFR (14.13) PBFR (14.14) BFR (14.14)

Fourier Mean 0.4563 0.4387 0.2955 0.2899

SD 0.2056 0.1992 0.1363 0.1313

B-spline Mean 0.4510 0.4361 0.2814 0.2818

SD 0.1892 0.1837 0.1149 0.1224

610 14 Functional Regression

in the Fourier basis, while in the B-spline basis the Bayesian model with penalization
matrix was better (0.2814 vs. 0.2818).

Finally, in this chapter, we gave the basic theory of functional regression and we
provided examples to illustrate this methodology for genomic prediction using the
glmnet and BGLR packages. The examples show in detail how to implement
functional regression analysis in a more straightforward way by taking advantage
of the existing software for genomic selection. Also, the examples are done with
small data sets so that the user can run them on his/her own computer and can
understand the implementation process well.

Appendix 1

rm(list=ls(all=TRUE))
#Example 14.3
load('dat_ls.RData')
#Phenotypic data
dat_F = dat_ls$dat_F
head(dat_F)
#Wavelengths data
dat_W = dat_ls$dat_WL
colnames(dat_W)[1:8]
head(dat_W)[,1:8]

#Wavelengths used
Wv = as.numeric(substring(colnames(dat_W)[-(1:2)],2))
#Reflectance in each individual
X_W = unique(dat_W[,-(1:2)])
X_W = scale(X_W,scale=FALSE)
#Reflectance behavior as a function of wavelength for 10 individuals
W = matrix(Wv,nr=length(Wv),nc=60,byrow = FALSE)
matplot(W,t(X_W),xlab='Wavelengths',ylab='Reflectance',

col=dat_W$Env,pch=1,cex=0.5)

#Optimal number of Fourier basis functions to represent the functional
covariable
#of each individual
library(fda)
Perd = diff(range(Wv))
plot(Wv,X_W[1,])
m = length(Wv)
n = dim(dat_F)[1]
nbF = seq(3,m/2,2)
BIC_mat = matrix(NA,nr=length(nbF),nc = n)
for(l in 1:length(nbF))
{
#Fourier basis for x(t)
Psi_F = create.fourier.basis(range(Wv)+c(0,0), nbasis = nbF[l],

Appendix 1 611

period = Perd)
SF_mat = smooth.basisPar(argvals = Wv,

y =t(X_W), fdobj = Psi_F,lambda=0,
Lfdobj = 0)

#plot(SF_mat,col=dat_F$Env,xlab='t',ylab='x(t)')
Res_mat = t(residuals(SF_mat))
sigmav = sqrt(rowMeans(Res_mat^2))
ll_f<-function(Res)
{
sigma = sqrt(mean(Res^2))
sum(dnorm(Res,0,sigma,log=TRUE))

}
llv = apply(Res_mat,1,ll_f)
BIC_v = -2*llv+log(m)*(nbF[l]+1)
BIC_mat[l,] = BIC_v
cat('l=',l,'\n')

}
#Optimal nbF in each curve obtained with the BIC
nbFov = apply(BIC_mat,2,function(x)nbF[which.min(x)])
plot(nbFov,xlab='Individual',ylab='Optimal number of basis functions
choosen by BIC')

#The median value of the more often selected number of basis functions
across all curves
Tb = table(nbFov)
nbFo = as.numeric(names(Tb))[which(Tb==max(Tb))]
nbFo
nbFo = median(nbFo)
nbFo

#Optimal number of B-spline basis functions to represent the functional
covariable
#of each individual
nbBS = seq(4,m/2,1)
BIC_mat = matrix(NA,nr=length(nbBS),nc = n)
for(l in 1:length(nbBS))
{
#Fourier basis for x(t)
Psi_BS = create.bspline.basis(range(Wv)+c(0,0), nbasis = nbBS[l],

norder = 4)
SBS_mat = smooth.basisPar(argvals = Wv,

y =t(X_W), fdobj = Psi_BS,lambda=0,
Lfdobj = 0)

#plot(SBS_mat,col=dat_F$Env,xlab='t',ylab='x(t)')
Res_mat = t(residuals(SBS_mat))
sigmav = sqrt(rowMeans(Res_mat^2))
ll_f<-function(Res)
{
sigma = sqrt(mean(Res^2))
sum(dnorm(Res,0,sigma,log=TRUE))

}
llv = apply(Res_mat,1,ll_f)
#BIC_v = -2*llv+log(m)*(nbBS[l]-4+nbBS[l]+1)

612 14 Functional Regression

BIC_v = -2*llv+log(m)*(nbBS[l]+1)
BIC_mat[l,] = BIC_v

cat('l=',l,'\n')
}
#Optimal nbBS for each curve obtained with the BIC
nbBSov = apply(BIC_mat,2,function(x)nbBS[which.min(x)])
plot(nbBSov,xlab='Individual',ylab='Optimal number of basis
functions choosen by BIC')

Tb = table(nbBSov)
barplot(Tb)
nbBSov = as.numeric(names(Tb))[which(Tb==max(Tb))]
nbBSo = median(nbBSov)
nbBSo

#Fourier and B-spline representations with the “optimal” number
#of basis functions obtained across the curves using the BIC
par(mfrow=c(1,2))
#Fourier representation of all curves using 29 Fourier basis functions
Psi_F = create.fourier.basis(range(Wv), nbasis = nbFo,

period = Perd)
SF_mat = smooth.basisPar(argvals = Wv,

y =t(X_W), fdobj = Psi_F,lambda=0,
Lfdobj = 0)

matplot(Wv,fitted(SF_mat),col=dat_F$Env,xlab='t (Wavelengths)',
ylab='x(t) (Reflectance)',pch=1,type='l',
main=paste('Fourier representation with\n ',nbFo,'basis

functions',sep=' '))

#B-spline representation of all curves using 16 B-spline basis
functions
Psi_BS = create.bspline.basis(range(Wv), nbasis = nbBSo)
SBS_mat = smooth.basisPar(argvals = Wv,

y =t(X_W), fdobj = Psi_BS,lambda=0,
Lfdobj = 0)

matplot(Wv,fitted(SBS_mat),col=dat_F$Env,xlab='t (Wavelengths)',
ylab='x(t) (Reflectance)',pch=1,type='l',
main=paste('B-spline representation with\n ',nbBSo,

'basis functions'',sep=' '))

#Functional regression with Fourier and B-splines
#Computing X for Fourier representation with L1 = 21 Fourier basis
#functions for the beta function
L1 = 21
Phi_F = create.fourier.basis(range(Wv), nbasis = L1,

period = Perd)
Q = inprod(Phi_F,Psi_F)
c_mat = t(SF_matfdcoefs)
X_F = c_mat%*%t(Q)
dim(X_F)

Appendix 1 613

X_F_df = data.frame(dat_W[,1:2],X_F)
#write.csv(X_F_df,file='X_F_df.csv')

#Computing X for B-spline representation with L1 = 21 B-spline basis
functions
#for the beta function
L1 = 21
Phi_BS = create.bspline.basis(range(Wv), nbasis = L1,

norder= 4)
Q = inprod(Phi_BS,Psi_BS)
c_mat = t(SBS_matfdcoefs)
X_BS = c_mat%*%t(Q)
dim(X_BS)
X_BS_df = data.frame(dat_W[,1:2],X_BS)
#write.csv(X_BS_df,file='X_BS_df.csv')

#OLS estimation using Fourier representation with L1 = 21 Fourier basis
#functions for the beta function
par(mfrow=c(1,2))
yv = dat_F$y
A_F = lm(yv~X_F)
betav = coef(A_F)
#Plot of the 21 estimated Bj’s
#par(mar=c(5,5.1,2,2))
#plot(betav[-1],xlab=expression(j),ylab=expression(hat(beta)[j]))
#betaf_F = eval.basis(Wv,Phi_F)%*%betav[-1]
#plot(Wv,betaf_F)
#Fitted values
yp = fitted(A_F)
plot(yv,yp,xlab='y (Observed)',ylab='yp (Predicted)',

main='Fourier basis functions \n 29 for x(t) and 21 for B(t)')
abline(a=0,b=1)
mean((yv-yp)^2)

#OLS estimation using Fourier representation with L1 = 21 B-spline basis
#functions for the beta function
yv = dat_F$y
A_BS = lm(yv~X_BS)
betav = coef(A_BS)
#Plot of the 21 estimated Bj’s
#par(mar=c(5,5.1,2,2))
#plot(betav[-1],xlab=expression(j),ylab=expression(hat(beta)[j]))
#betaf_BS = eval.basis(Wv,Phi_BS)%*%betav[-1]
#plot(Wv,betaf_F)
#Fitted values
yp = fitted(A_BS)
plot(yv,yp,xlab='y (Observed)',ylab='yp (Predicted)',

main='B-spline basis functions \n 16 for x(t) and 21 for B(t)')
abline(a=0,b=1)
mean((yv-yp)^2)
#BIC to choose the optimal number of basis functions for the beta
#function (L1) in the Fourier representation of this
nbF_B = seq(3,29,2)

614 14 Functional Regression

Tab = data.frame()
for(i in 1:length(nbF_B))
{
Phi_F = create.fourier.basis(range(Wv), nbasis = nbF_B[i],

period = Perd)
Q = inprod(Phi_F,Psi_F)
c_mat = t(SF_matfdcoefs)
X_F = c_mat%*%t(Q)
A = lm(yv~X_F)
BIC = BIC(A)
Tab = rbind(Tab,data.frame(nb = nbF_B[i],BIC=BIC))

}
plot(Tabnb,TabBIC,xlab='Número de bases',ylab='BIC')
nbFo_B = Tab$nb[which.min(Tab$BIC)]
nbFo_B

#Observed and fitted values with “optimal” number of basis functions for
#the beta function (L1) with the Fourier representation
L1 = nbFo_B
Phi_F = create.fourier.basis(range(Wv), nbasis = L1,

period = Perd)
Q = inprod(Phi_F,Psi_F)
c_mat = t(SF_matfdcoefs)
X_F = c_mat%*%t(Q)
dim(X_F)
A_F = lm(yv~X_F)
betav = coef(A_F)
betaf_F = eval.basis(Wv,Phi_F)%*%betav[-1]
plot(Wv,betaf_F)

#Fitted values
yp = fitted(A_F)
plot(yv,yp,xlab='y (Observed)',ylab='yp (Predicted)')
abline(a=0,b=1)
mean((yv-yp)^2)

#Q-Q Normal
ev = residuals(A_F)
sigma2 = mean(ev^2)
qqnorm(ev/sqrt(sigma2))
abline(a=0,b=1)

#BIC to choose the optimal number of basis functions for the beta
#function (L1) in the B-spline representation of this
nbBS_B = seq(5,45,1)
Tab = data.frame()
for(i in 1:length(nbBS_B))
{
Phi_BS = create.bspline.basis(range(Wv), nbasis = nbBS_B[i],

norder = 4)
Q = inprod(Phi_BS,Psi_BS)
c_mat = t(SBS_matfdcoefs)
X_BS = c_mat%*%t(Q)

Appendix 1 615

A = lm(yv~X_BS)
BIC = BIC(A)
Tab = rbind(Tab,data.frame(nb = nbBS_B[i],BIC=BIC))

}
plot(Tabnb,TabBIC,xlab='Number of basis functions',ylab='BIC')
nbBSo_B = Tab$nb[which.min(Tab$BIC)]
nbBSo_B

#Observed and fitted values with “optimal” number of basis functions for
#the beta function (L1) with the B-spline representation
L1 = nbBSo_B
Phi_BS = create.bspline.basis(range(Wv), nbasis = L1, norder = 4)
Q = inprod(Phi_BS,Psi_BS)
c_mat = t(SBS_matfdcoefs)
X_BS = c_mat%*%t(Q)
dim(X_BS)
A_BS = lm(yv~X_BS)
betav = coef(A_BS)
betaf_BS = eval.basis(Wv,Phi_BS)%*%betav[-1]
plot(Wv,betaf_BS)
#lines(Wv,betaf_F,col=2)

par(mfrow=c(2,2))
#Fourier
#Fitted values
yp = fitted(A_F)
plot(yv,yp,xlab='y (Observed)',ylab='yp (Predicted)')
abline(a=0,b=1)
mean((yv-yp)^2)

#Q-Q Normal
ev = residuals(A_F)
sigma2 = mean(ev^2)
qqnorm(ev/sqrt(sigma2))
abline(a=0,b=1)
#B-spline
#Fitted values
yp = fitted(A_BS)
#par(mfrow=c(1,2),oma = c(0, 0, 2, 0))
plot(yv,yp,xlab='y (Observed)',ylab='yp (Predicted)')#,main='B-
spline representation')
abline(a=0,b=1)
mean((yv-yp)^2)
#Q-Q Normal
ev = residuals(A_BS)
sigma2 = mean(ev^2)
qqnorm(ev/sqrt(sigma2))
abline(a=0,b=1)
#mtext("Title for Two Plots", outer = T, cex = 1.5)
mean((yv-yp)^2)

#BIC of the models corresponding to the optimal Fourier and B-spline
#representations

616 14 Functional Regression

BIC(A_F)
BIC(A_BS)

#Random partition to measure the prediction performance
#of Fourier and B-spline representations
set.seed(1)
MSEP = data.frame()
for(p in 1:10)
{
Pos_j = sample(n,.20*n)
dat_F_j = dat_F[-Pos_j,]
X_W_j = X_W[-Pos_j,]
#Fourier
A_F = lm(yv[-Pos_j]~X_F[-Pos_j,])
#Fitted values
#yp = predict(A_F,newdata = data.frame(X_F[Pos_j,]))
yp_F = cbind(1,X_F[Pos_j,])%*%coef(A_F)
#B-spline
A_BS = lm(yv[-Pos_j]~X_BS[-Pos_j,])
yp_BS = cbind(1,X_BS[Pos_j,])%*%coef(A_BS)

MSEP = rbind(MSEP,data.frame(MSEP_Fourier = mean((yv[Pos_j]-yp_F)
^2),

MSEP_BS = mean((yv[Pos_j]-yp_BS)^2)))
}
MSEP

Appendix 2 (Example 14.4)

rm(list=ls(all=TRUE))
library(fda)
#Example 14.4 (data set of Example 14.3)
load('dat_ls.RData')
#Phenotypic data
dat_F = dat_ls$dat_F
head(dat_F)
yv = dat_F$y
n = length(yv)

#Wavelengths data
dat_W = dat_ls$dat_WL
colnames(dat_W)[1:8]
head(dat_W)[,1:8]

#Wavelengths used
Wv = as.numeric(substring(colnames(dat_W)[-(1:2)],2))
#Reflectance in each individual
X_W = unique(dat_W[,-(1:2)])

Appendix 2 (Example 14.4) 617

X_W = scale(X_W,scale=FALSE)
#Reflectance behavior as a function of wavelength for 10 individuals
W = matrix(Wv,nr=length(Wv),nc=60,byrow = FALSE)
matplot(W,t(X_W),xlab='Wavelengths',ylab='Reflectance',

col=dat_W$Env,pch=1,cex=0.5)

#Number of Fourier and B-spline basis functions to represent the
covariable
#function
nbFo = 29
nbBSo = 16

#Matrix design X computed with Fourier and B-spline bases
#Computing X for Fourier representation with L1 = 21 Fourier basis
functions
#for the beta function
L1 = 21
P = diff(range(Wv))
Psi_F = create.fourier.basis(range(Wv), nbasis = nbFo,

period = P)
SF_mat = smooth.basisPar(argvals = Wv,

y =t(X_W), fdobj = Psi_F,lambda=0,
Lfdobj = 0)

Phi_F = create.fourier.basis(range(Wv), nbasis = L1,
period = P)

Q = inprod(Phi_F,Psi_F)
c_mat = t(SF_matfdcoefs)
X_F = c_mat%*%t(Q)
dim(X_F)

#Computing X for B-spline representation with L1 = 21 B-spline basis
functions
#for the beta function
L1 = 21
Psi_BS = create.bspline.basis(range(Wv), nbasis = nbBSo)
SBS_mat = smooth.basisPar(argvals = Wv,

y =t(X_W), fdobj = Psi_BS,lambda=0,
Lfdobj = 0)

Phi_BS = create.bspline.basis(range(Wv), nbasis = L1,
norder= 4)

Q = inprod(Phi_BS,Psi_BS)
c_mat = t(SBS_matfdcoefs)
X_BS = c_mat%*%t(Q)
dim(X_BS)

#Smoothing estimation using Fourier representation for the functional
#covariable and L1 = 21 Fourier basis functions for the beta function
par(mfrow=c(1,2))
library(glmnet)
#Penalization with first derivate (Changing the value Lfdobj=1 to
Lfdobj=2, the penalty matrix #with second derivates is obtained)
P_mat_F = eval.penalty(Phi_F,Lfdobj=1)
ei_P = eigen(P_mat_F)

618 14 Functional Regression

gamma = ei_P$vectors
dv = ei_P$values
dv = ifelse(dv<1e-10,0,dv)

X_Fa = X_F%*%gamma

#Grid of lambda values obtained by varying the proportion of variance
explained
#by the functional predictor
lamb_FR_f<-function(Xa,dv,K=100,li=1e-1,ls=1-1e-12)
{
Pos = which(dv<1e-10)
D_inv = diag(1/dv[-Pos])
PEV = seq(li,ls,length=K)
Xa = Xa[,-Pos]
lambv = (1-PEV)/PEV*mean(diag(Xa%*%D_inv%*%t(Xa)))
lambv = exp(seq(min(log(lambv)),max(log(lambv)),length=K))
sort(lambv,decreasing = TRUE)

}

lambda = lamb_FR_f(X_Fa,dv,K=1e2)

#Random cross-validation
y=yv
RP = 100
set.seed(1)
MSEP_df = data.frame(RP=1:RP,MSEP_PFR=NA,MSEP_FR=NA,lamb_o=NA)
for(p in 1:RP)
{
Pos_tst = sample(n,0.20*n)
X_F_tr = X_F[-Pos_tst,]; n_tr = dim(X_F_tr)[1]
y_tr = y[-Pos_tst]; y_tst = y[Pos_tst]

#FR
dat_df = data.frame(y=y,X=X_F)
A_F = lm(y~.,data=dat_df[-Pos_tst,])
yp_tst = predict(A_F,newdata = dat_df[Pos_tst,])
MSEP_df$MSEP_FR[p] = mean((y_tst-yp_tst)^2)

#PFR with first derivative
A_PFR = cv.glmnet(x =X_Fa[-Pos_tst,],y = y[-Pos_tst] ,alpha = 0,

nfolds=5,lambda=lambda/n_tr,penalty.factor=dv,
standardize=FALSE,maxit=1e6)

#plot(A_PFR)
MSEP_df$lamb_o[p] = A_PFR$lambda.min
yp_tst = predict(A_PFR,newx=X_Fa[Pos_tst,], s="lambda.min")[,1]
MSEP_df$MSEP_PFR[p] = mean((y_tst-yp_tst)^2)
cat('Partition = ', p,'\n')

}
MSEP_df

Appendix 2 (Example 14.4) 619

#Mean and SD of MSEP across 100 RP
apply(MSEP_df[,-1],2,function(x)c(mean(x),sd(x)))
mean(MSEP_df$MSEP_PFR<MSEP_df$MSEP_FR)

plot(MSEP_df$MSEP_PFR,MSEP_df$MSEP_FR,
col = ifelse(MSEP_df$MSEP_PFR<MSEP_df$MSEP_FR,

3,1),xlab='MSEP PFR',ylab='MSEP FR',
main='Fourier')

abline(a=0, b=1)

#Smoothing estimation using B-spline for the functional
#covariable and L1 = 21 B-spline basis functions for the beta function
library(glmnet)
#Penalization with first derivate (Changing the value Lfdobj=1 to
Lfdobj=2, the penalty #matrix with second derivates is obtained)
P_mat_F = eval.penalty(Phi_BS,Lfdobj=1)
ei_P = eigen(P_mat_F)
gamma = ei_P$vectors
dv = ei_P$values
dv = ifelse(dv<1e-10,0,dv)
X_Fa = X_BS%*%gamma

#Grid of lambda values obtained by varying the proportion of variance
explained
#by the functional predictor
lamb_FR_f<-function(Xa,dv,K=100,li=1e-1,ls=1-1e-12)
{
Pos = which(dv<1e-10)
D_inv = diag(1/dv[-Pos])
PEV = seq(li,ls,length=K)
Xa = Xa[,-Pos]
lambv = (1-PEV)/PEV*mean(diag(Xa%*%D_inv%*%t(Xa)))
lambv = exp(seq(min(log(lambv)),max(log(lambv)),length=K))
sort(lambv,decreasing = TRUE)

}

lambda = lamb_FR_f(X_Fa,lambv,K=1e2)

#Random cross-validation
y=yv
RP = 100
set.seed(1)
MSEP_df = data.frame(RP=1:RP,MSEP_PFR=NA,MSEP_FR=NA,lamb_o=NA)
for(p in 1:RP)
{
Pos_tst = sample(n,0.20*n)
X_F_tr = X_BS[-Pos_tst,]; n_tr = dim(X_F_tr)[1]
y_tr = y[-Pos_tst]; y_tst = y[Pos_tst]

#FR
dat_df = data.frame(y=y,X=X_BS)
A_F = lm(y~.,data=dat_df[-Pos_tst,])

620 14 Functional Regression

yp_tst = predict(A_F,newdata = dat_df[Pos_tst,])
MSEP_df$MSEP_FR[p] = mean((y_tst-yp_tst)^2)

#PFR with first derivative
A_PFR = cv.glmnet(x =X_Fa[-Pos_tst,],y = y[-Pos_tst] ,alpha = 0,

nfolds=5,lambda=lambda/n_tr,penalty.factor=dv,
standardize=FALSE,maxit=1e6)

#plot(A_PFR)
MSEP_df$lamb_o[p] = A_PFR$lambda.min
yp_tst = predict(A_PFR,newx=X_Fa[Pos_tst,], s="lambda.min")[,1]
MSEP_df$MSEP_PFR[p] = mean((y_tst-yp_tst)^2)
cat('Partition = ', p,'\n')

}
MSEP_df

#Mean and SD of MSEP across 100 RP
apply(MSEP_df[,-1],2,function(x)c(mean(x),sd(x)))
mean(MSEP_df$MSEP_PFR<MSEP_df$MSEP_FR)

plot(MSEP_df$MSEP_PFR,MSEP_df$MSEP_FR,
col = ifelse(MSEP_df$MSEP_PFR<MSEP_df$MSEP_FR,

3,1),xlab='MSEP PFR',ylab='MSEP FR',
main='B-spline')

abline(a=0,b=1)

Appendix 3 (Example 14.5)

rm(list=ls(all=TRUE))
library(fda)
#Example 14.5
load('dat_ls.RData')
#Phenotypic data
dat_F = dat_ls$dat_F
head(dat_F)
yv = dat_F$y
n = length(yv)

#Wavelengths data
dat_W = dat_ls$dat_WL
colnames(dat_W)[1:8]
head(dat_W)[,1:8]

#Wavelengths used
Wv = as.numeric(substring(colnames(dat_W)[-(1:2)],2))
#Reflectance in each individual
X_W = unique(dat_W[,-(1:2)])
X_W = scale(X_W,scale=FALSE)

Appendix 3 (Example 14.5) 621

#Number of Fourier and B-spline basis functions to represent the
covariable
#function
nbFo = 29
nbBSo = 16

#Functional regression with Fourier and B-splines
#Computing X for Fourier representation with L1 = 21 Fourier basis
functions
#for the beta function
L1 = 21
P = diff(range(Wv))
Psi_F = create.fourier.basis(range(Wv), nbasis = nbFo,

period = P)
SF_mat = smooth.basisPar(argvals = Wv,

y =t(X_W), fdobj = Psi_F,lambda=0,
Lfdobj = 0)

Phi_F = create.fourier.basis(range(Wv), nbasis = L1,
period = P)

Q = inprod(Phi_F,Psi_F)
c_mat = t(SF_matfdcoefs)
X_F = c_mat%*%t(Q)
dim(X_F)

#Computing X for B-spline representation with L1 = 21 B-spline basis
functions
#for the beta function
L1 = 21
Psi_BS = create.bspline.basis(range(Wv), nbasis = nbBSo)
SBS_mat = smooth.basisPar(argvals = Wv,

y =t(X_W), fdobj = Psi_BS,lambda=0,
Lfdobj = 0)

Phi_BS = create.bspline.basis(range(Wv), nbasis = L1,
norder= 4)

Q = inprod(Phi_BS,Psi_BS)
c_mat = t(SBS_matfdcoefs)
X_BS = c_mat%*%t(Q)
dim(X_BS)

#Smoothing estimation using Fourier representation for the functional
#covariable and L1 = 21 Fourier basis functions for the beta function
par(mfrow=c(1,2))
library(glmnet)
#Penalization with first derivate
P_mat_F = eval.penalty(Phi_F,Lfdobj=1)
ei_P = eigen(P_mat_F)
gamma = ei_P$vectors
dv = ei_P$values
dv = ifelse(dv<1e-10,0,dv)

X_Fa = X_F%*%gamma

622 14 Functional Regression

#Grid of lambda values obtained by varying the proportion of variance
explained
#by the functional predictor
lamb_FR_f<-function(Xa,dv,K=100,li=1e-1,ls=1-1e-12)
{
Pos = which(dv<1e-10)
D_inv = diag(1/dv[-Pos])
PEV = seq(li,ls,length=K)
Xa = Xa[,-Pos]
lambv = (1-PEV)/PEV*mean(diag(Xa%*%D_inv%*%t(Xa)))
lambv = exp(seq(min(log(lambv)),max(log(lambv)),length=K))
sort(lambv,decreasing = TRUE)

}
lambda = lamb_FR_f(X_Fa,dv,K=1e2)

y=yv
library(BGLR)
#Linear predictor specification in BGLR for the PBFR model
Pos = which(dv>0)
#Matrix design for the non-penalized columns of X^a
X_Fa1 = X_Fa[,-Pos]
#Matrix design for the penalized columns of X^a
X_Fa2 = X_Fa[,Pos]%*%diag(1/sqrt(dv[Pos]))
ETA = list(list(X=X_Fa1,model='FIXED'),list(X=X_Fa2,model='BRR'))

#Linear predictor specification in BGLR for the BFR model
ETA_NP = list(list(X=X_F[,1],model='FIXED'),list(X=X_F[,-1],
model='BRR'))

#Random cross-validation
RP = 100
set.seed(1)
MSEP_df = data.frame(RP=1:RP,MSEP_PFR=NA,MSEP_FR=NA,lamb_o=NA)
for(p in 1:RP)
{
Pos_tst = sample(n,0.20*n)
X_F_tr = X_F[-Pos_tst,]; n_tr = dim(X_F_tr)[1]
y_tr = y[-Pos_tst]; y_tst = y[Pos_tst]

#FR
dat_df = data.frame(y=y,X=X_F)
A_F = lm(y~.,data=dat_df[-Pos_tst,])
yp_tst = predict(A_F,newdata = dat_df[Pos_tst,])
MSEP_df$MSEP_FR[p] = mean((y_tst-yp_tst)^2)

#PFR with first derivative
A_PFR = cv.glmnet(x =X_Fa[-Pos_tst,],y = y[-Pos_tst] ,alpha = 0,

nfolds=5,lambda=lambda/n_tr,
penalty.factor=dv,
standardize=FALSE,maxit=1e6)

MSEP_df$lamb_o[p] = A_PFR$lambda.min

Appendix 3 (Example 14.5) 623

yp_tst = predict(A_PFR,newx=X_Fa[Pos_tst,], s="lambda.min")[,1]
MSEP_df$MSEP_PFR[p] = mean((y_tst-yp_tst)^2)

#BGLR
y_NA = y
y_NA[Pos_tst] = NA
A_BGLR = BGLR(y_NA,ETA= ETA,nIter=1e4, burnIn = 1e3,verbose=FALSE)
yp_tst = A_BGLR$yHat[Pos_tst]
MSEP_df$MSEP_BGLR[p] = mean((y_tst-yp_tst)^2)

A_BGLR = BGLR(y_NA,ETA= ETA_NP,nIter=1e4, burnIn = 1e3,
verbose=FALSE)
yp_tst = A_BGLR$yHat[Pos_tst]
MSEP_df$MSEP_BGLR_NP[p] = mean((y_tst-yp_tst)^2)

cat('Partition = ', p,'\n')

}
MSEP_df

#Mean and SD of MSEP across 10 RP
Tab = apply(MSEP_df[,-1],2,function(x)c(mean(x),sd(x)))
Tab

#Smoothing estimation using B-spline representation for the functional
#covariable and L1 = 21 B-spline basis functions for the beta function
library(glmnet)
#Penalization with first derivate
P_mat_F = eval.penalty(Phi_BS,Lfdobj=1)
ei_P = eigen(P_mat_F)
gamma = ei_P$vectors
dv = ei_P$values
dv = ifelse(dv<1e-10,0,dv)
X_Fa = X_BS%*%gamma

#Grid of lambda values obtained by varying the proportion of variance
explained
#by the functional predictor
lamb_FR_f<-function(Xa,dv,K=100,li=1e-1,ls=1-1e-12)
{
Pos = which(dv<1e-10)
D_inv = diag(1/dv[-Pos])
PEV = seq(li,ls,length=K)
Xa = Xa[,-Pos]
lambv = (1-PEV)/PEV*mean(diag(Xa%*%D_inv%*%t(Xa)))
lambv = exp(seq(min(log(lambv)),max(log(lambv)),length=K))
sort(lambv,decreasing = TRUE)

}

lambda = lamb_FR_f(X_Fa,dv,K=1e2)

624 14 Functional Regression

#Random cross-validation
y=yv
library(BGLR)
Pos = which(dv>0)
X_Fa1 = X_Fa[,-Pos]
X_Fa2 = X_Fa[,Pos]%*%diag(1/sqrt(dv[Pos]))
ETA = list(list(X=X_Fa1,model='FIXED'),list(X=X_Fa2,model='BRR'))
ETA_NP = list(list(X=X_BS,model='BRR'))
RP = 100
set.seed(1)
MSEP_df = data.frame(RP=1:RP,MSEP_PFR=NA,MSEP_FR=NA,lamb_o=NA)
for(p in 1:100)
{
Pos_tst = sample(n,0.20*n)
X_F_tr = X_BS[-Pos_tst,]; n_tr = dim(X_F_tr)[1]
y_tr = y[-Pos_tst]; y_tst = y[Pos_tst]

#FR
dat_df = data.frame(y=y,X=X_BS)
A_F = lm(y~.,data=dat_df[-Pos_tst,])
yp_tst = predict(A_F,newdata = dat_df[Pos_tst,])
MSEP_df$MSEP_FR[p] = mean((y_tst-yp_tst)^2)

#PFR with first derivative
A_PFR = cv.glmnet(x =X_Fa[-Pos_tst,],y = y[-Pos_tst] ,alpha = 0,

nfolds=5,lambda=lambda/n_tr,penalty.factor=dv,
standardize=FALSE,maxit=1e6)

#plot(A_PFR)
MSEP_df$lamb_o[p] = A_PFR$lambda.min
yp_tst = predict(A_PFR,newx=X_Fa[Pos_tst,], s="lambda.min")[,1]
MSEP_df$MSEP_PFR[p] = mean((y_tst-yp_tst)^2)

#BGLR
y_NA = y
y_NA[Pos_tst] = NA
A_BGLR = BGLR(y_NA,ETA= ETA,nIter=1e4, burnIn = 1e3,verbose=FALSE)
yp_tst = A_BGLR$yHat[Pos_tst]
MSEP_df$MSEP_BGLR[p] = mean((y_tst-yp_tst)^2)

A_BGLR = BGLR(y_NA,ETA= ETA_NP,nIter=1e4, burnIn = 1e3,
verbose=FALSE)
yp_tst = A_BGLR$yHat[Pos_tst]
MSEP_df$MSEP_BGLR_NP[p] = mean((y_tst-yp_tst)^2)

cat('Partition = ', p,'\n')

}
MSEP_df

#Mean and SD of MSEP across 100 RP
Tab = apply(MSEP_df[,-1],2,function(x)c(mean(x),sd(x)))
Tab

Appendix 3 (Example 14.5) 625

Appendix 4 (Example 14.6)

It is the same as the R code used in Example 14.5 but now to the corresponding
predictor need to be added the matrix design of environments:

rm(list=ls(all=TRUE))
library(fda)
#Example 14.6
load('dat_ls.RData')
#Phenotypic data
dat_F = dat_ls$dat_F
head(dat_F)
yv = dat_F$y
n = length(yv)

#Wavelengths data
dat_W = dat_ls$dat_WL
colnames(dat_W)[1:8]
head(dat_W)[,1:8]

#Wavelengths used
Wv = as.numeric(substring(colnames(dat_W)[-(1:2)],2))
#Reflectance in each individual
X_W = unique(dat_W[,-(1:2)])
X_W = scale(X_W,scale=FALSE)
#Reflectance behavior as a function of wavelength for 10 individuals
W = matrix(Wv,nr=length(Wv),nc=60,byrow = FALSE)
matplot(W,t(X_W),xlab='Wavelengths',ylab='Reflectance',

col=dat_W$Env,pch=1,cex=0.5)

#Number of Fourier and B-spline basis functions to represent the
covariable
#function
nbFo = 29
nbBSo = 16

#---–
#Functional regression with Fourier and B-splines
#---
#Computing X for Fourier representation with L1 = 21 Fourier basis
functions
#for the beta function
L1 = 21
P = diff(range(Wv))
Psi_F = create.fourier.basis(range(Wv), nbasis = nbFo,

period = P)
SF_mat = smooth.basisPar(argvals = Wv,

y =t(X_W), fdobj = Psi_F,lambda=0,
Lfdobj = 0)

Phi_F = create.fourier.basis(range(Wv), nbasis = L1,
period = P)

626 14 Functional Regression

Q = inprod(Phi_F,Psi_F)
c_mat = t(SF_matfdcoefs)
X_F = c_mat%*%t(Q)
dim(X_F)

#Computing X for B-spline representation with L1 = 21 B-spline basis
functions
#for the beta function
L1 = 21
Psi_BS = create.bspline.basis(range(Wv), nbasis = nbBSo)
SBS_mat = smooth.basisPar(argvals = Wv,

y =t(X_W), fdobj = Psi_BS,lambda=0,
Lfdobj = 0)

Phi_BS = create.bspline.basis(range(Wv), nbasis = L1,
norder= 4)

Q = inprod(Phi_BS,Psi_BS)
c_mat = t(SBS_matfdcoefs)
X_BS = c_mat%*%t(Q)
dim(X_BS)

#----
#Smoothing estimation using Fourier representation for the functional
#covariable and L1 = 21 Fourier basis functions for the beta function
#----
par(mfrow=c(1,2))
library(glmnet)
#Penalization with first derivate
P_mat_F = eval.penalty(Phi_F,Lfdobj=1)
ei_P = eigen(P_mat_F)
gamma = ei_P$vectors
dv = ei_P$values
dv = ifelse(dv<1e-10,0,dv)

X_Fa = X_F%*%gamma

#Grid of lambda values obtained by varying the proportion of variance
explained
#by the functional predictor
lamb_FR_f<-function(Xa,dv,K=100,li=1e-1,ls=1-1e-12)
{
Pos = which(dv<1e-10)
D_inv = diag(1/dv[-Pos])
PEV = seq(li,ls,length=K)
Xa = Xa[,-Pos]
lambv = (1-PEV)/PEV*mean(diag(Xa%*%D_inv%*%t(Xa)))
lambv = exp(seq(min(log(lambv)),max(log(lambv)),length=K))
sort(lambv,decreasing = TRUE)

}

lambda = lamb_FR_f(X_Fa,dv,K=1e2)

Appendix 4 (Example 14.6) 627

y=yv
library(BGLR)
#Linear predictor specification in BGLR for the PBFR model
Pos = which(dv>0)
#Matrix design for the non-penalized columns of X^a
X_Fa1 = X_Fa[,-Pos]
#Matrix design for the penalized columns of X^a
X_Fa2 = X_Fa[,Pos]%*%diag(1/sqrt(dv[Pos]))
#Matrix design of environment
X_E = model.matrix(~0+Env,data=dat_F)[,-1]
#Linear predictor to PBFR + Env effect
ETA = list(list(X=X_E,model='FIXED'),list(X=X_Fa1,model='FIXED'),
list(X=X_Fa2,model='BRR'))

Linear predictor to BFR + Env effect
ETA_NP = list(list(X=X_E,model='FIXED'),list(X=X_F[,1],

model='FIXED'),list(X=X_F[,-1],model='BRR'))

#Random cross-validation
RP = 100
set.seed(1)
MSEP_df = data.frame(RP=1:RP,MSEP_PFR=NA,MSEP_FR=NA,lamb_o=NA)
for(p in 1:RP)
{
Pos_tst = sample(n,0.20*n)
X_F_tr = X_F[-Pos_tst,]; n_tr = dim(X_F_tr)[1]
y_tr = y[-Pos_tst]; y_tst = y[Pos_tst]

#FR
dat_df = data.frame(y=y,X=X_F)
A_F = lm(y~.,data=dat_df[-Pos_tst,])
yp_tst = predict(A_F,newdata = dat_df[Pos_tst,])
MSEP_df$MSEP_FR[p] = mean((y_tst-yp_tst)^2)

#PFR with first derivative
A_PFR = cv.glmnet(x =X_Fa[-Pos_tst,],y = y[-Pos_tst] ,alpha = 0,

nfolds=5,lambda=lambda/n_tr,
penalty.factor=dv,
standardize=FALSE,maxit=1e6)

MSEP_df$lamb_o[p] = A_PFR$lambda.min
yp_tst = predict(A_PFR,newx=X_Fa[Pos_tst,], s="lambda.min")[,1]
MSEP_df$MSEP_PFR[p] = mean((y_tst-yp_tst)^2)

#BGLR
y_NA = y
y_NA[Pos_tst] = NA
A_BGLR = BGLR(y_NA,ETA= ETA,nIter=1e4, burnIn = 1e3,verbose=FALSE)
yp_tst = A_BGLR$yHat[Pos_tst]
MSEP_df$MSEP_BGLR[p] = mean((y_tst-yp_tst)^2)

A_BGLR = BGLR(y_NA,ETA= ETA_NP,nIter=1e4, burnIn = 1e3,
verbose=FALSE)

628 14 Functional Regression

yp_tst = A_BGLR$yHat[Pos_tst]
MSEP_df$MSEP_BGLR_NP[p] = mean((y_tst-yp_tst)^2)

cat('Partition = ', p,'\n')

}
MSEP_df

#Mean and SD of MSEP across 10 RP
Tab = apply(MSEP_df[,-1],2,function(x)c(mean(x),sd(x)))
Tab

#---
#Smoothing estimation using B-spline representation for the functional
#covariable and L1 = 21 B-spline basis functions for the beta function
#---
library(glmnet)
#Penalization with first derivate
P_mat_F = eval.penalty(Phi_BS,Lfdobj=1)
ei_P = eigen(P_mat_F)
gamma = ei_P$vectors
dv = ei_P$values
dv = ifelse(dv<1e-10,0,dv)
X_Fa = X_BS%*%gamma

#Grid of lambda values obtained by varying the proportion of variance
explained
#by the functional predictor
lamb_FR_f<-function(Xa,dv,K=100,li=1e-1,ls=1-1e-12)
{
Pos = which(dv<1e-10)
D_inv = diag(1/dv[-Pos])
PEV = seq(li,ls,length=K)
Xa = Xa[,-Pos]
lambv = (1-PEV)/PEV*mean(diag(Xa%*%D_inv%*%t(Xa)))
lambv = exp(seq(min(log(lambv)),max(log(lambv)),length=K))
sort(lambv,decreasing = TRUE)

}

lambda = lamb_FR_f(X_Fa,dv,K=1e2)

#Random cross-validation
y=yv
library(BGLR)
Pos = which(dv>0)
X_Fa1 = X_Fa[,-Pos]
X_Fa2 = X_Fa[,Pos]%*%diag(1/sqrt(dv[Pos]))
#Matrix design of environment
X_E = model.matrix(~0+Env,data=dat_F)[,-1]
#Linear predictor to PBFR + Env effect
ETA = list(list(X=X_E,model='FIXED'),list(X=X_Fa1,model='FIXED'),

list(X=X_Fa2,model='BRR'))

Appendix 4 (Example 14.6) 629

#Linear predictor to BFR + Env effect
ETA_NP = list(list(X=X_E,model='FIXED'),list(X=X_BS,model='BRR'))
RP = 100
set.seed(1)
MSEP_df = data.frame(RP=1:RP,MSEP_PFR=NA,MSEP_FR=NA,lamb_o=NA)
for(p in 1:100)
{
Pos_tst = sample(n,0.20*n)
X_F_tr = X_BS[-Pos_tst,]; n_tr = dim(X_F_tr)[1]
y_tr = y[-Pos_tst]; y_tst = y[Pos_tst]

#FR
dat_df = data.frame(y=y,X=X_BS)
A_F = lm(y~.,data=dat_df[-Pos_tst,])
yp_tst = predict(A_F,newdata = dat_df[Pos_tst,])
MSEP_df$MSEP_FR[p] = mean((y_tst-yp_tst)^2)

#PFR with first derivative
A_PFR = cv.glmnet(x =X_Fa[-Pos_tst,],y = y[-Pos_tst] ,alpha = 0,

nfolds=5,lambda=lambda/n_tr,penalty.factor=dv,
standardize=FALSE,maxit=1e6)

#plot(A_PFR)
MSEP_df$lamb_o[p] = A_PFR$lambda.min
yp_tst = predict(A_PFR,newx=X_Fa[Pos_tst,], s="lambda.min")[,1]
MSEP_df$MSEP_PFR[p] = mean((y_tst-yp_tst)^2)

#BGLR
y_NA = y
y_NA[Pos_tst] = NA
A_BGLR = BGLR(y_NA,ETA= ETA,nIter=1e4, burnIn = 1e3,verbose=FALSE)
yp_tst = A_BGLR$yHat[Pos_tst]
MSEP_df$MSEP_BGLR[p] = mean((y_tst-yp_tst)^2)

A_BGLR = BGLR(y_NA,ETA= ETA_NP,nIter=1e4, burnIn = 1e3,
verbose=FALSE)
yp_tst = A_BGLR$yHat[Pos_tst]
MSEP_df$MSEP_BGLR_NP[p] = mean((y_tst-yp_tst)^2)

cat('Partition = ', p,'\n')

}
MSEP_df

#Mean and SD of MSEP across 100 RP
Tab = apply(MSEP_df[,-1],2,function(x)c(mean(x),sd(x)))
Tab

630 14 Functional Regression

References

Cardot H, Sarda P (2006) Linear regression models for functional data. In: Sperlich S, Härdle W,
Aydınlı G (eds) The art of semiparametrics. Contributions to statistics. Physica-Verlag HD

Górecki T, Krzyśko M, Waszak Ł, Wołyński W (2018) Selected statistical methods of data analysis
for multivariate functional data. Stat Pap 59(1):153–182

Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining,
inference, and prediction. Springer, USA

Montesinos-López OA, Montesinos-López A, Crossa J, de Los Campos G, Alvarado G, Mondal S,
Rutkoski J, González-Pérez L, Burgueño J (2017a) Predicting grain yield using canopy
hyperspectral reflectance in wheat breeding data. Plant Methods 13(4). https://doi.org/10.
1186/s13007-016-0154-2

Montesinos-López A, Montesinos-López OA, Cuevas J, Mata-López WA, Burgueño J, Mondal S,
Huerta J, Singh R, Autrique E, González-Pérez L, Crossa J (2017b) Genomic Bayesian
functional regression models with interactions for predicting wheat grain yield using hyper-
spectral image data. Plant Methods 13(62). https://doi.org/10.1186/s13007-017-0212-4

Perperoglou A, Sauerbrei W, Abrahamowicz M, Schmid M (2019) A review of spline function
procedures in R. BMC Med Res Methodol 19(46):1–16

Quarteroni A, Sacco R, Saleri F (2000) Numerical mathematics. Springer
Ramsay J, Hooker G, Graves S (2009) Functional data analysis with R and MATLAB. Springer
Ruppert D, Wand MP, Carroll RJ (2003) Semiparametric regression. Cambridge University Press,

Cambridge
Shizgal BD, Jung JH (2003) Towards the resolution of the Gibbs phenomena. J Comput Appl Math

161(1):41–65
Usset J, Staicu AM, Maity A (2016) Interaction models for functional regression. Comput Stat Data

Anal 94:317–329. https://doi.org/10.1016/j.csda.2015.08.020

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter's Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

References 631

https://doi.org/10.1186/s13007-016-0154-2
https://doi.org/10.1186/s13007-016-0154-2
https://doi.org/10.1186/s13007-017-0212-4
https://doi.org/10.1016/j.csda.2015.08.020
http://creativecommons.org/licenses/by/4.0/

	Chapter 14: Functional Regression
	14.1 Principles of Functional Linear Regression Analyses
	14.2 Basis Functions
	14.2.1 Fourier Basis
	14.2.2 B-Spline Basis

	14.3 Illustrative Examples
	14.4 Functional Regression with a Smoothed Coefficient Function
	14.5 Bayesian Estimation of the Functional Regression
	Appendix 1
	Appendix 2 (Example 14.4)
	Appendix 3 (Example 14.5)
	Appendix 4 (Example 14.6)
	References

