
Chapter 12
Artificial Neural Networks and Deep
Learning for Genomic Prediction of Binary,
Ordinal, and Mixed Outcomes

12.1 Training DNN with Binary Outcomes

Before starting with the examples, we explain in general terms the process to follow
to train DNN for binary outcomes. When training binary outcomes, it is important to
denote the values of the response variable as 0 and 1, where 0 denotes the absence of
the disease and 1 its presence; any other two types of interest should be denoted as
0 and 1. Below we provide some key elements to train this type of DNNs more
efficiently:

(a) Define the DNN model in Keras. As in the previous chapters, we again focus
only on fully connected neural networks that consist of stacking fully connected
networks to all neurons (units). We suggest using the RELU activation function
or some of the following activation functions (leaky RELU, tanh, exponential
linear unit, etc.) for hidden layers, but for the output layer we suggest using a
single-unit layer with the sigmoid activation function to guarantee that the output
is a probability between 0 and 1. Also, the first layer requires the input shape
(features) information; however, this is not required for the following layers
since they automatically infer the shape from the previous layer.

The construction of a DNN in Keras for binary outcomes again needs to start
by initializing a sequential model using the keras_model_sequential() function
which allows implementing a series of layer functions that create a linear
stacking of layers. The summary () can also be used to print a summary of our
DNN model. The number of neurons in the output layer is 1 since we are dealing
with a univariate binary outcome with two categories in the outcome variable.

(b) Configuring and compiling the model. At this stage of the training process, the
loss function, the optimizer, and the metric for evaluating the prediction perfor-
mance should be defined. Regarding the loss function, most of the time
binary_crossentropy is suggested for binary outcomes, while
categorical_crossentropy is suggested for categorical or ordinal data. As it was
studied in the previous chapter, the mean_squared_error loss is the most popular
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for continuous outcomes. However, it is also possible to use the
mean_squared_error loss for binary and categorical outcomes, but
binary_crossentropy and categorical_crossentropy are the best choices when
we are dealing with DNN models that output probabilities because they measure
the distance between probability distributions, that is, between the ground truth
distribution and the predictions obtained. As was mentioned in the previous
chapter, the optimizer plays a really important role when updating model
parameters (weights and biases). There is no specific optimizer for each type
of response variable, and as we studied in the previous chapter, there are at least
seven optimizers available in the Keras library. However, we usually use the
Adam optimizer since it performs well in many cases. Finally, regarding the type
of metric for evaluating the prediction performance for binary and categorical
data, we use the accuracy metric which measures the proportion of cases that are
correctly classified.

(c) Fitting the model. At this stage, we need to specify the number of epochs (i.e.,
the number of times the algorithm uses the entire training data set) and the batch
size (size of the sample to be passed through the entire algorithm in each epoch)
because if the training data consist of 1000 observations and we use a batch
size ¼ 50, we will need 20 iterations per epoch. Here, we should specify the
validation split when you are in the tuning process (the value of the validation
split is between 0 and 1) or specify the validation data set that should be used.
For example, if you specified a validation_split¼ 0.3, this means that 30% of the
original training data should be used as the validation set, and the remaining 70%
of the observations will be used for training the model; the prediction perfor-
mance of the model is evaluated with the validation set. Also, if you want to use
the early stopping method, this should be specified in callbacks exactly as was
done in the previous chapter for continuous outcomes.

(d) Evaluating the prediction performance. For binary outcomes, we suggest using
the predict_classes() function that requires the information of the independent
variables of the testing set as input for which the predictions are required. The
predict_classes() function gives binary results (0 or 1) as output. However,
practitioners can also use the predict() function, which provides probabilities
for each category as outputs that need to be converted to 0 and 1 using a
threshold value, for example, observations with probabilities larger or equal to
0.5 should be classified as 1 and observations with probabilities smaller than 0.5
should be classified as 0. Next, we provide the first illustrative example for
training DNN with binary outcomes.

Example 12.1
Binary outcomes. This toy data set is called EYT and is composed of four
environments (Bed5IR, EHT, Flat5IR, and LHT), 40 lines in each environment,
and contains four traits (DTHD, DTMT, GY, and Height). Traits DTHD and DTMT
are ordinal traits, GY is a continuous trait, and Height is a binary trait. This data set
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contains a genomic relationship matrix of 40 � 40 that corresponds to the similarity
between lines.

The first eight observations of this data set are given below.

> head(Data_Pheno,8)
GID Env DTHD DTMT GY Height

1 GID6569128 Bed5IR 1 1 6.119272 0
2 GID6688880 Bed5IR 2 2 5.855879 0
3 GID6688916 Bed5IR 2 2 6.434748 0
4 GID6688933 Bed5IR 2 2 6.350670 0
5 GID6688934 Bed5IR 1 2 6.523289 0
6 GID6688949 Bed5IR 1 2 5.984599 0
7 GID6689407 Bed5IR 1 2 6.436980 0
8 GID6689482 Bed5IR 3 3 6.052307 1

We can see that the ordinal traits (DTHD and DTMT) have three levels denoted as
1, 2, and 3, and the binary trait (Height) has two levels denoted as 0 and 1. We will
create flags for the tuning process. The following code is used to create the flags; it is
called Code_Tuning_With_Flags_Bin.R.

####a) Declaring the flags for hyperparameters
FLAGS = flags(
flag_numeric("dropout1", 0.05),
flag_integer("units",33),
flag_string("activation1", "relu"),
flag_integer("batchsize1",56),
flag_integer("Epoch1",1000),
flag_numeric("learning_rate", 0.001),
flag_numeric("val_split",0.2))

####b) Defining the DNN model
build_model<-function() {
model <- keras_model_sequential()
model %>%
layer_dense(units =FLAGS$units, activation =FLAGS$activation1,

input_shape = c(dim(X_trII)[2])) %>%
layer_dropout(rate=FLAGS$dropout1) %>%
layer_dense(units =FLAGS$units, activation =FLAGS$activation1) %>%
layer_dropout(rate=FLAGS$dropout1) %>%
layer_dense(units =FLAGS$units, activation =FLAGS$activation1) %>%
layer_dropout(rate=FLAGS$dropout1) %>%
layer_dense(units =FLAGS$units, activation =FLAGS$activation1) %>%
layer_dropout(rate=FLAGS$dropout1) %>%
layer_dense(units=1, activation ="sigmoid")

#####c) Compiling the DNN model
model %>% compile(
loss = "binary_crossentropy",
optimizer =optimizer_adam(lr=FLAGS$learning_rate),
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metrics =c('accuracy'))
model}

model<-build_model()
model %>% summary()

print_dot_callback <- callback_lambda(
on_epoch_end = function(epoch, logs) {
if (epoch %% 20 == 0) cat("\n")
cat(".")})

early_stop <- callback_early_stopping(monitor = "val_loss",
mode='min',patience =50)

###########d) Fitting the DNN model#################
model_Final<-build_model()
model_fit_Final<-model_Final %>% fit(
X_trII, y_trII,
epochs =FLAGS$Epoch1, batch_size =FLAGS$batchsize1,
shuffled=F,
validation_split =FLAGS$val_split,
verbose=0,callbacks = list(early_stop,print_dot_callback))

In a) are given the default flag values for % of dropout, number of units, activation
function for hidden layers, batch size, number of epochs, learning rate, and valida-
tion split. In b) the DNN model is defined and the flag parameters are incorporated
within our DNNmodel. It should be pointed out that the RELU activation function is
used for the hidden layers, but the sigmoid activation function is used for the output
layer to guarantee a probability as output between 0 and 1. Only one unit is specified
for the output layer since we are interested in predicting only a univariate binary
outcome. It is clear that our DNN model contains four hidden layers since the
layer_dense() function was specified five times, but the last one corresponds to the
output layer.

The model is compiled in part c) of the code, and the important things to note are
that (a) now the loss function is binary_crossentropy, which is appropriate for binary
response variables, (b) the optimizer specified was the Adam optimizer,
optimizer_adam(), which is not specific for binary data, and (c) the metrics specified
for evaluating the prediction performance is the accuracy that measures the propor-
tion of correctly classified cases. In part d) the model is fitted using the number of
epochs, the batch size, and the validation split specified in the flags (part a). In this
case, the fitting process was done using the early stopping method.

Then, the above codes named “Code_Tuning_With_Flags_Bin.R” are called in
the code given in Appendix 1. The code given in Appendix 1 executes the grid
search using the library tfruns (Allaire 2018) with the tuning_run() function. The
implemented grid search is shown below:

runs.sp<-tuning_run("Code_Tuning_With_Flags_Bin_4HL.R",runs_dir =
'_tuningE1',
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flags=list(dropout1= c(0,0.05),
units = c(67,100),
activation1=("relu"),
batchsize1=c(28),
Epoch1=c(1000),
learning_rate=c(Learn_val[e]),
val_split=c(0.2)),sample=1,confirm =FALSE,echo =F)

The grid search is composed of only four combinations of hyperparameters that
resulted from using two values of dropout (0, 0.05) and two units (67, 100). We used
this small grid search because it is often not possible to do a full cartesian grid search
with many values of each hyperparameter due to time and computational constraints.
The code given in Appendix 1 was run five times, and each time it was run for a
specific value of learning rate. It is important to note that the prediction performance
is reported using not only the PCCC but also the Kappa coefficient, the sensitivity,
and the specificity. Table 12.1 indicates that the best prediction performance was
obtained using a learning rate (learn_val) of 0.01 across environments.

Table 12.1 Prediction performance for binary outcomes for five different values of learning rate
using four hidden layers with the RELU activation function with five outer fold cross-validations
and five inner fold cross-validations

learn_val Env PCCC SE_PCCC Kappa SE_Kappa Sensitivity Specificity

0.001 Bed5IR 0.724 0.091 0.419 0.203 0.683 0.703

0.001 EHT 0.900 0.045 0.800 0.090 0.883 0.927

0.001 Flat5IR 0.654 0.043 0.191 0.122 0.704 0.500

0.001 LHT 0.513 0.058 0.010 0.127 0.523 0.510

0.01 Bed5IR 0.792 0.072 0.590 0.138 0.827 0.767
0.01 EHT 0.900 0.063 0.779 0.139 0.943 0.883
0.01 Flat5IR 0.668 0.033 0.323 0.073 0.780 0.600
0.01 LHT 0.584 0.097 0.234 0.137 0.650 0.607
0.1 Bed5IR 0.577 0.047 0.184 0.088 0.567 0.633

0.1 EHT 0.721 0.101 0.481 0.167 0.653 0.860

0.1 Flat5IR 0.604 0.044 0.146 0.117 0.860 0.372

0.1 LHT 0.576 0.070 0.189 0.131 0.750 0.574

0.5 Bed5IR 0.445 0.070 �0.013 0.013 0.429 0.470

0.5 EHT 0.484 0.094 0.164 0.109 0.513 0.717

0.5 Flat5IR 0.484 0.069 �0.032 0.032 0.608 0.220

0.5 LHT 0.392 0.089 0.080 0.080 0.519 0.413

1 Bed5IR 0.413 0.042 0.025 0.025 0.354 0.565

1 EHT 0.473 0.082 0.000 0.000 0.325 0.571

1 Flat5IR 0.462 0.078 0.000 0.000 0.625 0.353

1 LHT 0.402 0.092 0.000 0.000 0.374 0.421
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12.2 Training DNN with Categorical (Ordinal) Outcomes

When training DNN for categorical or ordinal outcomes, the C levels of the response
variable are 0, 1, 2, . . ., C � 1. For example, if the categorical or ordinal response
variable has three levels (no infection, middle level of infection, and total level of
infection), they should be denoted as 0, 1, and 2, where 0 denotes no infection,
1 middle level of infection, and 2 total level of infection. Another example is that
assume you are interested in training a machine for classification with orange,
mandarin, tangerine, and lemon as outcomes; you can denote orange with 0, manda-
rin with 1, tangerine with 2, and lemon with 3. Of course you can choose different
values for each fruit, but because there are four categories, you will use 0, 1, 2, and
3 to denote the four fruits even though this is a nominal variable. Next, we provide
some key elements to train this type of DNN models more efficiently.

Define the DNN model in Keras. The training process is equal to the training of
binary response variables, except that in the output layer we suggest using the
softmax activation function with a number of units equal to the number of categories;
this guarantees that the output of each category is a probability between 0 and 1, and
that the sum of these (all categories) probabilities is 1. Before starting the training
process, you need to convert to dummy variables the categorical (or ordinal)
response variable using the to_categorical() function that needs, as input, the vector
of the categorical response variable and the number of classes that the response has.
This way of coding the categorical and ordinal responses is called one-hot encoding
or categorical encoding. It consists of embedding each level (label) of the categorical
response variable as an all-zero vector with 1 in the place of the label index. For
example, suppose that your response variable contains the following values:
y ¼ (0, 2, 4, 1, 3, 0, 1, 3, 4, 2). Then the vector of response variable is transformed
to yf ¼ to _ categorical(y, 5) that produces the following result:

y yf

0 1 0 0 0 0

2 0 0 1 0 0

4 0 0 0 0 1

1 0 1 0 0 0

3 0 0 0 1 0

0 1 0 0 0 0

1 0 1 0 0 0

3 0 0 0 1 0

4 0 0 0 0 1

2 0 0 1 0 0

This means that the dependent variable is no longer a vector, because it is a matrix
of zeros and ones; for this reason, the number of units required for the output layer is
equal to the number of classes. In this example, the number of units required for the
output layer should be five.
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(a) Configuring and compiling the model. The only difference when compiling
binary response variables and ordinal (or categorical) outcomes is that now
using the categorical_crossentroy loss as the loss function is recommended.

(b) Fitting the model. Everything that was explained for binary data also applies to
ordinal and categorical outcomes.

(c) Evaluating the prediction performance. For ordinal and categorical outcomes,
we suggest using the predict_classes() function because it produces, as output,
values of the categorical or ordinal data in the scale of the response variable, that
is, 0, 1, . . ., C � 1. However, you can also use the predict() function, which will
provide you with probabilities for each category and the sum of all of them is
equal to 1. These probabilities need to be converted to the original response
variable (0, 1, . . ., C � 1). This conversion can be done by assigning each
observation to the category with the largest probability (Allaire and Chollet
2019). Next, we provide one illustrative example for a DNN with an ordinal
outcome.

Example 12.2
Ordinal outcome. This example uses the same data as Example 12.1 (Toy_EYT
data set), but now we use the ordinal trait DTHD as the response variable. For the
tuning process, we first created the flags which are given next and should be placed
in a file called Code_Tuning_With_Flags_Ordinal_4HL2.R, as it is called in
Appendix 2.

####a) Declaring the flags for hyperparameters
FLAGS = flags(
flag_numeric("dropout1", 0.05),
flag_integer("units",33),
flag_string("activation1", "relu"),
flag_integer("batchsize1",56),
flag_integer("Epoch1",1000),
flag_numeric("learning_rate", 0.001),
flag_numeric("val_split",0.2))

####b) Defining the DNN model
build_model<-function() {
model <- keras_model_sequential()
model %>%
layer_dense(units =FLAGS$units, activation =FLAGS$activation1,

input_shape = c(dim(X_trII)[2])) %>%
layer_batch_normalization() %>%
layer_dropout(rate=FLAGS$dropout1) %>%
layer_dense(units =FLAGS$units, activation =FLAGS$activation1) %>%
layer_batch_normalization() %>%
layer_dropout(rate=FLAGS$dropout1) %>%
layer_dense(units =FLAGS$units, activation =FLAGS$activation1) %>%
layer_batch_normalization() %>%
layer_dropout(rate=FLAGS$dropout1) %>%
layer_dense(units =FLAGS$units, activation =FLAGS$activation1) %>%
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layer_batch_normalization() %>%
layer_dropout(rate=FLAGS$dropout1) %>%
layer_dense(units=3, activation ="softmax")

#####c) Compiling the DNN model
model %>% compile(
loss = "categorical_crossentropy",
optimizer =optimizer_adam(lr=FLAGS$learning_rate),
metrics =c('accuracy'))

model}

model<-build_model()
model %>% summary()

print_dot_callback <- callback_lambda(
on_epoch_end = function(epoch, logs) {
if (epoch %% 20 == 0) cat("\n")
cat(".")})

early_stop <- callback_early_stopping(monitor = "val_loss",
mode='min',patience =50)

###########d) Fitting the DNN model#################
model_Final<-build_model()
model_fit_Final<-model_Final %>% fit(
X_trII, y_trII,
epochs =FLAGS$Epoch1, batch_size =FLAGS$batchsize1,
shuffled=F,
validation_split =FLAGS$val_split,
verbose=0,callbacks = list(early_stop,print_dot_callback))

In a) are given the default flag values for some hyperparameters; the DNN is
defined in b) and is very similar to the definition of the DNN for binary outcomes,
except that in the output layer the softmax activation function is used, which is
appropriate for categorical or ordinal data, and now instead of one unit, three are
used in the output layer since this is the number of classes of the DTHD ordinal
response variable. Another important difference in the definition of the DNN model
is that now we used the layer_batch_normalization() function just after specifying
each hidden layer. The layer_batch_normalization() function is used to help with a
problem called internal covariate shift that consists of changing the distribution of
network activations due to the change in network parameters during training.
Therefore, the layer_batch_normalization() function improves the training process
by reducing the internal covariate shift by fixing the distribution of the layer inputs x
as the training progresses (Ioffe and Szegedy 2015; LeCun et al. 1998; Wiesler and
Ney 2011), and the internal covariate shift is reduced by linearly transforming the
input to have zero means and unit variances and decorrelating the input information.
This process is done in the input of each layer to fix the distributions of inputs that
would remove the effects of the internal covariate shift (Ioffe and Szegedy 2015).
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In part c) of the code, the DNN model is compiled; this is the same as the
compilation process of binary outcomes, except that now a categorical_crossentropy
loss function should be used because the response variable is ordinal or categorical.
The fitting process, part d), is the same as that for binary outcomes.

Before using these flags, the response variable was converted to dummy variables
using the to_categorical() function. Next, we show the first eight observations of the
testing set of the first partition used in the code given in Appendix 2.

> y_tst= to_categorical(y[tst_set],nclas)
> cbind(y[tst_set],y_tst)

[,1] [,2] [,3] [,4]
[1,] 2 0 0 1
[2,] 0 1 0 0
[3,] 2 0 0 1
[4,] 2 0 0 1
[5,] 1 0 1 0
[6,] 0 1 0 0
[7,] 0 1 0 0
[8,] 2 0 0 1

Here we observe that the first column corresponds to the original ordinal score of
the response variable with levels 0, 1, and 2, that is, nclas ¼ 3, while the remaining
three columns are the three dummy variables created using the to_categorical()
function since the original response variable has three types. From the output
produced using the to_categorical() function, we can see that the first observation
in the last column is a 1, while columns 2 and 3 have values of 0, since the original
categorical response variable is 2. In the second observation, we can see that since
the original categorical score is 0, the 1 appears in the second column, and values of
0 in the remaining columns. In the fifth observation, we can see that the original
categorical score is 1; for this reason, in the third column, there is a 1 and in the
remaining columns there is a value of 0.

The code given above is called Code_Tuning_With_Flags_Ordinal_4HL2.R in
the code given in Appendix 2. The code given in Appendix 2 does the grid search
using the library tfruns (Allaire 2018) and the tuning_run() function. The
implemented grid search is shown below:

runs.sp<-tuning_run("Code_Tuning_With_Flags_Ordinal_4HL2.R",
runs_dir = '_tuningE1',

flags=list(dropout1= c(0,0.05),
units = c(67,100),
activation1=("relu"),
batchsize1=c(28),
Epoch1=c(1000),
learning_rate=c(Learn_val[e]),
val_split=c(0.2)),sample=1,confirm =FALSE,echo =F)
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The grid search was used (sample ¼ 1) for the tuning process and, for the four
hyperparameter combinations (two values of dropout and two values of units), were
evaluated.

Table 12.2 gives the results of implementing the code given in Appendix 2 for
five different values of learning rate (0.005, 0.01, 0.015, 0.03, and 0.06), where the
best predictions were obtained with a learning rate value of 0.01 across environ-
ments. These results give evidence that the prediction performance depends consid-
erably on the value of the hyperparameter called learning rate.

12.3 Training DNN with Count Outcomes

Remember that count data (0, 1, 2, . . .) are usually modeled with Poisson regression
or negative binomial regression in the statistical world. In the world of DNN, only
the Poisson DNN model has been available until now in Keras and its key elements
imitate those of the generalized linear models of the statistical world. For this reason,
its construction in Keras uses as loss function the minus log-likelihood of a Poisson
distribution; for the output layer, you can use the exponential activation function
(inverse of log link in generalized linear models) that is available in Keras, which

Table 12.2 Prediction performance for ordinal outcomes for different values of learning rate with
four hidden layers

Learn_val Env PCCC SE_PCCC Kappa SE_Kappa Sensitivity Specificity

0.005 Bed5IR 0.692 0.085 0.535 0.109 0.783 0.625

0.005 EHT 0.693 0.075 0.439 0.082 0.542 0.167

0.005 Flat5IR 0.757 0.071 0.617 0.101 0.854 0.542

0.005 LHT 0.702 0.056 0.517 0.084 0.810 0.333

0.01 Bed5IR 0.734 0.097 0.585 0.145 0.750 0.556
0.01 EHT 0.743 0.075 0.537 0.139 0.660 0.250
0.01 Flat5IR 0.702 0.089 0.529 0.137 0.850 0.567
0.01 LHT 0.718 0.055 0.519 0.084 0.658 0.750
0.015 Bed5IR 0.691 0.111 0.502 0.169 0.710 0.333

0.015 EHT 0.689 0.053 0.462 0.103 0.625 0.167

0.015 Flat5IR 0.685 0.087 0.523 0.131 0.767 0.367

0.015 LHT 0.725 0.097 0.544 0.158 0.906 0.313

0.03 Bed5IR 0.684 0.087 0.500 0.118 0.883 0.542

0.03 EHT 0.733 0.037 0.373 0.167 0.900 0.167

0.03 Flat5IR 0.633 0.091 0.417 0.132 0.883 0.400

0.03 LHT 0.676 0.126 0.494 0.184 0.833 0.250

0.06 Bed5IR 0.720 0.097 0.503 0.177 0.704 0.500

0.06 EHT 0.713 0.033 0.425 0.078 0.733 0.333

0.06 Flat5IR 0.695 0.062 0.519 0.091 0.817 0.250

0.06 LHT 0.658 0.068 0.442 0.104 0.761 0.125
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guarantees only positive outcomes. Also a RELU activation function can be used to
guarantee a positive outcome.

In general, the definition of a DNN model for count outcomes in Keras is very
similar to what we have studied before for continuous, binary, and categorical data
for univariate responses. If we are interested in predicting only one response
variable, we only need to specify one unit in the output layer, but if we are interested
in predicting five count response variables, we need to specify a unit for each
response we wish to predict. Also, the process of adding the hidden layers is exactly
the same as was done for continuous, binary, and categorical (or ordinal) data with
the same activation functions, for example, RELU for all the hidden layers, since the
fitting process of the model is exactly the same as the fitting process of continuous,
binary, and ordinal univariate outcomes. However, some of the key differences are in
the compilation and prediction process. In the compilation process, we need to
specify the “poisson” loss function that was created as the minus log-likelihood of
the Poisson distribution, and for the metric, we can still use the mean squared error
metric; however, for the prediction process, we should use the predict() function that
will always produce positive values only if we specify an appropriate activation
function in the output layer like the exponential activation function. Next, we
provide an illustrative example for training DNN with count outcomes.

Example 12.3
Count data. This toy data set contains 115 lines, evaluated in three environments
(Batan2012, Batan2014, and Chunchi2014) and in each environment two blocks
were created. The total number of observations of this data set is 649. The data set is
denoted as Data_Count_Toy.RData. The count response variable has a minimum
value of 0 and a maximum value of 17.

Modeling and predicting count data is not only important in plant breeding, but
also very common in areas such as health, finance, social science, etc. Generalized
linear models have been widely used for modeling count response variables, but
many times fail to capture complex data patterns. For this reason, nonlinear Poisson
regressions under the umbrella of deep artificial neural networks are of paramount
importance for modeling count data and improving the prediction accuracy. The
details for implementing DNN models for count data are given below.

The tuning process was done by creating flags which are given below; they
should be placed in a file named: Code_Tuning_With_Flags_Count_Lasso.R, that
is used in Appendix 3.

####a) Declaring the flags for hyperparameters
FLAGS = flags(
flag_numeric("dropout1", 0.0),
flag_integer("units",33),
flag_string("activation1", "relu"),
flag_integer("batchsize1",56),
flag_integer("Epoch1",1000),
flag_numeric("learning_rate", 0.001),
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flag_numeric("val_split",0.2),
flag_numeric("Lasso_par",0.001))

####b) Defining the DNN model
build_model<-function() {
model <- keras_model_sequential()
model %>%
layer_dense(units =FLAGS$units, kernel_regularizer=regularizer_l1

(FLAGS$Lasso_par),activation =FLAGS$activation1, input_shape = c(dim
(X_trII)[2])) %>%
layer_dropout(rate=FLAGS$dropout1) %>%
layer_dense(units =FLAGS$units, kernel_regularizer=regularizer_l1

(FLAGS$Lasso_par),activation =FLAGS$activation1) %>%
layer_dropout(rate=FLAGS$dropout1) %>%
layer_dense(units =FLAGS$units, kernel_regularizer=regularizer_l1

(FLAGS$Lasso_par),activation =FLAGS$activation1) %>%
layer_dropout(rate=FLAGS$dropout1) %>%
layer_dense(units =FLAGS$units, kernel_regularizer=regularizer_l1

(FLAGS$Lasso_par),activation =FLAGS$activation1) %>%
layer_dropout(rate=FLAGS$dropout1) %>%
layer_dense(units=1, activation ="exponential")

#####c) Compiling the DNN model
model %>% compile(
loss = "poisson",
optimizer =optimizer_adam(lr=FLAGS$learning_rate),
metrics =c('mse'))

model}

model<-build_model()
model %>% summary()

print_dot_callback <- callback_lambda(
on_epoch_end = function(epoch, logs) {
if (epoch %% 20 == 0) cat("\n")
cat(".")})

early_stop <- callback_early_stopping(monitor = "val_loss",
mode='min',patience =30)

###########d) Fitting the DNN model#################
model_Final<-build_model()
model_fit_Final<-model_Final %>% fit(
X_trII, y_trII,
epochs =FLAGS$Epoch1, batch_size =FLAGS$batchsize1,
shuffled=T,
validation_split =FLAGS$val_split,
verbose=0,callbacks = list(early_stop,print_dot_callback))

Again, in part a) are defined the default flags, in part b) the DNN for count data is
defined, where the significant difference is that the exponential activation function is
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used for the output layer; we should point out that in each hidden layer, the Lasso
(L1) regularization is also used in addition to dropout. In part c) the relevant parts are
(1) the specification of the Poisson loss function and (2) the use of the mean squared
error as a metric for evaluating the prediction performance, while the fitting process
is exactly the same as was done for continuous, binary, and categorial or ordinal
outcomes.

Then, the flags above are called in Appendix 3 that used the following grid
search:

runs.sp<-tuning_run("Code_Tuning_With_Flags_Count_Lasso.R",
runs_dir = '_tuningE1',
flags=list(dropout1= c(0),
units = c(67,150),
activation1=("relu"),
batchsize1=c(28),
Epoch1=c(1000),
learning_rate=c(Learn_val[e]),
val_split=c(0.2),

Lasso_par=c(0.001,0.01)), sample=1,confirm =FAL SE,echo =F)

From the above random grid search, we observe that four is the total number of
hyperparameters that form the grid (two regularization parameters and two units) and
should be evaluated. The code given in Appendix 3 was used to get the results given
in Table 12.3, as well as for evaluating the prediction performance with five
regularization values (0.005, 0.01, 0.015, 0.03, and 0.06) and with five outer fold
and five inner fold cross-validations and with four hidden layers.

Table 12.3 Prediction performance of count data for different values of regularization with four
hidden layers and Ridge regularization

relularization value Environment Trait MSE SE_MSE MAAPE SE_MAAPE

0.005 Batan2012 Count 1.787 0.2466 0.8752 0.0276

0.005 Batan2014 Count 1.7613 0.1572 0.8864 0.0171

0.005 Chunchi2014 Count 15.0395 2.2348 0.6663 0.0122

0.01 Batan2012 Count 2.5557 0.1534 0.9026 0.0467

0.01 Batan2014 Count 2.2408 0.0878 0.9093 0.0109

0.01 Chunchi2014 Count 13.9118 2.176 0.5964 0.0227

0.015 Batan2012 Count 1.8293 0.3306 0.8662 0.0378

0.015 Batan2014 Count 1.7998 0.2559 0.8874 0.0226

0.015 Chunchi2014 Count 15.1706 1.8295 0.6334 0.0153

0.03 Batan2012 Count 2.2634 0.2003 0.9072 0.0295

0.03 Batan2014 Count 2.2277 0.2537 0.9055 0.0174

0.03 Chunchi2014 Count 13.0655 1.7221 0.5856 0.0199

0.06 Batan2012 Count 2.2384 0.2008 0.8975 0.016

0.06 Batan2014 Count 2.0308 0.2055 0.9078 0.0275

0.06 Chunchi2014 Count 13.8051 1.3726 0.6511 0.0391
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12.4 Training DNN with Multivariate Outcomes

Training models with multivariate outcomes are very important for plant breeders
since they are interested in predicting more than one trait. In the context of plant
breeding, multivariate models for the prediction of more than one trait simulta-
neously are called multi-trait models. There is evidence that multi-trait models
capture the complex relationships between traits more efficiently and, for this reason,
many times they improve the prediction performance when compared with univar-
iate models. Statistical multi-trait models capture the correlation between traits and
also the correlation between lines.

There is evidence, and not only in genomic selection, that the larger the correla-
tion between traits, the better the prediction performance of multi-trait analysis (Jia
and Jannink 2012; Jiang et al. 2015). Authors like He et al. (2016) and Schulthess
et al. (2017) found a significant improvement of multi-trait analysis with regard to
univariate analysis, while Calus and Veerkamp (2011), Montesinos-López et al.
(2016), Montesinos-López et al. (2018a, b), and Montesinos-López et al. (2019)
found modest improvement of multivariate analysis when compared to univariate
analysis. Also in the context of multi-trait models, it helps to clarify the relationship
and the effect of each studied independent variable on the dependent multivariate
variables (Castro et al. 2013; Huang et al. 2015).

Despite the positive advantages of statistical multi-trait models mostly for con-
tinuous outcomes, it has not been possible to develop efficient models for other types
of multivariate response variables (binary, categorical, and count) and efficient
models for mixed outcomes (continuous, binary, categorical, and count) are still
lacking. There have been some developments in the statistical literature, but most of
them are not efficient for large data sets. However, as shown in two publications by
Montesinos-López et al. (2018b, c) and Montesinos-López et al. (2019), the deep
learning methodology has the power to efficiently implement univariate and multi-
variate models for each type of response variables, and even for mixed outcomes
(Chollet and Alliare 2017). For this reason, in this section, we will show how to
implement multi-trait analysis for continuous outcomes, multi-trait binary outcomes,
multi-trait categorical outcomes, multi-trait count outcomes, and multi-trait mixed
outcomes with a combination of at least two types of response variables (continuous
and binary; continuous and categorical; continuous and count; categorical and count;
etc.) and even with four types of response variables for continuous, binary, categor-
ical, and count outcomes. Next, we will illustrate the DNN training process with
multi-trait outcomes with all traits as continuous.

12.4.1 DNN with Multivariate Continuous Outcomes

The data set used for illustrating how to train multivariate continuous outcomes is
called MaizeToy data set. This data set contains 30 lines that were measured in three
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environments (EBU, KAT, and KTI); for this reason, the total number of observa-
tions is 90. Also, three continuous traits were measured for each observation, and
these traits were Yield, ASI, and PH. The genomic information is contained in the
genomic relationship matrix denoted as genoMaizeToy.R.

Next, we provide the default flags for training continuous outcomes. These flags
should be placed in the R (R Core Team 2019) code called Code_Tuning_With_
Flags_MT_normal.R.

####a) Declaring the flags for hyperparameters
FLAGS = flags(
flag_numeric("dropout1", 0.05),
flag_integer("units",33),
flag_string("activation1", "relu"),
flag_integer("batchsize1",56),
flag_integer("Epoch1",1000),
flag_numeric("learning_rate", 0.001),
flag_numeric("val_split",0.2))

####b) Defining the multi-trait DNN model
input <- layer_input(shape=dim(X_trII)[2],name="covars")

# add hidden layers
base_model <- input %>%
layer_dense(units =FLAGS$units, activation=FLAGS$activation1) %>%
layer_dropout(rate =FLAGS$dropout1) %>%
layer_dense(units =FLAGS$units, activation=FLAGS$activation1) %>%
layer_dropout(rate =FLAGS$dropout1) %>%
layer_dense(units =FLAGS$units, activation=FLAGS$activation1) %>%
layer_dropout(rate =FLAGS$dropout1)

# add output 1
yhat1 <- base_model %>%
layer_dense(units=1, name="response_1")

# add output 2
yhat2 <- base_model %>%
layer_dense(units= 1, name="response_2")

# add output 3
yhat3 <- base_model %>%
layer_dense(units= 1,name="response_3")

#c) Compiling the multi-trait model
model <- keras_model(input,list(response_1=yhat1,response_2=yhat2,
response_3=yhat3)) %>% compile(optimizer =optimizer_adam
(lr=FLAGS$learning_rate),

loss=list(response_1="mse",response_2="mse", response_3="mse"),
metrics=list(response_1="mse",response_2="mse",

response_3="mse"),
loss_weights=list(response_1=0.99,response_2=1.8,

response_3=0.069))
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print_dot_callback <- callback_lambda(
on_epoch_end = function(epoch, logs) {
if (epoch %% 20 == 0) cat("\n")
cat(".")

})

early_stop <- callback_early_stopping(monitor = c("val_loss"),
mode='min', patience =50)

# d) Fitting multi-trait model
model_fit <- model %>%
fit(x=X_trII,

y=list(response_1=y_trII[,1],response_2=y_trII[,2],
response_3=y_trII[,3]),

epochs=FLAGS$Epoch1,
batch_size =FLAGS$batchsize1,
validation_split=FLAGS$val_split,
verbose=0, callbacks = list(early_stop,print_dot_callback))

In part a) the default flags which are defined exactly as for univariate outcomes
are defined. In part b) the multi-trait DNN model is defined, with layer_input(), the
dimension (number of independent variables) of the input information is then
provided and the hidden layers are added. In this case, only three hidden layers
were specified and each layer had dropout that was added with layer_dropout().
Then three output layers were added that correspond to each of the three traits of the
mult-trait DNN model. The three output layers use one unit and the linear activation
function (not necessary to specify which) since the three traits are assumed to be
continuous. Next, in part c), the compilation process is done; here, as in univariate
DNN models, we need to specify the loss function, the optimizer, and the metrics
used to evaluate the prediction performance. The specified optimizer is exactly the
same as in the univariate DNN models. However, for the specification of the loss
function and metrics we need to specify a loss function and metrics for each trait
(outcome), that need to be in agreement with the type of response of each trait. Since
in this example we have three continuous traits, we specified as a loss function and
metric for each trait the mean_squared error (mse); however, for traits with different
types of outcome, the practitioner should specify a loss function and metric appro-
priate for each type of trait. Two differences in the compilation process of multi-trait
DNNmodels with regard to univariate DNNmodels are found. The first one is that in
the Keras we need to specify the traits under study using a list() where, separated by a
comma, the names of the traits under study are provided. The second one is that we
need to specify the loss_weights for each trait. One simple approach is to use the
same weights for all traits: for example, (1,1,1), if we have three traits or
(0.3333,0.3333, 0.3333), this approach is valid when all traits are on the same
scale, but when traits are on different scales, we suggest using different weights
for each continuous trait. In this example, different weights were used, since each
trait has a different scale and the weights were built as follows: (1) first we calculated
the median of each trait, (2) then we calculated the 0.25 and 0.75 quantiles for each
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trait, (3) then we calculated the maximum distance in terms of absolute value
between the median and both quantiles, (4) then we used as the weight for the first
trait (GY) its calculated distance, and (5) then we used as weight for the second trait
the value obtained by dividing the distance of the first trait by the distance of the
second trait, and finally the weight for the third trait was also obtained by dividing
the distance of the first trait by the distance of the third trait. Finally, the fitting
process is done in part d), and it is the same as the fitting process for the univariate
DNN model, except that the training set of the response variables is provided as a
list. These steps are only suggestions that can work for some data sets, but there is no
guarantee that they can work for all data sets.

Next, we called the flag Code_Tuning_With_Flags_MT_normal.R. In Appendix
4, it is used to implement the tuning process for selecting the best combination of
hyperparameters, and after selecting the best combination of hyperparameters, the
multi-trait DNN with the optimum hyperparameters is refitted, and the prediction
performance using cross-validation is evaluated with this refitted model. The grid
search implemented in this code is given next:

runs.sp<-tuning_run("Code_Tuning_With_Flags_MT_normal.R",runs_dir
= '_tuningE1',

flags=list(dropout1= c(0,0.05),
units = c(56,97),
activation1=("relu"),
batchsize1=c(22),
Epoch1=c(1000),
learning_rate=c(0.001),

val_split=c(0.25)), sample=0.5, confirm =FALSE,echo =F)

The results of implementing the last random grid search (sample ¼ 0.5) that
consists of four combinations of hyperparameters resulting from two dropout values
(0, 0.05) and two values of units (56, 97) are given in Table 12.4, which shows that
the best predictions were obtained for trait PH in terms of Pearson’s correlation and
MAAPE.

12.4.2 DNN with Multivariate Binary Outcomes

For illustrating the process of training multivariate binary DNN models, we used the
same data set (Data_Toy_EYT.RData) as in Example 12.1 in this chapter. As was
explained in Example 12.1, this data set contains four environments (Bed5IR, EHT,
Flat5IR, and LHT), 40 lines in each environment, a genomic relationship matrix of
order 40 � 40, four traits (DTHD, DTMT, GY, and Height) of which DTHD and
DTMT are ordinal traits, trait GY is continuous, and trait Height is binary. However,
for the implementation of the multivariate binary DNN model, we converted ordinal
traits DTHD and DTMT into binary traits, making 0 the levels of 1, and 1 the levels
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of 2 and 3. For this reason, the illustration of the multivariate binary DNNmodel was
done using the following three traits: DTHD, DTMT, and Height.

The default flags for training multivariate binary outcomes are given next. They
should be put in the R code (R Core Team 2019) called
Code_Tuning_With_Flags_MT_Binary.R.

####a) Declaring the flags for hyperparameters
FLAGS = flags(
flag_numeric("dropout1", 0.05),
flag_integer("units",33),
flag_string("activation1", "relu"),
flag_integer("batchsize1",56),
flag_integer("Epoch1",1000),
flag_numeric("learning_rate", 0.001),
flag_numeric("val_split",0.2))

####b) Defining the multi-trait DNN model
input <- layer_input(shape=dim(X_trII)[2],name="covars")

# add hidden layers
base_model <- input %>%
layer_dense(units =FLAGS$units, activation=FLAGS$activation1) %>%
layer_dropout(rate =FLAGS$dropout1) %>%
layer_dense(units =FLAGS$units, activation=FLAGS$activation1) %>%
layer_dropout(rate =FLAGS$dropout1) %>%
layer_dense(units =FLAGS$units, activation=FLAGS$activation1) %>%
layer_dropout(rate =FLAGS$dropout1)

# add output 1
yhat1 <- base_model %>%
layer_dense(units=1,activation="sigmoid", name="response_1")

# add output 2
yhat2 <- base_model %>%
layer_dense(units= 1, activation="sigmoid",name="response_2")

# add output 3
yhat3 <- base_model %>%
layer_dense(units= 1, activation="sigmoid",name="response_3")

#c) Compiling the multi-trait model
model <- keras_model(input,list(response_1=yhat1,response_2=yhat2,
response_3=yhat3)) %>%
compile(optimizer =optimizer_adam(lr=FLAGS$learning_rate),

loss=list(response_1="binary_crossentropy",
response_2="binary_crossentropy",response_3=
"binary_crossentropy"),

metrics=list(response_1="accuracy",response_2="accuracy",
response_3="accuracy"),

loss_weights=list(response_1=1,response_2=1,response_3=1))
###1,3.2,0.024
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print_dot_callback <- callback_lambda(
on_epoch_end = function(epoch, logs) {
if (epoch %% 20 == 0) cat("\n")
cat(".")

})

early_stop <- callback_early_stopping(monitor = c("val_loss"),
mode='min', patience =50)

# d) Fitting multi-trait model
model_fit <- model %>%
fit(x=X_trII,

y=list(response_1=y_trII[,1],response_2=y_trII[,2],
response_3=y_trII[,3]),

epochs=FLAGS$Epoch1,
batch_size =FLAGS$batchsize1,
validation_split=FLAGS$val_split,
verbose=0, callbacks = list(early_stop,print_dot_callback))

Also in part a) are given the default flags for implementing the multi-trait binary
DNNmodel. In part b) is defined the multi-trait binary DNNmodel where we can see
that the process of adding the dimension of the input and the hidden layers is exactly
the same as for the multi-trait continuous DNN model. Also, the number of output
layers depends on the number of traits under study, that is, if there are three traits
under study, we need to specify three output layers with one unit for each output
layer, as was done in continuous multivariate outcomes, but the key difference is that
now for binary multivariate outcomes, instead of using the linear activation function
in the output layer, we use the sigmoid activation function for each of the output
layers, since we are dealing with binary multivariate outcomes. The multi-trait
binary DNN model is compiled in part c); this process is very similar to the
compilation process of a multi-trait continuous DNN model, except that now we
use the binary_crossentropy loss function for each trait under study, we also use
accuracy as the metric for each of the binary traits and we use the same weight
(in this case, 1, 1, and 1) for each of the three traits. We now use the same weights
because the three traits under study are in the same type of response variable and
scale. Finally, in part d) is given the code for the fitting process, which is exactly the
same as for multi-trait continuous DNN models.

These flags (Code_Tuning_With_Flags_MT_Binary.R) can be used with Appen-
dix 4 with some small modifications such as those just described above, which are
related to (1) the activation function used for the output layers, (2) the loss function
used for each trait since now we should use binary_crossentropy, (3) the metrics
used for each trait since now we should use accuracy for each trait, (4) the weights
used in the compilation process since now we will use the same weight for each
trait, and (5) the prediction process since we will replace the following code of
Appendix 4:
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# predict values for test set
Yhat<-predict(model,X_tst)%>%
data.frame()%>%
setNames(colnames(y_trn))

YP=Yhat

With the following code to guarantee binary predictions:

# predict values for test set
Yhat<-predict(model,X_tst)%>%
data.frame()%>%
setNames(colnames(y_trn))

YP=matrix(NA,ncol=ncol(y2),nrow=nrow(Yhat))
head(Yhat)
P_T1=ifelse(Yhat[,1]>0.5,1,0)

P_T2=ifelse(Yhat[,2]>0.5,1,0)
P_T3=ifelse(Yhat[,3]>0.5,1,0)
YP[,1]=P_T1
YP[,2]=P_T2
YP[,3]=P_T3

The random grid search was used since sample ¼ 0.5, for the prediction under a
multi-trait binary DNN model, as is shown next:

runs.sp<-tuning_run("Code_Tuning_With_Flags_MT_Binary.R",runs_dir
= '_tuningE1',

flags=list(dropout1= c(0,0.05),
units = c(56,97),
activation1=("relu"),
batchsize1=c(22),
Epoch1=c(1000),
learning_rate=c(0.001),

val_split=c(0.25)), sample=0.5,confirm =FALSE,echo =F)

The important thing about this random grid search is that the tuning_run()
function calls the flags developed above for the training process of multi-trait binary
DDN models. Also, the total number of hyperparameters of the grid search is four,
since we set a unique value for all the hyperparameters, except for the
hyperparameters dropout with two values (0, 0.05) and the units with another two
values (56, 97). It is important to point out that of the four total hyperparameter
combinations, only two were evaluated, since we implemented a random grid search
by specifying sample ¼ 0.5.

In Table 12.5 is given the prediction performance for the average of the five outer
fold cross-validations used for training the multi-trait binary DNN model, the
prediction performance reported as metrics, the PCCC, the Kappa coefficient, the
sensitivity, and the specificity. From these results, it is evident that the best pre-
dictions belong to trait DTHD and trait DTMT. For all trait-environment
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combinations, the PCCC was larger than 0.5, that is, larger than the probability of a
correct classification by chance since we are dealing with binary outcomes.

12.4.3 DNN with Multivariate Ordinal Outcomes

To illustrate the training of multivariate ordinal or categorical DNN models, we used
the same data set (Data_Toy_EYT.RData) used in this chapter in Example 12.1 and
before for training multivariate binary DNN models. However, now the implemen-
tation of the multivariate ordinal DNN model was done with traits DTHD, DTMT,
and GY, but since GY is a continuous trait, this was converted to an ordinal outcome
in the following way: if GY is less than 3.2, then the outcome was set to 0, but if
3.2 < GY < 5.8, the outcome was set to 1, while if 5.8 < GY < 6.2, the ordinal
outcome was set to 2, and finally, if GY > 6.2, the outcome was set to 3. This means
the training of the multivariate ordinal DNN model was done with three traits
(DTHD, DTMT, and GY) where the first two had three levels and the last one had
four levels.

Next are provided the default flags that we suggest placing in an R (R Core Team
2019) file called Code_Tuning_With_Flags_MT_Ordinal.R.

####a) Declaring the flags for hyperparameters
FLAGS = flags(
flag_numeric("dropout1", 0.05),
flag_integer("units",33),
flag_string("activation1", "relu"),
flag_integer("batchsize1",56),
flag_integer("Epoch1",1000),
flag_numeric("learning_rate", 0.001),
flag_numeric("val_split",0.2))

Table 12.5 Prediction performance of multivariate binary data for three hidden layers with
genotype � environment interaction and with five outer fold cross-validations

Trait Env PCCC SE_PCCC Kappa SE_Kappa Sensitivity Specificity

DTHD Bed5IR 0.800 0.109 0.533 0.209 0.700 0.888

DTHD EHT 0.775 0.047 0.452 0.104 0.767 0.808

DTHD Flat5IR 0.775 0.061 0.437 0.192 0.700 0.819

DTHD LHT 0.750 0.040 0.344 0.140 0.693 0.751

DTMT Bed5IR 0.800 0.109 0.533 0.209 0.888 0.700

DTMT EHT 0.775 0.047 0.452 0.104 0.808 0.767

DTMT Flat5IR 0.775 0.061 0.437 0.192 0.819 0.700

DTMT LHT 0.750 0.040 0.344 0.140 0.751 0.693

Height Bed5IR 0.575 0.031 0.115 0.065 0.520 0.607

Height EHT 0.850 0.061 0.670 0.123 0.760 0.910

Height Flat5IR 0.725 0.073 0.363 0.152 0.850 0.550

Height LHT 0.750 0.040 0.492 0.074 0.800 0.767
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####b) Defining the multi-trait ordinal DNN model
input <- layer_input(shape=dim(X_trII)[2],name="covars")

# add hidden layers
base_model <- input %>%
layer_dense(units =FLAGS$units, activation=FLAGS$activation1) %>%
layer_dropout(rate =FLAGS$dropout1) %>%
layer_dense(units =FLAGS$units, activation=FLAGS$activation1) %>%
layer_dropout(rate =FLAGS$dropout1) %>%
layer_dense(units =FLAGS$units, activation=FLAGS$activation1) %>%
layer_dropout(rate =FLAGS$dropout1)

# add output 1
yhat1 <- base_model %>%
layer_dense(units=3,activation="softmax", name="response_1")

# add output 2
yhat2 <- base_model %>%
layer_dense(units= 3, activation="softmax",name="response_2")

# add output 3
yhat3 <- base_model %>%
layer_dense(units= 4, activation="softmax",name="response_3")

#c) Compiling the multi-trait ordinal DNN model
model <- keras_model(input,list(response_1=yhat1,response_2=yhat2,
response_3=yhat3)) %>%compile(optimizer =optimizer_adam
(lr=FLAGS$learning_rate),
loss=list(response_1="categorical_crossentropy",
response_2="categorical_crossentropy",
response_3="categorical_crossentropy"),
metrics=list(response_1="accuracy",response_2="accuracy",
response_3="accuracy"),
loss_weights=list(response_1=1,response_2=1,response_3=1))

print_dot_callback <- callback_lambda(
on_epoch_end = function(epoch, logs) {
if (epoch %% 20 == 0) cat("\n")
cat(".")

})

early_stop <- callback_early_stopping(monitor = c("val_loss"),
mode='min', patience =50)

# d) Fitting multi-trait model
model_fit <- model %>%
fit(x=X_trII,

y=list(response_1=y_trII[,1],response_2=y_trII[,2],
response_3=y_trII[,3]),

epochs=FLAGS$Epoch1,
batch_size =FLAGS$batchsize1,
validation_split=FLAGS$val_split,
verbose=0, callbacks = list(early_stop,print_dot_callback))
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The default flags for implementing the multi-trait ordinal DNN model are in part
a). In part b) is defined the multi-trait categorical DNN model, for which its
implementation is equal to binary outcomes, with two exceptions: (1) now the
softmax activation function is used for each trait in the output layer and (2) the
number of units in each output layer depends on the number of categories of each
trait under study, in this case, 3, 3, and 4 for the first, second, and third traits,
respectively. With regard to the compilation process (part c), it is the same as the
compilation of the multi-trait binary DNN model, except that now the
categorical_crossentropy loss function is used for each trait under study. Finally,
the code for the fitting process (part d) is exactly the same as for multi-trait binary
DNN models.

The flags given above for training multivariate ordinal outcomes
(Code_Tuning_With_Flags_MT_Ordinal.R) can be used with Appendix 4 with the
following modifications: (1) use the softmax activation function for each output
layer, (2) use the categorical_crossentropy for each trait, (3) use accuracy as the
metric for each trait, (4) use the same weights for each trait, and (5) replace the
following code of Appendix 4:

# predict values for test set
Yhat<-predict(model,X_tst)%>%
data.frame()%>%
setNames(colnames(y_trn))

YP=Yhat

Use the following code to obtain categorical outcomes as predictions:

Yhat<-predict(model,X_tst)%>%
data.frame()%>%
setNames(colnames(y_trn))

YP=matrix(NA,ncol=ncol(y),nrow=nrow(Yhat))
head(Yhat)
P_T1=(apply(data.matrix(Yhat[,1:3]),1,which.max)-1)
P_T2=(apply(data.matrix(Yhat[,4:6]),1,which.max)-1)
P_T3=(apply(data.matrix(Yhat[,7:10]),1,which.max)-1)
YP[,1]=P_T1
YP[,2]=P_T2
YP[,3]=P_T3

The random grid search (since sample ¼ 0.5) for the prediction of a multi-trait
categorical DNN model is given next:

runs.sp<-tuning_run("Code_Tuning_With_Flags_MT_Ordinal.R",
runs_dir = '_tuningE1',

flags=list(dropout1= c(0,0.05),
units = c(56,97),
activation1=("relu"),
batchsize1=c(22),
Epoch1=c(1000),
learning_rate=c(0.001),

val_split=c(0.25)), sample=0.5,confirm =FALSE,echo =F)
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This tuning process was implemented using a random grid search since sam-
ple ¼ 0.5 was specified inside the running_run() function, which means that only
two of the four hyperparameter combinations should be evaluated at each iteration of
the deep learning algorithm.

The results of implementing the multi-trait ordinal DNN model using the best
combination of hyperparameters resulting from the above research grid are given in
Table 12.6, where we can see that the metrics used for evaluating the prediction
performance were the same as those used for the multi-trait binary outcomes, but
now the best predictions were observed in trait DTHD and the worst in trait
GY. However, note that by chance alone now for traits DTHD and DTMT the
probability is 1/3 while for trait GY this probability is ¼ since for the first two traits
there are three levels, while for the third trait there are four response options.

12.4.4 DNN with Multivariate Count Outcomes

To illustrate the training process of the multivariate count DNN model, we used the
data called Data_Multi_Count_Toy.RData, which is a modified version of the data
called Data_ Count_Toy.RData. The basic modification is that the modified version
has two traits instead of one, which are denoted as y1 and y2. For this reason, again
this data set contains 115 lines, evaluated in three environments (Batan2012,
Batan2014, and Chunchi2014) and the total number of observations of this data
set is 298. Next, we provide the default flags that we suggest placing in an R file
called Code_Tuning_With_Flags_MT_Count.R.

Table 12.6 Prediction performance of multivariate ordinal data for three hidden layers with
genotype � environment interaction and five outer fold cross-validation

Trait Env PCCC SE_PCCC Kappa SE_Kappa Sensitivity Specificity

DTHD Bed5IR 0.625 0.0685 0.408 0.0922 0.6 0.5
DTHD EHT 0.625 0.0884 0.398 0.1414 0.6833 0.25
DTHD Flat5IR 0.6 0.0919 0.426 0.1224 0.7467 0.55
DTHD LHT 0.575 0.0637 0.287 0.0855 0.6167 0.0833

DTMT Bed5IR 0.525 0.0612 0.246 0.1179 0.8 0.3917

DTMT EHT 0.65 0.0729 0.444 0.1136 0.4583 0.6533

DTMT Flat5IR 0.575 0.05 0.391 0.0448 0.78 0.3083

DTMT LHT 0.55 0.0848 0.24 0.1589 0.7917 0.3958

GY Bed5IR 0.4 0.1275 0.141 0.1666 NaN 0.3

GY EHT 0.625 0.0395 0.23 0.0949 NaN 0.2

GY Flat5IR 0.45 0.075 0.156 0.0846 NaN 0.4333

GY LHT 0.425 0.0306 �0.06 0.0579 0.5667 0.3733
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####a) Declaring the flags for hyperparameters
FLAGS = flags(
flag_numeric("dropout1", 0.05),
flag_integer("units",33),
flag_string("activation1", "relu"),
flag_integer("batchsize1",56),
flag_integer("Epoch1",1000),
flag_numeric("learning_rate", 0.001),
flag_numeric("val_split",0.2))

####b) Defining the multi-trait count DNN model
input <- layer_input(shape=dim(X_trII)[2],name="covars")

# add hidden layers
base_model <- input %>%
layer_dense(units =FLAGS$units, activation=FLAGS$activation1) %>%
layer_dropout(rate =FLAGS$dropout1) %>%
layer_dense(units =FLAGS$units, activation=FLAGS$activation1) %>%
layer_dropout(rate =FLAGS$dropout1) %>%
layer_dense(units =FLAGS$units, activation=FLAGS$activation1) %>%
layer_dropout(rate =FLAGS$dropout1)

# add output 1
yhat1 <- base_model %>%
layer_dense(units=1,activation="exponential", name="response_1")

# add output 2
yhat2 <- base_model %>%
layer_dense(units=1, activation="exponential",name="response_2")

#c) Compiling the multi-trait ordinal DNN model
model <- keras_model(input,list(response_1=yhat1,response_2=yhat2))
%>%
compile(optimizer =optimizer_adam(lr=FLAGS$learning_rate),

loss=list(response_1="poisson",response_2="poisson"),
metrics=list(response_1="mse",response_2="mse"),
loss_weights=list(response_1=1,response_2=1))

print_dot_callback <- callback_lambda(
on_epoch_end = function(epoch, logs) {
if (epoch %% 20 == 0) cat("\n")
cat(".")

})

early_stop <- callback_early_stopping(monitor = c("val_loss"),
mode='min', patience =50)

# d) Fitting multi-trait count DNN model
model_fit <- model %>%
fit(x=X_trII,

y=list(response_1=y_trII[,1],response_2=y_trII[,2]),
epochs=FLAGS$Epoch1,
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batch_size =FLAGS$batchsize1,
validation_split=FLAGS$val_split,
verbose=0, callbacks = list(early_stop,print_dot_callback))

The default flags for the multi-trait count DNN model are in part a). The process
of building the multi-trait count DNNmodel (part b) is very similar to the building of
continuous multivariate outcomes, except that now the exponential activation func-
tion should be used. The compilation process (part c) is the same as the compilation
of the multi-trait continuous DNN model, except that now the Poisson loss function
is used for each trait under study, and the fitting process (part d) is exactly the same
as for multi-trait continuous DNN models.

The flags given above for training multivariate count outcomes
(Code_Tuning_With_Flags_MT_Count. R) can be used with Appendix 4 with the
following modifications: (1) use the exponential activation function for each output
layer, (2) use the Poisson loss function for each trait, and (3) use the same weights for
each trait.

Next, we give the random grid search used for tuning a multi-trait count DNN
model:

runs.sp<-tuning_run("Code_Tuning_With_Flags_MT_Count.R",runs_dir
= '_tuningE1',

flags=list(dropout1= c(0,0.05),
units = c(56,97),
activation1=("relu"),
batchsize1=c(22),
Epoch1=c(1000),
learning_rate=c(0.001),
val_split=c(0.2)),sample=0.5,confirm =FALSE,echo =F)

Again, we used the tuning_run() function to perform the tuning process which
now was done with a random grid search since we specified sample ¼ 0.5. Here the
total number of hyperparameters is four, since only hyperparameters % of dropout
and number of units have two values.

The prediction performance of training the multi-trait count data is given in
Table 12.7. Now the metrics used for evaluating the accuracy were the mean square
error of prediction and MAAPE. The best predictions across environments belong to

Table 12.7 Prediction performance of multivariate count data for three hidden layers with geno-
type � environment interaction and five outer fold cross-validation

Trait Environment MAAPE SE_MAAPE MSE SE_MSE

y1 Batan2012 0.7975 0.0498 1.6228 0.1696

y1 Batan2014 0.6739 0.0648 1.175 0.3795

y1 Chunchi2014 0.7933 0.0517 22.2328 3.3194

y2 Batan2012 0.9184 0.0534 1.0801 0.3943

y2 Batan2014 0.7897 0.0619 1.0169 0.5013

y2 Chunchi2014 0.5128 0.0254 9.5645 0.7366
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trait y1 in environments Batan2012 and Batan2014, and to trait y2 in environment
Chunchi2014. Results given in Table 12.7 belong to the best combination of
hyperparameters of the above grid. The comparison of prediction performance
between traits in MSE terms is not valid when the traits are on different scales.

12.4.5 DNN with Multivariate Mixed Outcomes

Finally, in this chapter, we provided key elements for training DNN models for
binary, categorical, count, and continuous outcomes. However, with the implemen-
tation of these DNN models, it is clear that DNN models are a novel tool for training
univariate and multivariate genomic prediction models for binary, categorical, count,
and mixed outcomes. The power to train univariate and multivariate nonlinear
regression with count data is unique to deep learning models since similar tools in
conventional statistical learning are not efficient and only a few are available. But the
gain in training multivariate DNN models is only due to the increase in the sample
size by modeling more than one trait simultaneously since the DNN models just
studied do not take into account a variance–covariance matrix of traits to capture the
correlation between traits. However, we also emphasize that the training process of
DNN models is very challenging since more time, thought, experimentation, and
resources are required for training these models than other statistical machine
learning models studied in this book, since for most of the statistical machine
learning algorithms, the search space for finding the optimum combination of
hyperparameters is small compared to DNN models. For these reasons, we strongly
suggest using the random grid search (or other new approaches like Bayesian
optimization or genetic algorithms) since the larger the number of hyperparameters,
the bigger the number of hyperparameter combinations that need to be evaluated due
to the quick explosion in the number of hyperparameter combinations. For this
reason, the use of the random grid search that explores only a fraction of the total
combination of hyperparameters is more efficient.

Next the default flags are given in an R file called
Code_Tuning_With_Flags_MT_Mixed.R.

####a) Declaring the flags for hyperparameters
FLAGS = flags(
flag_numeric("dropout1", 0.05),
flag_integer("units",33),
flag_string("activation1", "relu"),
flag_integer("batchsize1",56),
flag_integer("Epoch1",1000),
flag_numeric("learning_rate", 0.001),
flag_numeric("val_split",0.2))

####b) Defining the DNN model
input <- layer_input(shape=dim(X_trII)[2],name="covars")
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# add hidden layers
base_model <- input %>%
layer_dense(units =FLAGS$units, activation=FLAGS$activation1) %>%
layer_dropout(rate =FLAGS$dropout1) %>%
layer_dense(units =FLAGS$units, activation=FLAGS$activation1) %>%
layer_dropout(rate =FLAGS$dropout1) %>%
layer_dense(units =FLAGS$units, activation=FLAGS$activation1) %>%
layer_dropout(rate =FLAGS$dropout1)

# add output 1
yhat1 <- base_model %>%
layer_dense(units = 3,activation="softmax", name="response_1")

# add output 2
yhat2 <- base_model %>%
layer_dense(units = 1, activation="exponential",name="response_2")

# add output 3
yhat3 <- base_model %>%
layer_dense(units = 1, name="response_3")

# add output 3
yhat4 <- base_model %>%
layer_dense(units =1, activation="sigmoid",name="response_4")

#c) Compiling the multi-trait mixed DNN model
Model=keras_model(input,list(response_1=yhat1,response_2=yhat2,
response_3=yhat3,response_4=yhat4)) %>%
compile(optimizer =optimizer_adam(lr=FLAGS$learning_rate),

loss=list(response_1="categorical_crossentropy",response_2="mse",
response_3="mse",response_4="binary_crossentropy"), metrics=list
(response_1="accuracy",response_2="mse",response_3="mse",
response_4="accuracy"), loss_weights=list(response_1=1,
response_2=1,response_3=1,response_4=1))

print_dot_callback <- callback_lambda(
on_epoch_end = function(epoch, logs) {
if (epoch %% 20 == 0) cat("\n")
cat(".")

})

early_stop <- callback_early_stopping(monitor = c("val_loss"),
mode='min', patience =50)

# d) Fitting multi-trait mixed DNN model
model_fit <- model %>%
fit(x=X_trII,y=list(response_1=y_trII[,1],response_2=y_trII[,2],
response_3=y_trII[,3],response_4=y_trII[,4]), epochs=FLAGS$Epoch1,
batch_size =FLAGS$batchsize1, validation_split=FLAGS$val_split,
verbose=0, callbacks =list(early_stop,print_dot_callback))
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The default flags for the multi-trait mixed outcome DNNmodel are in part a). The
building process of the multi-trait mixed outcome DNN model (part b) is different
only in the specification of the outputs. Since now we have specified an activation
function for each response variable, the first response variable is an ordinal output
with three categories. For this reason, we specified three neurons and the softmax
activation function. The second response variable is a count, and for this reason, we
specified one unit (neuron) and the exponential activation function. The third
response variable is continuous, and for this reason, we specified only one neuron
and the linear activation function (default activation function). Finally, the last
response variable is binary, and for this reason, we specified only one neuron and
the sigmoid activation function. With regard to the compilation process (part c),
we had to specify a mixture loss function due to the fact that we had multivariate
mixed outcomes. For this reason, the mixture loss function in this example is
composed of four types of losses: “categorical_crossentropy,” “mse,” “mse,” and
“binary_crossentropy,”which are appropriate for a mixed outcome of ordinal, count,
continuous, and binary response variables. The same type of mixture is required for
specifying the metrics to evaluate the prediction accuracy to guarantee that they are
in agreement with the response variables. For this reason, in this case, the specifi-
cation of the metrics contains: “accuracy,” “mse,” “mse,” and “accuracy.” The first
metric is for the ordinal response variable, the second for the count output, the third
for the continuous outcome, and the last one for the binary outcome. The fitting
process (part d) is exactly the same as the fitting process of the previous multivariate
deep learning models with only one type of scale in the output.

The flags given above for training multivariate mixed outcomes
(Code_Tuning_With_Flags_MT_Mixed. R) can be used with Appendix 5.

Next is given the grid search used for tuning a multi-trait mixed outcome DNN
model:

runs.sp<-tuning_run("Code_Tuning_With_Flags_MT_Mixed.R",runs_dir =
'_tuningE1',

flags=list(dropout1= c(0,0.05),
units = c(56,97),
activation1=("relu"),
batchsize1=c(30),
Epoch1=c(1000),
learning_rate=c(0.01),
val_split=c(0.10)),sample=0.5,confirm =FALSE,echo =F)

Again, we used the tuning_run() function to perform the tuning process, which
now was done with the full grid search since we specified sample ¼ 1. Here the total
number of hyperparameters is four, since hyperparameters % of dropout and number
of units have only two values.

The prediction performance of training multi-trait mixed outcome data is given in
Table 12.8. The metrics used for evaluating the accuracy were MAAPE for the
continuous and count response variables, and the proportion of cases correctly
classified (PCCC) for the ordinal and binary traits. The best predictions for the two
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traits evaluated with MAAPE were those of trait GY, while for the ordinal and binary
traits we can see that the PCCC was better for the trait Height that includes only two
categories (Table 12.8). Again, these predictions belong to the best combination of
hyperparameters of the above grid. Practitioners should remember that we only
reported the MAAPE for the count and continuous traits, since it made no sense
for the ordinal and binary outcomes. Similarly, we only reported the PCCC for the
binary and ordinal traits since it made no sense for the count and continuous
outcomes.

Appendix 1

R code for training a univariate binary outcome with four hidden layers

rm(list=ls())
library(BMTME)
library(tensorflow)
library(keras)
library(caret)
library(plyr)
library(tidyr)
library(dplyr)
library(tfruns)
options(bitmapType='cairo')

Table 12.8 Prediction performance of multivariate mixed outcome data for three hidden layers
with genotype � environment interaction and five outer fold cross-validations

Trait Env MAAPE SE_MAAPE PCCC SE_PCCC

DTHD Bed5IR – – 0.600 0.073

DTHD EHT – – 0.675 0.064

DTHD Flat5IR – – 0.550 0.050

DTHD LHT – – 0.650 0.073

DTMT Bed5IR 0.628 0.065 – –

DTMT EHT 0.609 0.059 – –

DTMT Flat5IR 0.669 0.038 – –

DTMT LHT 0.678 0.092 – –

GY Bed5IR 0.106 0.010 – –

GY EHT 0.124 0.016 – –

GY Flat5IR 0.169 0.032 – –

GY LHT 0.154 0.005 – –

Height Bed5IR – – 0.575 0.050

Height EHT – – 0.850 0.073

Height Flat5IR – – 0.725 0.047

Height LHT – – 0.675 0.050

Appendix 1 507



##########Set seed for reproducible results###################
use_session_with_seed(64)

###########Loading the EYT_Toy data set#######################
load("Data_Toy_EYT.RData")

#############Genomic relationship matrix (GRM)################
Gg=data.matrix(G_Toy_EYT)
G=Gg
dim(G)

############Phenotypic data ##################################
Data_Pheno=Pheno_Toy_EYT
head(Data_Pheno)

summary.BMTMECV <- function(results, information = 'compact', digits =
4, ...) {
# if (!inherits(object, "BMTMECV")) stop("This function only works for
objects of class 'BMTMECV'")
results$Observed=as.factor(results$Observed)
results$Predicted=as.factor(results$Predicted)
results %>%
group_by(Env, Partition) %>%
summarise(PCCC=confusionMatrix(table(Observed,Predicted))$

overall[1],
PCCC_Lower=confusionMatrix(table(Observed,Predicted))$overall

[3],
PCCC_Upper=confusionMatrix(table(Observed,Predicted))$overall

[4],
Kappa=confusionMatrix(table(Observed,Predicted))$overall[2],

Sensitivity=confusionMatrix(table(Observed,Predicted))$byClas
[1],

Specificity=confusionMatrix(table(Observed,Predicted))$byClas
[2]) %>%

select(Env, Partition, PCCC,PCCC_Lower,PCCC_Upper,Kappa,
Sensitivity,Specificity) %>%

mutate_if(is.numeric, funs(round(., digits))) %>%
as.data.frame() -> presum

presum %>% group_by(Env) %>%
summarise(SE_PCCC= sd(PCCC, na.rm = T)/sqrt(n()), PCCC = mean(PCCC,

na.rm = T),
SE_PCCC_Lower= sd(PCCC_Lower, na.rm = T)/sqrt(n()), PCCC_Lower =

mean(PCCC_Lower, na.rm = T),
SE_PCCC_Upper= sd(PCCC_Upper, na.rm = T)/sqrt(n()), PCCC_Upper=

mean(PCCC_Upper, na.rm = T),
SE_Kappa= sd(Kappa, na.rm = T)/sqrt(n()), Kappa = mean(Kappa, na.

rm = T),
SE_Sensitivity= sd(Sensitivity, na.rm = T)/sqrt(n()),

Sensitivity = mean(Sensitivity, na.rm = T),
SE_Specificity= sd(Specificity, na.rm = T)/sqrt(n()), Specificity =

mean(Specificity, na.rm = T)) %>%
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select(Env,PCCC, SE_PCCC,PCCC_Lower, SE_PCCC_Lower,
PCCC_Upper,SE_PCCC_Upper,Kappa,SE_Kappa, Sensitivity,

SE_Sensitivity,Specificity,SE_Specificity ) %>%
mutate_if(is.numeric, funs(round(., digits))) %>%
as.data.frame() -> finalSum

out <- switch(information,
compact = finalSum,
complete = presum,
extended = {
finalSum$Partition <- 'All'
presum$Partition <- as.character(presum$Partition)
presum$SE_PCCC <- NA
presum$SE_PCCC_Lower <- NA
presum$SE_PCCC_Upper <- NA
presum$SE_Kappa <- NA
presum$Sensitivity<- NA
presum$Specificity<- NA
rbind(presum, finalSum)

}
)
return(out)

}

########Creating the design matrix of lines ##################
Z1G=model.matrix(~0+as.factor(Data_Pheno$GID))
L=t(chol(Gg))
Z1G=Z1G%*%L
ZE=model.matrix(~0+as.factor(Data_Pheno$Env))
Z2GE=model.matrix(~0+Z1G:as.factor(Data_Pheno$Env))
nCV=5 ###Number of outer Cross-validation

############Selecting the response variable#######################
Y <- as.matrix(Data_Pheno[, -c(1, 2)])

####Training testing sets using the BMTME package###############
pheno <- data.frame(GID =Data_Pheno[, 1], Env =Data_Pheno[, 2],

Response =Data_Pheno[, 3])

CrossV <- CV.KFold(pheno, DataSetID = 'GID', K = 5, set_seed = 123)

########Here are printed the testing observations of each fold#####
CrossV$CrossValidation_list

#######Final X and y=Height to use for training the model##############
y=(Data_Pheno[, 6])
length(y)
y
X=cbind(ZE,Z1G)
dim(X)
Learn_val=c(0.001,0.01,0.1,0.5,1)
Final_results=data.frame()
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for (e in 1:5){
#e=1

digits=4
Names_Traits=colnames(Y)
results=data.frame()
t=1

for (o in 1:5){
# o=2
tst_set=CrossV$CrossValidation_list[[o]]
X_trn=(X[-tst_set,])
X_tst=(X[tst_set,])
y_trn=y[-tst_set]
y_tst=y[tst_set]

################Inner cross-validation##########################
nCVI=5 ####Number of folds for inner CV
Hyperpar=data.frame()
for (i in 1:nCVI){

# i=1
Sam_per=sample(1:nrow(X_trn),nrow(X_trn))
X_trII=X_trn[Sam_per,]
y_trII=y_trn[Sam_per]

#####a) Grid search using the tuning_run() function of tfruns
package########

runs.sp<-tuning_run("Code_Tuning_With_Flags_Bin_4HL.R",runs_dir
= '_tuningE1',

flags=list(dropout1= c(0,0.05),
units = c(67,100),
activation1=("relu"),
batchsize1=c(28),
Epoch1=c(1000),
learning_rate=c(Learn_val[e]),
val_split=c(0.2)),sample=1,confirm =FALSE,echo =F)

runs.sp[,2:5]
###b) ###### Ordering in the same way all grids
runs.sp=runs.sp[order(runs.sp$flag_units,runs.sp$flag_dropout1),]
runs.sp$grid_length=1:nrow(runs.sp)

Parameters=data.frame(grid_length=runs.sp$grid_length,
metric_val_acc=runs.sp$metric_val_acc,flag_dropout1=runs.
sp$flag_dropout1,flag_units=runs.sp$flag_units, flag_batchsize1=runs.
sp$flag_batchsize1,epochs_completed=runs.sp$epochs_completed,
flag_learning_rate=runs.sp$flag_learning_rate, flag_activation1=runs.
sp$flag_activation1)

Hyperpar=rbind(Hyperpar,data.frame(Parameters))
}
Hyperpar %>%
group_by(grid_length) %>%
summarise(val_acc=mean(metric_val_acc),

dropout1=mean(flag_dropout1),
units=mean(flag_units),
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batchsize1=mean(flag_batchsize1),
learning_rate=mean(flag_learning_rate),
epochs=mean( epochs_completed)) %>%

select(grid_length,val_acc,dropout1,units,batchsize1,
learning_rate, epochs) %>%

mutate_if(is.numeric, funs(round(., 3))) %>%
as.data.frame() -> Hyperpar_Opt

############Optimal hyperparameters############
Max=max(Hyperpar_Opt$val_acc)
pos_opt=which(Hyperpar_Opt$val_acc==Max)
pos_opt=pos_opt[1]
Optimal_Hyper=Hyperpar_Opt[pos_opt,]
#####Selectiong the best hyperparameters
Drop_O=Optimal_Hyper$dropout1
Epoch_O=round(Optimal_Hyper$epochs,0)
Units_O=round(Optimal_Hyper$units,0)
activation_O=unique(Hyperpar$flag_activation1)
batchsize_O=round(Optimal_Hyper$batchsize1,0)
lr_O=Optimal_Hyper$learning_rate

print_dot_callback <- callback_lambda(
on_epoch_end = function(epoch, logs) {
if (epoch %% 20 == 0) cat("\n")
cat(".")})

###########Refitting the model with the optimal values#############
model_Sec<-keras_model_sequential()
model_Sec %>%
layer_dense(units =Units_O , activation =activation_O, input_shape

= c(dim(X_trn)[2])) %>%
layer_dropout(rate =Drop_O) %>%
layer_dense(units =Units_O, activation =activation_O) %>%
layer_dropout(rate=Drop_O) %>%
layer_dense(units =Units_O, activation =activation_O) %>%
layer_dropout(rate=Drop_O) %>%
layer_dense(units =Units_O, activation =activation_O) %>%
layer_dropout(rate=Drop_O) %>%
layer_dense(units =1, activation ="sigmoid")

model_Sec %>% compile(
loss = "binary_crossentropy",
optimizer = optimizer_adam(lr_O),
metrics = c('accuracy'))

ModelFinal <-model_Sec %>% fit(
X_trn, y_trn,
epochs=Epoch_O, batch_size =batchsize_O,

#####validation_split=0.2,early_stop,
verbose=0,callbacks=list(print_dot_callback))

####e) Prediction of testing set ##########################
predicted=model_Sec %>% predict_classes(X_tst)
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Predicted=predicted
Observed=y[tst_set]
results<-rbind(results, data.frame(Position=tst_set,

Env=CrossV$Environments[tst_set],
Partition=o,
Units=Units_O,
Epochs=Epoch_O,

Observed=round(Observed, digits), #$response, digits),
Predicted=round(Predicted, digits),
Trait=Names_Traits[t]))

cat("CV=",o,"\n")
}
results

Pred_Summary=summary.BMTMECV(results=results, information =
'compact', digits = 4)
Pred_Summary

Final_results=rbind(Final_results,data.frame(learn_val=Learn_val
[e],Pred_Summary))
}
Final_results
write.csv(Final_results,file="Appendix1_Bin_Chapter12_modified.
csv")

Appendix 2

R code for training a univariate categorical or ordinal outcome with four hidden
layers

rm(list=ls())
library(BMTME)
library(tensorflow)
library(keras)
library(caret)
library(plyr)
library(tidyr)
library(dplyr)
library(tfruns)
options(bitmapType='cairo')

##########Set seed for reproducible results###################
use_session_with_seed(64)

###########Loading the EYT_Toy data set#######################
load("Data_Toy_EYT.RData")

#############Genomic relationship matrix (GRM)################
Gg=data.matrix(G_Toy_EYT)

512 12 Artificial Neural Networks and Deep Learning for Genomic Prediction. . .



G=Gg
dim(G)

############Phenotypic data ##################################
Data_Pheno=Pheno_Toy_EYT
head(Data_Pheno)

summary.BMTMECV <- function(results, information = 'compact', digits =
4, ...) {
# if (!inherits(object, "BMTMECV")) stop("This function only works for
objects of class 'BMTMECV'")
results$Observed=as.factor(results$Observed)
results$Predicted=as.factor(results$Predicted)
results %>%
group_by(Env, Partition) %>%
summarise(PCCC=as.numeric(confusionMatrix(table(Observed,

Predicted))$overall[1]),
PCCC_Lower=as.numeric(confusionMatrix(table(Observed,

Predicted))$overall[3]),
PCCC_Upper=as.numeric(confusionMatrix(table(Observed,

Predicted))$overall[4]),
Kappa=as.numeric(confusionMatrix(table(Observed,Predicted))$

overall[2]),
Sensitivity=as.numeric(confusionMatrix(table(Observed,

Predicted))$byClas[1]),
Specificity=as.numeric(confusionMatrix(table(Observed,

Predicted))$byClas[2])) %>%
select(Env, Partition, PCCC,PCCC_Lower,PCCC_Upper,Kappa,

Sensitivity,Specificity) %>%
mutate_if(is.numeric, funs(round(., digits))) %>%
as.data.frame() -> presum

presum %>% group_by(Env) %>%
summarise(SE_PCCC= sd(PCCC, na.rm = T)/sqrt(n()), PCCC = mean(PCCC,

na.rm = T),
SE_PCCC_Lower= sd(PCCC_Lower, na.rm = T)/sqrt(n()), PCCC_Lower =

mean(PCCC_Lower, na.rm = T),
SE_PCCC_Upper= sd(PCCC_Upper, na.rm = T)/sqrt(n()), PCCC_Upper=

mean(PCCC_Upper, na.rm = T),
SE_Kappa= sd(Kappa, na.rm = T)/sqrt(n()), Kappa = mean(Kappa, na.

rm = T),
SE_Sensitivity= sd(Sensitivity, na.rm = T)/sqrt(n()),

Sensitivity = mean(Sensitivity, na.rm = T),
SE_Specificity= sd(Specificity, na.rm = T)/sqrt(n()), Specificity =

mean(Specificity, na.rm = T)) %>%
select(Env,PCCC, SE_PCCC,PCCC_Lower,SE_PCCC_Lower,PCCC_Upper,

SE_PCCC_Upper,Kappa,SE_Kappa, Sensitivity,SE_Sensitivity,
Specificity,SE_Specificity ) %>%

mutate_if(is.numeric, funs(round(., digits))) %>%
as.data.frame() -> finalSum

out <- switch(information,
compact = finalSum,
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complete = presum,
extended = {
finalSum$Partition <- 'All'
presum$Partition <- as.character(presum$Partition)
presum$SE_PCCC <- NA
presum$SE_PCCC_Lower <- NA
presum$SE_PCCC_Upper <- NA
presum$SE_Kappa <- NA
presum$SE_Sensitivity<- NA
presum$SE_Specificity<- NA
rbind(presum, finalSum)

}
)
return(out)

}
##############Creating the design matrix of lines ##################
Z1G=model.matrix(~0+as.factor(Data_Pheno$GID))
L=t(chol(Gg))
Z1G=Z1G%*%L
ZE=model.matrix(~0+as.factor(Data_Pheno$Env))
Z2GE=model.matrix(~0+Z1G:as.factor(Data_Pheno$Env))
nCV=5 ###Number of outer Cross-validation

############Selecting the response variable#######################
Y <- as.matrix(Data_Pheno[, -c(1, 2)])

########Training testing sets using the BMTME package###############
pheno <- data.frame(GID =Data_Pheno[, 1], Env =Data_Pheno[, 2],

Response =Data_Pheno[, 3])

CrossV <- CV.KFold(pheno, DataSetID = 'GID', K = 5, set_seed = 123)

########Here are printed the testing observations of each fold#####
CrossV$CrossValidation_list

#######Final X and y=DTHD to use for training the model################
y=c(Data_Pheno[, 3])-1
nclas=length(unique(y))
length(y)
X=cbind(ZE,Z1G)
dim(X)
Learn_val=c(0.005,0.01,0.015,0.03,0.06)
Final_results=data.frame()
for (e in 1:5){
digits=4
Names_Traits=colnames(Y)
results=data.frame()
t=1

for (o in 1:5){
#o=2
tst_set=CrossV$CrossValidation_list[[o]]
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X_trn=(X[-tst_set,])
X_tst=(X[tst_set,])
y_trn= to_categorical(y[-tst_set],nclas)
y_tst= to_categorical(y[tst_set],nclas)

################Inner cross-
validation####################################

nCVI=5 ####Number of folds for inner CV
Hyperpar=data.frame()
for (i in 1:nCVI){
#i=1
Sam_per=sample(1:nrow(X_trn),nrow(X_trn))
X_trII=X_trn[Sam_per,]
y_trII=y_trn[Sam_per,]

#####a) Grid search using the tuning_run() function of tfruns
package########

runs.sp<-tuning_run("Code_Tuning_With_Flags_Ordinal_4HL2.R",
runs_dir = '_tuningEO',

flags=list(dropout1= c(0,0.05),
units = c(67,100),
activation1=("relu"),
batchsize1=c(28),
Epoch1=c(1000),
learning_rate=c(Learn_val[e]),
val_split=c(0.2)),sample=1,confirm =FALSE,echo =F)

runs.sp[,2:5]
###b) ###### Ordering in the same way all grids
runs.sp=runs.sp[order(runs.sp$flag_units,runs.sp$flag_dropout1),]

runs.sp$grid_length=1:nrow(runs.sp)
Parameters=data.frame(grid_length=runs.sp$grid_length,

metric_val_acc=runs.sp$metric_val_acc,flag_dropout1=runs.
sp$flag_dropout1,flag_units=runs.sp$flag_units, flag_batchsize1=runs.
sp$flag_batchsize1,epochs_completed=runs.sp$epochs_completed,
flag_learning_rate=runs.sp$flag_learning_rate, flag_activation1=runs.
sp$flag_activation1)

Hyperpar=rbind(Hyperpar,data.frame(Parameters))
}
Hyperpar %>%
group_by(grid_length) %>%
summarise(val_acc=mean(metric_val_acc),

dropout1=mean(flag_dropout1),
units=mean(flag_units),
batchsize1=mean(flag_batchsize1),
learning_rate=mean(flag_learning_rate),
epochs=mean( epochs_completed)) %>%

select(grid_length,val_acc,dropout1,units,batchsize1,
learning_rate, epochs) %>%

mutate_if(is.numeric, funs(round(., 3))) %>%
as.data.frame() -> Hyperpar_Opt

############Optimal hyperparameters############
Max=max(Hyperpar_Opt$val_acc)
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pos_opt=which(Hyperpar_Opt$val_acc==Max)
pos_opt=pos_opt[1]
Optimal_Hyper=Hyperpar_Opt[pos_opt,]
#####Selectiong the best hyperparameters
Drop_O=Optimal_Hyper$dropout1
Epoch_O=round(Optimal_Hyper$epochs,0)
Units_O=round(Optimal_Hyper$units,0)
activation_O=unique(Hyperpar$flag_activation1)
batchsize_O=round(Optimal_Hyper$batchsize1,0)
lr_O=Optimal_Hyper$learning_rate
print_dot_callback <- callback_lambda(
on_epoch_end = function(epoch, logs) {
if (epoch %% 20 == 0) cat("\n")
cat(".")})

#############Refitting the model with the optimal values############
model_Sec<-keras_model_sequential()
model_Sec %>%
layer_dense(units =Units_O , activation =activation_O, input_shape

= c(dim(X_trn)[2])) %>%
layer_batch_normalization() %>%
layer_dropout(rate =Drop_O) %>%
layer_dense(units =Units_O, activation =activation_O) %>%
layer_batch_normalization() %>%
layer_dropout(rate=Drop_O) %>%
layer_dense(units =Units_O, activation =activation_O) %>%
layer_batch_normalization() %>%
layer_dropout(rate=Drop_O) %>%
layer_dense(units =Units_O, activation =activation_O) %>%
layer_batch_normalization() %>%
layer_dropout(rate=Drop_O) %>%
layer_dense(units =nclas, activation ="softmax")

model_Sec %>% compile(
loss = "categorical_crossentropy",
optimizer = optimizer_adam(lr_O),
metrics = c('accuracy'))

ModelFinal <-model_Sec %>% fit(
X_trn, y_trn,
epochs=Epoch_O, batch_size =batchsize_O,

#####validation_split=0.2,early_stop,
verbose=0,callbacks=list(print_dot_callback))

####e) Prediction of testing set ##########################
predicted=model_Sec %>% predict_classes(X_tst)
Predicted=predicted
Observed=y[tst_set]
results<-rbind(results, data.frame(Position=tst_set,

Env=CrossV$Environments[tst_set],
Partition=o,
Units=Units_O,
Epochs=Epoch_O,
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Observed=round(Observed, digits), #$response, digits),
Predicted=round(Predicted, digits),
Trait=Names_Traits[t]))

cat("CV=",o,"\n")
}
results

Pred_Summary=summary.BMTMECV(results=results, information =
'compact', digits = 4)
Pred_Summary
Final_results=rbind(Final_results,data.frame(learn_val=Learn_val

[e],Pred_Summary))
}
Final_results
write.csv(Final_results,file="Appendix1_Ord_Chapter12_modifiedV2.
csv")

Appendix 3

R code for training a univariate count outcome with four hidden layers and Ridge
regularization

rm(list=ls(all=TRUE))
library(plyr)
library(tidyr)
library(dplyr)
library(BMTME)
library(tensorflow)
library(keras)
library(tfruns)

#Loading Data_Count_Toy
load('Data_Count_Toy.RData',verbose=TRUE)
ls()

####Phenotipic data
dat_F=Pheno_Toy_Count
head(dat_F)
dim(dat_F)

######Genomic relationship matrix###
G =G_Toy_Count
dim(G)
G_0.5 = cholesky(G, tolerance = 1e-9)

#####Design matrices#####
ZL = model.matrix(~0+as.factor(GID),data=dat_F)
ZL = ZL%*%G_0.5
X_L = model.matrix(~0+Loc,data=dat_F)
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dim(X_L)
X_LM = model.matrix(~0+ZL:Loc,data=dat_F)
X_Block = model.matrix(~0+as.factor(Block):Loc,data=dat_F)
dim(X_Block )

#################
#########Function for averaging the predictions############
summary.BMTMECV <- function(results, information = 'compact', digits =
4, ...) {
results %>%
group_by(Environment, Trait, Partition) %>%
summarise(MSE = mean((Predicted-Observed)^2),

MAAPE = mean(atan(abs(Observed-Predicted)/abs(Observed)))) %>%
select(Environment, Trait, Partition, MSE, MAAPE) %>%
mutate_if(is.numeric, funs(round(., digits))) %>%
as.data.frame() -> presum

presum %>% group_by(Environment, Trait) %>%
summarise(SE_MAAPE = sd(MAAPE, na.rm = T)/sqrt(n()), MAAPE = mean

(MAAPE, na.rm = T),
SE_MSE = sd(MSE, na.rm = T)/sqrt(n()), MSE = mean(MSE, na.rm = T)) %>

%
select(Environment, Trait, MSE, SE_MSE, MAAPE, SE_MAAPE) %>%
mutate_if(is.numeric, funs(round(., digits))) %>%
as.data.frame() -> finalSum

out <- switch(information,
compact = finalSum,
complete = presum,
extended = {
finalSum$Partition <- 'All'
presum$Partition <- as.character(presum$Partition)
presum$SE_MSE <- NA
presum$SE_MAAPE <- NA
rbind(presum, finalSum)

}
)
return(out)

}

##Number of fold cross-validation and TRN and TST sets
nCV=5
Data.Final_1=dat_F[,c(1,2,6)]
colnames(Data.Final_1)=c("Line","Env","Response")
Env=unique(Data.Final_1$Env)
nI=length(unique(Data.Final_1$Env))

#############Training testing partitions#####################
CrossV<-CV.KFold(Data.Final_1, K =nCV, set_seed=123)

X = cbind(X_L,ZL,X_Block,X_LM)
y=dat_F$y
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Learn_val=c(0.005,0.01,0.015,0.03,0.06)
Final_results=data.frame()
digits=4
for (e in 1:5){
#e=5
# Names_Traits=colnames(y)
results=data.frame()
t=1

for (o in 1:5){
# o=2
tst_set=CrossV$CrossValidation_list[[o]]
X_trn=(X[-tst_set,])
X_tst=(X[tst_set,])
y_trn=y[-tst_set]
y_tst=y[tst_set]

################Inner cross-validation##########################
nCVI=5 ####Number of folds for inner CV
Hyperpar=data.frame()
for (i in 1:nCVI){
#i=1
Sam_per=sample(1:nrow(X_trn),nrow(X_trn))
X_trII=X_trn[Sam_per,]
y_trII=y_trn[Sam_per]

#####a) Grid search using the tuning_run() function of tfruns
package########

runs.sp<-tuning_run("Code_Tuning_With_Flags_Count_Lasso.R",
flags=list(dropout1= c(0),

units = c(67,150),
activation1=("relu"),
batchsize1=c(28),
Epoch1=c(1000),
learning_rate=c(Learn_val[e]),
val_split=c(0.2),

Lasso_par=c(0.001,0.01)),sample=1,confirm =FALSE,echo
=F)

runs.sp[,2:5]
###b) ###### Ordering in the same way all grids
runs.sp=runs.sp[order(runs.sp$flag_units,runs.sp$flag_Lasso_par),]

runs.sp$grid_length=1:nrow(runs.sp)
Parameters=data.frame(grid_length=runs.sp$grid_length,

metric_val_mse=runs.sp$metric_val_mse,flag_dropout1=runs.
sp$flag_dropout1,flag_units=runs.sp$flag_units, flag_batchsize1=runs.
sp$flag_batchsize1,epochs_completed=runs.sp$epochs_completed,
flag_learning_rate=runs.sp$flag_learning_rate, flag_Lasso_par=runs.
sp$flag_Lasso_par, flag_activation1=runs.sp$flag_activation1)

Hyperpar=rbind(Hyperpar,data.frame(Parameters))
}
Hyperpar %>%
group_by(grid_length) %>%
summarise(val_mse=mean(metric_val_mse),
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dropout1=mean(flag_dropout1),
units=mean(flag_units),
batchsize1=mean(flag_batchsize1),
learning_rate=mean(flag_learning_rate),
Lasso_par=mean(flag_Lasso_par),
epochs=mean( epochs_completed)) %>%

select(grid_length,val_mse,dropout1,units,batchsize1,
learning_rate, Lasso_par,epochs) %>%

mutate_if(is.numeric, funs(round(., 3))) %>%
as.data.frame() -> Hyperpar_Opt

############Optimal hyperparameters############
Min=min(Hyperpar_Opt$val_mse)
pos_opt=which(Hyperpar_Opt$val_mse==Min)
pos_opt=pos_opt[1]
Optimal_Hyper=Hyperpar_Opt[pos_opt,]
#####Selecting the best hyperparameters
Drop_O=Optimal_Hyper$dropout1
Epoch_O=round(Optimal_Hyper$epochs,0)
Units_O=round(Optimal_Hyper$units,0)
activation_O=unique(Hyperpar$flag_activation1)
batchsize_O=round(Optimal_Hyper$batchsize1,0)
lr_O=Optimal_Hyper$learning_rate
Lasso_par_O=Optimal_Hyper$Lasso_par

print_dot_callback <- callback_lambda(
on_epoch_end = function(epoch, logs) {
if (epoch %% 20 == 0) cat("\n")
cat(".")})

###########Refitting the model with the optimal values##############
model_Sec<-keras_model_sequential()
model_Sec %>%
layer_dense(units =Units_O, kernel_regularizer=regularizer_l1

(Lasso_par_O),activation =activation_O, input_shape = c(dim
(X_trII)[2])) %>%

layer_dropout(rate=Drop_O) %>%
layer_dense(units =Units_O, kernel_regularizer=regularizer_l1

(Lasso_par_O),activation =activation_O) %>%
layer_dropout(rate=Drop_O) %>%
layer_dense(units =Units_O, kernel_regularizer=regularizer_l1

(Lasso_par_O),activation =activation_O) %>%
layer_dropout(rate=Drop_O) %>%
layer_dense(units =Units_O, kernel_regularizer=regularizer_l1

(Lasso_par_O),activation =activation_O) %>%
layer_dropout(rate=Drop_O) %>%
layer_dense(units =1, activation ="exponential")

model_Sec %>% compile(
loss = "poisson",
optimizer = optimizer_adam(lr_O),
metrics = c('mse'))
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ModelFinal <-model_Sec %>% fit(
X_trn, y_trn,
epochs=Epoch_O, batch_size =batchsize_O,

#####validation_split=0.2,early_stop,
verbose=0,callbacks=list(print_dot_callback))

####e) Prediction of testing set ##########################
predicted=model_Sec %>% predict(X_tst)
Predicted=predicted
Observed=y[tst_set]
results<-rbind(results, data.frame(Position=tst_set,

Environment=CrossV$Environments[tst_set],
Partition=o,
Units=Units_O,
Epochs=Epoch_O,

Observed=round(Observed, digits), #$response, digits),
Predicted=round(Predicted, digits),
Trait="Count"))

cat("CV=",o,"\n")
}
results

Pred_Summary=summary.BMTMECV(results=results, information =
'compact', digits = 4)
Pred_Summary

Final_results=rbind(Final_results,data.frame(learn_val=Learn_val
[e],Pred_Summary))
}
Final_results
write.csv(Final_results,file="Appendix3_Count_Chapter12_modifiedv2.
csv")

Appendix 4

R code for training a multi-trait normal outcome with three hidden layers

rm(list=ls())
library(BMTME)
library(tensorflow)
library(keras)
library(plyr) ####ply
library(tidyr)
library(dplyr)
library(tfruns)
options(bitmapType='cairo')

##########Set seed for reproducible results###################
use_session_with_seed(64)
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#################Loading the MaizeToy Data set###############
data("MaizeToy")
ls()
head(phenoMaizeToy)

###########Ordering the data ################################
phenoMaizeToy<-(phenoMaizeToy[order(phenoMaizeToy$Env,
phenoMaizeToy$Line),])
rownames(phenoMaizeToy)=1:nrow(phenoMaizeToy)
head(phenoMaizeToy,5)

#################Design matrices################################
LG <- cholesky(genoMaizeToy)
ZG <- model.matrix(~0 + as.factor(phenoMaizeToy$Line))
Z.G <- ZG %*%LG
Z.E <- model.matrix(~0 + as.factor(phenoMaizeToy$Env))
ZEG <- model.matrix(~0 + as.factor(phenoMaizeToy$Line):as.factor
(phenoMaizeToy$Env))
G2 <- kronecker(diag(length(unique(phenoMaizeToy$Env))), data.matrix
(genoMaizeToy))
LG2 <- cholesky(G2)
Z.EG <- ZEG %*% LG2

############Selecting the response variable#######################
Data_Pheno=phenoMaizeToy
Y <- as.matrix(Data_Pheno[, -c(1, 2)])

####Training testing sets using the BMTME package###############
pheno <- data.frame(GID =Data_Pheno[, 1], Env =Data_Pheno[, 2],

Response =Data_Pheno[, 3])

#CrossV <- CV.KFold(pheno, DataSetID = 'GID', K = 5, set_seed = 123)
CrossV <- CV.RandomPart(pheno, NPartitions = 5, PTesting = 0.2,
set_seed = 123)

summary.BMTMECV <- function(results, information='compact',
digits=4, ...) {
# if (!inherits(object, "BMTMECV")) stop("This function only works for
objects of class 'BMTMECV'")

results %>%
group_by(Environment, Trait, Partition) %>%
summarise(Pearson = cor(Predicted, Observed, use = 'pairwise.

complete.obs'),
MAAPE = mean(atan(abs(Observed-Predicted)/abs(Observed))),
MSE= mean((Observed-Predicted)^2)) %>%
select(Environment, Trait, Partition, Pearson, MAAPE,MSE) %>%
mutate_if(is.numeric, funs(round(., digits))) %>%
as.data.frame() -> presum

presum %>% group_by(Environment, Trait) %>%
summarise(SE_MAAPE = sd(MAAPE, na.rm = T)/sqrt(n()), MAAPE = mean

(MAAPE, na.rm = T),
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SE_Pearson = sd(Pearson, na.rm = T)/sqrt(n()), Pearson = mean
(Pearson, na.rm = T),

SE_MSE = sd(MSE, na.rm = T)/sqrt(n()), MSE = mean(MSE, na.rm = T)) %>%
select(Environment, Trait, Pearson, SE_Pearson, MAAPE, SE_MAAPE,

MSE, SE_MSE ) %>%
mutate_if(is.numeric, funs(round(., digits))) %>%
as.data.frame() -> finalSum

out <- switch(information,
compact = finalSum,
complete = presum,
extended = {
finalSum$Partition <- 'All'
presum$Partition <- as.character(presum$Partition)
presum$SE_Pearson <- NA
presum$SE_MAAPE <- NA
presum$SE_MSE <- NA
rbind(presum, finalSum)

}
)
return(out)

}

#######Final X and y=Height to use for training the model##############
tst_set=CrossV$CrossValidation_list[[1]]

#####X training and testing####
X=cbind(Z.E,Z.G)
dim(X)

y=(Data_Pheno[, 3:5])
y2=y

####Weights calculation
max_Dif_q1=max(quantile(y[,1],p=0.75)-quantile(y[,1],p=0.5),
quantile(y[,1],p=0.5)-quantile(y[,1],p=0.25))
max_Dif_q2=(max(quantile(y[,2],p=0.75)-quantile(y[,2],p=0.5),
quantile(y[,2],p=0.5)-quantile(y[,2],p=0.25)))
max_Dif_q3=(max(quantile(y[,3],p=0.75)-quantile(y[,3],p=0.5),
quantile(y[,3],p=0.5)-quantile(y[,3],p=0.25)))
w1=max_Dif_q1
w2=max_Dif_q1/max_Dif_q2
w3=max_Dif_q1/max_Dif_q3

####################Outer cross-validation#######################
digits=4
n=dim(X)[1]
Names_Traits=colnames(Y)
results=data.frame()
t=1
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for (o in 1:5){
### o=1
tst_set=CrossV$CrossValidation_list[[o]]

X_trn=(X[-tst_set,])
X_tst=(X[tst_set,])
y_trn=(y[-tst_set,])
y_tst=(y[tst_set,])

################Inner cross-validation############################
X_trII=X_trn
y_trII=y_trn

#####a) Grid search using the tuning_run() function of tfruns
package########

runs.sp<-tuning_run("Code_Tuning_With_Flags_MT_normal.R",
runs_dir = '_tuningE1',

flags=list(dropout1= c(0,0.05),
units = c(56,97),
activation1=("relu"),
batchsize1=c(22),
Epoch1=c(1000),
learning_rate=c(0.001),

val_split=c(0.25)),sample=0.5,confirm =FALSE,echo =F)
runs.sp[,23:27]

###b) Decreasing order of prediction performance of each combination
of the grid

runs=runs.sp[order(runs.sp$metric_val_loss , decreasing = T), ]
runs
runs[,23:27]
dim(runs)[1]

####c) Selecting the best combination of hyperparameters ####
pos_opt=dim(runs)[1]
opt_runs=runs[pos_opt,]

####d) Renaming the optimal hyperparametes
Drop_O=opt_runs$flag_dropout1
Epoch_O=opt_runs$epochs_completed
Units_O=opt_runs$flag_units
activation_O=opt_runs$flag_activation1
batchsize_O=opt_runs$flag_batchsize1
lr_O=opt_runs$flag_learning_rate

###########Refitting the model with the optimal values##############
### add covariates
input <- layer_input(shape=dim(X_trn)[2],name="covars")

### add hidden layers
base_model <- input %>%
layer_dense(units =Units_O, activation=activation_O) %>%
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layer_dropout(rate = Drop_O) %>%
layer_dense(units =Units_O, activation=activation_O) %>%
layer_dropout(rate = Drop_O) %>%
layer_dense(units =Units_O, activation=activation_O) %>%
layer_dropout(rate = Drop_O)

# add output 1
yhat1 <- base_model %>%
layer_dense(units =1, name="response_1")

# add output 2
yhat2 <- base_model %>%
layer_dense(units = 1, name="response_2")

# add output 3
yhat3 <- base_model %>%
layer_dense(units = 1, name="response_3")

# build multi-output model
model <- keras_model(input,list(response_1=yhat1,response_2=yhat2,

response_3=yhat3)) %>%
compile(optimizer =optimizer_adam(lr=lr_O),

loss=list(response_1="mse",response_2="mse",
response_3="mse"),

metrics=list(response_1="mse",response_2="mse",
response_3="mse"),

loss_weights=list(response_1=w1,response_2=w2,response_3=w3))

print_dot_callback <- callback_lambda(
on_epoch_end = function(epoch, logs) {
if (epoch %% 20 == 0) cat("\n")
cat(".")

})
early_stop <- callback_early_stopping(monitor = c("val_loss"),

mode='min', patience =50)

# fitting the model
model_fit <- model %>%
fit(x=X_trn,

y=list(response_1=y_trn[,1],response_2=y_trn[,2],
response_3=y_trn[,3]),

epochs=Epoch_O,
batch_size =batchsize_O,
verbose=0, callbacks = list(print_dot_callback))

# predict values for test set
Yhat<-predict(model,X_tst)%>%
data.frame()%>%
setNames(colnames(y_trn))

YP=Yhat

Appendix 4 525



results<-rbind(results, data.frame(Position=tst_set,
Environment=CrossV$Environments[tst_set],
Partition=o,
Units=Units_O,
Epochs=Epoch_O,
Observed=round(y[tst_set,], digits), #$response,

digits),
Predicted=round(YP, digits)))

cat("CV=",o,"\n")
}
results
nt=3

Pred_all_traits=data.frame()
for (i in 1:nt){
#i=1
pos_i_obs=5+i
pos_i_pred=8+i
results_i=results[,c(1:5,pos_i_obs,pos_i_pred)]
results_i$Trait=Names_Traits[i]
Names_results_i=colnames(results_i)
colnames(results_i)=c(Names_results_i

[1:5],"Observed","Predicted","Trait")

Pred_Summary=summary.BMTMECV(results=results_i, information =
'compact', digits = 4)
Pred_Summary
Pred_all_traits=rbind(Pred_all_traits,Pred_Summary)

}
Pred_all_traits
write.csv(Pred_all_traits,file="Multi-trait-predictions_Normal2.
csv")

Appendix 5

R code for training a multi-trait mixed outcome with three hidden layers

rm(list=ls())
library(BMTME)
library(tensorflow)
library(keras)
library(caret)
library(plyr)
library(tidyr)
library(dplyr)
library(tfruns)
options(bitmapType='cairo')
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##########Set seed for reproducible results###################
use_session_with_seed(64)

###########Loading the EYT_Toy data set#######################
load("Data_Toy_EYT.RData")

#############Genomic relationship matrix (GRM)################
Gg=data.matrix(G_Toy_EYT)
G=Gg

############Phenotypic data ##################################
Data_Pheno=Pheno_Toy_EYT

########Creating the design matrix of lines ##################
Z1G=model.matrix(~0+as.factor(Data_Pheno$GID))
L=t(chol(Gg))
Z1G=Z1G%*%L
ZE=model.matrix(~0+as.factor(Data_Pheno$Env))
Z2GE=model.matrix(~0+Z1G:as.factor(Data_Pheno$Env))
nCV=5

summary.BMTMECV <- function(results, information='compact',
digits=4, ...) {
# if (!inherits(object, "BMTMECV")) stop("This function only works for
objects of class 'BMTMECV'")

results %>%
group_by(Environment, Trait, Partition) %>%
summarise(Pearson = cor(Predicted, Observed, use = 'pairwise.

complete.obs'),
MAAPE = mean(atan(abs(Observed-Predicted)/abs(Observed))),
PCCC = 1-sum(Observed!=Predicted)/length(Observed)) %>%

select(Environment, Trait, Partition, Pearson, MAAPE,PCCC) %>%
mutate_if(is.numeric, funs(round(., digits))) %>%
as.data.frame() -> presum

presum %>% group_by(Environment, Trait) %>%
summarise(SE_MAAPE = sd(MAAPE, na.rm = T)/sqrt(n()), MAAPE = mean

(MAAPE, na.rm = T),
SE_Pearson = sd(Pearson, na.rm = T)/sqrt(n()), Pearson = mean

(Pearson, na.rm = T),
SE_PCCC = sd(PCCC, na.rm = T)/sqrt(n()), PCCC = mean(PCCC, na.rm =

T)) %>%
select(Environment, Trait, Pearson, SE_Pearson, MAAPE, SE_MAAPE,

PCCC, SE_PCCC ) %>%
mutate_if(is.numeric, funs(round(., digits))) %>%
as.data.frame() -> finalSum

out <- switch(information,
compact = finalSum,
complete = presum,
extended = {
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finalSum$Partition <- 'All'
presum$Partition <- as.character(presum$Partition)
presum$SE_Pearson <- NA
presum$SE_MAAPE <- NA
presum$SE_PCCC <- NA
rbind(presum, finalSum)

}
)
return(out)

}

############Selecting the response variable#######################
Y <- as.matrix(Data_Pheno[, -c(1, 2)])

########Training testing sets using the BMTME package###############
pheno <- data.frame(GID =Data_Pheno[, 1], Env =Data_Pheno[, 2],

Response =Data_Pheno[, 3])

#CrossV <- CV.KFold(pheno, DataSetID = 'GID', K = 5, set_seed = 123)
CrossV <- CV.RandomPart(pheno, NPartitions =5, PTesting = 0.2, set_seed
= 123)

#####X training and testing####
X=cbind(ZE,Z1G,Z2GE)
dim(X)

y=Data_Pheno[, c(3,4,5,6)]
summary(y[,3])
y[,1]=y[,1]-1
y[,2]=y[,2]-1

############Outer cross-validation#######################
digits=4
n=dim(X)[1]
Names_Traits=colnames(y)
results=data.frame()
t=1
for (o in 1:5){
# o=1
tst_set=CrossV$CrossValidation_list[[o]]
X_trn=(X[-tst_set,])
X_tst=(X[tst_set,])
y_trn=(y[-tst_set,])
y_tst=(y[tst_set,])

y_trn[,1]=to_categorical(y_trn[,1], 3)
y_tst[,1]=to_categorical(y_tst[,1], 3)

##################Inner cross-validation#########################
X_trII=X_trn
y_trII=y_trn
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#####a) Grid search using the tuning_run() function of tfruns
package########
runs.sp<-tuning_run("Code_Tuning_With_Flags_MT_Mixed.R",runs_dir

= '_tuningE1',
flags=list(dropout1= c(0,0.05),

units = c(56,97),
activation1=("relu"),
batchsize1=c(30),
Epoch1=c(1000),
learning_rate=c(0.01),
val_split=c(0.10)),sample=1,confirm =FALSE,echo =F)

runs.sp[,23:27]

###b) Decreasing order of prediction performance of each combination of
the grid
runs=runs.sp[order(runs.sp$metric_val_loss , decreasing = T), ]

####c) Selecting the best combination of hyperparameters ####
pos_opt=dim(runs)[1]
opt_runs=runs[pos_opt,]

####d) Renaming the optimal hyperparametes
Drop_O=opt_runs$flag_dropout1
Epoch_O=opt_runs$epochs_completed
Units_O=opt_runs$flag_units
activation_O=opt_runs$flag_activation1
batchsize_O=opt_runs$flag_batchsize1
lr_O=opt_runs$flag_learning_rate

###########Refitting the model with the optimal values################
### add covariates
input <- layer_input(shape=dim(X_trn)[2],name="covars")

### add hidden layers
base_model <- input %>%
layer_dense(units =Units_O, activation=activation_O) %>%
layer_dropout(rate = Drop_O) %>%
layer_dense(units =Units_O, activation=activation_O) %>%
layer_dropout(rate = Drop_O) %>%
layer_dense(units =Units_O, activation=activation_O) %>%
layer_dropout(rate = Drop_O)

# add output 1
yhat1 <- base_model %>%
layer_dense(units =3,activation="softmax", name="response_1")

# add output 2
yhat2 <- base_model %>%
layer_dense(units = 1, activation="exponential",name="response_2")
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# add output 3
yhat3 <- base_model %>%
layer_dense(units = 1, name="response_3")

# add output 4
yhat4 <- base_model %>%
layer_dense(units = 1, activation="sigmoid", name="response_4")

# build multi-output model
model <- keras_model(input,list(response_1=yhat1,response_2=yhat2,

response_3=yhat3,response_4=yhat4)) %>%
compile(optimizer =optimizer_adam(lr=lr_O),

loss=list(response_1="categorical_crossentropy",
response_2="mse",response_3="mse",
response_4="binary_crossentropy"),

metrics=list(response_1="accuracy",response_2="mse",
response_3="mse",response_4="accuracy"),

loss_weights=c(response_1=1,response_2=1,response_3=1,
response_4=1))

print_dot_callback <- callback_lambda(
on_epoch_end = function(epoch, logs) {
if (epoch %% 20 == 0) cat("\n")
cat(".")

})
early_stop <- callback_early_stopping(monitor = c("val_loss"),

mode='min', patience =50)
#,early_stop

# fitting the model
model_fit <- model %>%
fit(x=X_trn,

y=list(response_1=y_trn[,1],response_2=y_trn[,2],
response_3=y_trn[,3],response_4=y_trn[,4]),

epochs=Epoch_O,
batch_size =batchsize_O,
verbose=0, callbacks = list(print_dot_callback))

# predict values for test set
Yhat<-predict(model,X_tst)%>%
data.frame()%>%
setNames(colnames(y_trn))

YP=matrix(NA,ncol=ncol(y),nrow=nrow(Yhat))
head(Yhat)
P_T1=(apply(data.matrix(Yhat[,1:3]),1,which.max)-1)
P_T4=ifelse(c(Yhat[,6])>0.5,1,0)
YP[,1]=P_T1
YP[,2]=c(Yhat[,4])
YP[,3]=c(Yhat[,5])
YP[,4]=P_T4
head(YP)
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results<-rbind(results, data.frame(Position=tst_set,
Environment=CrossV$Environments[tst_set],
Partition=o,
Units=Units_O,
Epochs=Epoch_O,
Observed=round(y[tst_set,], digits), #$response,

digits),
Predicted=round(YP, digits)))

cat("CV=",o,"\n")
}
results
nt=4

Pred_all_traits=data.frame()
for (i in 1:nt){
#i=1
Names_Traits
pos_i_obs=5+i
pos_i_pred=9+i
results_i=results[,c(1:5,pos_i_obs,pos_i_pred)]
results_i$Trait=Names_Traits[i]
Names_results_i=colnames(results_i)
colnames(results_i)=c(Names_results_i

[1:5],"Observed","Predicted","Trait")

Pred_Summary=summary.BMTMECV(results=results_i, information =
'compact', digits = 4)
Pred_Summary
Pred_all_traits=rbind(Pred_all_traits,data.frame

(Trait=Names_Traits[i],Pred_Summary))
}
Pred_all_traits
Res_Sum=Pred_all_traits[,-c(3:5)]
Res_Sum
write.csv(Res_Sum,file="Multi-trait-predictions_Mixed5.csv")
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