
Chapter 1
General Elements of Genomic Selection
and Statistical Learning

1.1 Data as a Powerful Weapon

Thanks to advances in digital technologies like electronic devices and networks, it is
possible to automatize and digitalize many jobs, processes, and services, which are
generating huge quantities of data. These “big data” are transmitted, collected,
aggregated, and analyzed to deliver deep insights into processes and human behav-
ior. For this reason, data are called the new oil, since “data are to this century what oil
was for the last century”—that is, a driver for change, growth, and success. While
statistical and machine learning algorithms extract information from raw data,
information can be used to create knowledge, knowledge leads to understanding,
and understanding leads to wisdom (Sejnowski 2018). We have the tools and
expertise to collect data from diverse sources and in any format, which is the
cornerstone of a modern data strategy that can unleash the power of artificial
intelligence. Every single day we are creating around 2.5 quintillion bytes of data
(McKinsey Global Institute 2016). This means that almost 90% of the data in the
world has been generated over the last 2 years. This unprecedented capacity to
generate data has increased connectivity and global data flows through numerous
sources like tweets, YouTube, blogs, sensors, internet, Google, emails, pictures, etc.
For example, Google processes more than 40,000 searches every second (and 3.5
billion searches per day), 456,000 tweets are sent, and 4,146,600 YouTube videos
are watched per minute, and every minute, 154,200 Skype calls are made, 156 mil-
lion emails are sent, 16 million text messages are written, etc. In other words, the
amount of data is becoming bigger and bigger (big data) day by day in terms of
volume, velocity, variety, veracity, and “value.”

The nature of international trade is being radically transformed by global data
flows, which are creating new opportunities for businesses to participate in the global
economy. The following are some ways that these data flows are transforming
international trade: (a) businesses can use the internet (i.e., digital platforms) to
export goods; (b) services can be purchased and consumed online; (c) data collection
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and analysis are allowing new services (often also provided online) to add value to
exported goods; and (d) global data flows underpin global value chains, creating new
opportunities for participation.

According to estimates, by 2020, 15–20% of the gross domestic product (GDP)
of countries all over the world will be based on data flows. Companies that adopt big
data practices are expected to increase their productivity by 5–10% compared to
companies that do not, and big data practices could add 1.9% to Europe’s GDP
between 2014 and 2020. According to McKinsey Global Institute (2016) estimates,
big data could generate an additional $3 trillion in value every year in some
industries. Of this, $1.3 trillion would benefit the United States. Although these
benefits do not directly affect the GDP or people’s personal income, they indirectly
help to improve the quality of life.

But once we have collected a large amount of data, the next question is: how to
make sense of it? A lot of businesses and people are collecting data, but few are
extracting useful knowledge from them. As mentioned above, nowadays there have
been significant advances for measuring and collecting data; however, obtaining
knowledge from (making sense of) these collected data is still very hard and
challenging, since there are few people in the market with the expertise and training
needed to extract knowledge from huge amounts of data. For this reason, to make
sense of data, new disciplines were recently created, such as data science (the
commercial name of statistics), business intelligence and analytics, that use a
combination of statistics, computing, machine learning, and business, among other
domains, to analyze and discover useful patterns to improve the decision-making
process. In general, these tools help to (1) rationalize decisions and the decision-
making process, (2) minimize errors and deal with a range of scenarios, (3) get a
better understanding of the situation at hand (due to the availability of historical
data), (4) assess alternative solutions (based on key performance indicators), and
(5) map them against the best possible outcome (benchmarking), which helps make
decision-making more agile. For this reason, data analysis has been called “the
sexiest job of the twenty-first century.” For example, big data jobs in the United
States are estimated to be 500,000. But the McKinsey Global Institute (2016)
estimates that there is still a shortage of between 140,000 and 190,000 workers
with a background in statistics, computer engineering, and other applied fields, and
that 1.5 million managers are needed to evaluate and make decisions on big data.
This means that 50–60% of the required staff was lacking in the year 2018 in the
United States alone (Dean 2018).

Some areas and cases where statistical and machine learning techniques have
been successfully applied to create knowledge and make sense of data are given
next. For example, in astronomy these techniques have been used for the classifica-
tion of exoplanets using thousands of images taken of these celestial bodies. Banks
use them to decide if a client will be granted credit or not, using as predictors many
socioeconomic variables they ask of clients. Banks also use them to detect credit
card fraud. On the internet, they are used to classify emails as spam or ham (not
spam) based on previous emails and the text they contain. In genomic selection, they
are used to predict grain yield (or another trait) of non-phenotyped plants using
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information, including thousands of markers and environmental data. In Google,
they are used for recommending books, movies, products, etc., using previous data
on the characteristics (age, gender, location, etc.) of the people who have used these
services. They are also used in self-driving cars, that is, cars capable of sensing their
environment and moving with little or no human input, based on thousands of
images and information from sensors that perceive their surroundings. These exam-
ples give more evidence that the appropriate use of data is a powerful weapon for
getting knowledge of the target population.

However, as is true of any new technology, this data-related technology can be
used against society. One example is the Facebook–Cambridge Analytica data
scandal that was a major political scandal in early 2018 when it was revealed that
Cambridge Analytica had harvested personal data from the Facebook profiles of
millions of people without their consent and used them for political purposes. This
scandal was described as a watershed moment in the public understanding of
personal data and precipitated a massive fall in Facebook’s stock price and calls
for tighter regulation of tech companies’ use of data. For these reasons, some experts
believe that governments have a responsibility to create and enforce rules on data
privacy, since data are a powerful weapon, and weapons should be controlled, and
because privacy is a fundamental human right. All these are very important to avoid
the weaponization of data against people and society.

To take advantage of the massive data collected in Genomic Selection (GS) and
many other domains, it is really important to train people in statistical machine
learning methods and related areas to perform precise prediction, extract useful
knowledge, and find hidden data patterns. This means that experts in statistical
machine learning methods should be able to identify the statistical or machine
learning method that is most relevant to a given problem, since there is no universal
method that works well for all data sets, cleans the original data, implements these
methods in statistical machine learning software, and interprets the output of statis-
tical machine learning methods correctly to translate the big data collected into
insights and operational value quickly and accurately.

1.2 Genomic Selection

Plant breeding is a key scientific area for increasing the food production required to
feed the people of our planet. The key step in plant breeding is selection, and
conventional breeding is based on phenotypic selection. Breeders choose good
offspring using their experience and the observed phenotypes of crops, so as to
achieve genetic improvement of target traits (Wang et al. 2018). Thanks to this area
(and related areas of science), the genetic gain nowadays has reached a near-linear
increase of 1% in grain yield yearly (Oury et al. 2012; Fischer et al. 2014). However,
a linear increase of at least 2% is needed to cope with the 2% yearly increase in the
world population, which relies heavily on wheat products as a source of food (FAO
2011). For this reason, genomic selection (GS) is now being implemented in many
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plant breeding programs around the world. GS consists of genotyping (markers) and
phenotyping individuals in the reference (training) population and, with the help of
statistical machine learning models, predicting the phenotypes or breeding values of
the candidates for selection in the testing (evaluation) population that were only
genotyped. GS is revolutionizing plant breeding because it is not limited to traits
determined by a few major genes and allows using a statistical machine learning
model to establish the associations between markers and phenotypes and also to
make predictions of non-phenotyped individuals that help make a more comprehen-
sive and reliable selection of candidate individuals. In this way, it is essential for
accelerating genetic progress in crop breeding (Montesinos-López et al. 2019).

1.2.1 Concepts of Genomic Selection

The development of different molecular marker systems that started in the 1980s
drastically increased the total number of polymorphic markers available to breeders
and molecular biologists in general. The single nucleotide polymorphism (SNP) that
has been intensively used in QTL discovery is perhaps the most popular high-
throughput genotyping system (Crossa et al. 2017). Initially, by applying marker-
assisted selection (MAS), molecular markers were integrated with traditional phe-
notypic selection. In the context of simple traits, MAS consists of selecting individ-
uals with QTL-associated markers with major effects; markers not significantly
associated with a trait are not used (Crossa et al. 2017). However, after many
attempts to improve complex quantitative traits by using QTL-associated markers,
there is not enough evidence that this method really can be helpful in practical
breeding programs due to the difficulty of finding the same QTL across multiple
environments (due to QTL � environment interaction) or in different genetic
backgrounds (Bernardo 2016). Due to this difficulty of the MAS approach, in the
early 2000s, an approach called association mapping appeared with the purpose of
overcoming the insufficient power of linkage analysis, thus facilitating the detection
of marker–trait associations in non-biparental populations and fine-mapping chro-
mosome segments with high recombination rates (Crossa et al. 2017). However,
even the fine-mapping approach was unable to increase the power to detect rare
variants that may be associated with economically important traits.

For this reason, Meuwissen et al. (2001) proposed the GS methodology (that was
initially used in animal science), which is different from association mapping and
QTL analysis, since GS simultaneously uses all the molecular markers available in a
training data set for building a prediction model; then, with the output of the trained
model, predictions are performed for new candidate individuals not included in the
training data set, but only if genotypic information is available for those candidate
individuals. This means that the goal of GS is to predict breeding and/or genetic
values. Because GS is implemented in a two-stage process, to successfully imple-
ment it, the data must be divided into a training (TRN) and a testing (TST) set, as can
be observed in Fig. 1.1. The training set is used in the first stage, while the testing set
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is used in the second stage. The main characteristics of the training set are (a) it
combines molecular (independent variables) and phenotypic (dependent variables)
data and (b) it contains enough observations (lines) and predictors (molecular data)
to be able to train a statistical machine learning model with high generalized power
(able to predict data not used in the training process) to predict new lines. The main
characteristic of the testing set is that it only contains genotypic data (markers) for a
sample of observations (lines) and the goal is to predict the phenotypic or breeding
values of lines that have been genotyped but not phenotyped.

The two basic populations in a GS program are shown in Fig. 1.1: the training
(TRN) data whose genotype and phenotype are known and the testing (TST) data
whose phenotypic values are to be predicted using their genotypic information. GS
substitutes phenotyping for a few selection cycles. Some advantages of GS over
traditional (phenotypic) selection are that it: (a) reduces costs, in part by saving the
resources required for extensive phenotyping, (b) saves time needed for variety
development by reducing the cycle length, (c) has the ability to substantially increase
the selection intensity, thus providing scenarios for capturing greater gain per unit
time, (d) makes it possible to select traits that are very difficult to measure, and
(e) can improve the accuracy of the selection process. Of course, successful imple-
mentation of GS depends strongly on the quality of the training and testing sets.

GS has great potential for quickly improving complex traits with low heritability,
as well as significantly reducing the cost of line and hybrid development. Certainly,
GS could also be employed for simple traits with higher heritability than complex
traits, and high genomic prediction (GP) accuracy is expected. Application of GS in

Fig. 1.1 Schematic representation of TRN and TST sets required for implementing GS (Crossa
et al. 2017)

1.2 Genomic Selection 5



plant breeding could be limited by some of the following factors: (i) genotyping cost,
(ii) unclear guidelines about where in the breeding program GS could be efficiently
applied (Crossa et al. 2017), (iii) insufficient number of lines or animals in the
reference (training) population, (iv) insufficient number of SNPs in the panels, and
(v) the reference population contains very heterogeneous individuals (plants or
animals).

1.2.2 Why Is Statistical Machine Learning a Key Element
of Genomic Selection?

GS is challenging and very interesting because it aims to improve crop productivity
to satisfy humankind’s need for food. Addressing the current challenges to increase
crop productivity by improving the genetic makeup of plants and avoiding plant
diseases is not new, but it is of paramount importance today to be able to increase
crop productivity around the world without the need to increase the arable land.
Statistical machine learning methods can help improve GS methodology, since they
are able to make computers learn patterns that could be used for analysis, interpre-
tation, prediction, and decision-making. These methods learn the relationships
between the predictors and the target output using statistical and mathematical
models that are implemented using computational tools to be able to predict
(or explain) one or more dependent variables based on one or more independent
variables in an efficient manner. However, to do this successfully, many real-world
problems are only approximated using the statistical machine learning tools, by
evaluating probabilistic distributions, and the decisions made using these models are
supported by indicators like confidence intervals. However, the creation of models
using probability distributions and indicators for evaluating prediction
(or association) performance is a field of statistical machine learning, which is a
branch of artificial intelligence, understanding as statistical machine learning the
application of statistical methods to identify patterns in data using computers, but
giving computers the ability to learn without being explicitly programmed (Samuel
1959). However, artificial intelligence is the field of science that creates machines or
devices that can mimic intelligent behaviors.

As mentioned above, statistical machine learning allows learning the relationship
between two types of information that are assumed to be related. Then one part of the
information (input or independent variables) can be used to predict the information
lacking (output or dependent variables) in the other using the learned relationship.
The information we want to predict is defined as the response variable ( y), while the
information we use as input are the predictor variables (X). Thanks to the continuous
reduction in the cost of genotyping, GS nowadays is implemented in many crops
around the world, which has caused the accumulation of large amounts of biological
data that can be used for prediction of non-phenotyped plants and animals. However,
GS implementation is still challenging, since the quality of the data (phenotypic and
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genotypic) needs to be improved. Many times the genotypic information available is
not enough to make high-quality predictions of the target trait, since the information
available has a lot of noise. Also, since there is no universal best prediction model
that can be used under all circumstances, a good understanding of statistical machine
learning models is required to increase the efficiency of the selection process of the
best candidate individuals with GS early in time. This is very important because one
of the key components of genomic selection is the use of statistical machine learning
models for the prediction of non-phenotyped individuals. For this reason, statistical
machine learning tools have the power to help increase the potential of GS if more
powerful statistical machine learning methods are developed, if the existing methods
can deal with larger data sets, and if these methods can be automatized to perform the
prediction process with only a limited knowledge of the subject.

For these reasons, statistical machine learning tools promise considerable benefits
for GS and agriculture through their contribution to productivity growth and gain in
the genetic makeup of plants and animals without the need to increase the arable
land. At the same time, with the help of statistical machine learning tools, GS is
deeply impacting the traditional way of selecting candidate individuals in plant and
animal breeding. Since GS can reduce by at least half the time needed to select
candidate individuals, it has been implemented in many crops around the globe and
is radically changing the traditional way of developing new varieties and animals all
over the world.

Although GS is not the dominant paradigm for developing new plants and
animals, it has the potential to transform the way they are developed due to the
following facts: (a) the massive amounts of data being generated in plant breeding
programs are now available to train the statistical machine learning methods, (b) new
technologies such as sensors, satellite technology, and robotics allow scientists to
generate not only genomic data but also phenotypic data that can capture a lot of
environmental and phenotypic information that can be used in the modeling process
to increase the performance of statistical machine learning methods, (c) increased
computational power now allows complex statistical machine learning models with
larger data sets to be implemented in less time, and (d) there is now greater
availability of user-friendly statistical machine learning software for implementing
a great variety of statistical machine learning models.

However, there are still limitations for the successful implementation of GS with
the help of statistical machine learning methods because much human effort is
required to collect a good training data set for supervised learning. Although
nowadays it is possible to measure a lot of independent variables (markers, envi-
ronmental variables) due to the fact that the training set should be measured in real-
world experiments conducted in different environments and locations, this is expen-
sive and subject to nature’s random variability. This means that GS data are
hampered by issues such as multicollinearity among markers (adjacent markers are
highly correlated) and by a problem that consists of having a small number of
observations and a large number of independent variables (commonly known as
“large p small n”), which poses a statistical challenge. For this reason, obtaining data
sets that are large and comprehensive enough to be used for training—for example,
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creating or obtaining sufficient plant trial data to predict yield, plant height, grain
quality, and presence or absence of disease outcomes more accurately—is also often
challenging.

Another challenge is that of building statistical machine learning techniques that
are able to generalize the unseen data, since statistical machine learning methods
continue to have difficulty carrying their experiences from one set of circumstances
to another. This is known as transfer learning, and it focuses on storing knowledge
gained when training a particular machine learning algorithm and then using this
stored knowledge for solving another related problem. In other words, transfer
learning is still very challenging and occurs when a statistical machine learning
model is trained to accomplish a certain task and then quickly apply that learning
exercise to a different activity.

Another disadvantage is that even though today there are many software pro-
grams for implementing statistical machine learning tools for GS, the computational
resources required for learning from moderate to large data sets are very expensive
and most of the time it is not possible to implement them in commonly used
computers, since servers with many cores and considerable computational resources
are required. However, the rapid increase in computational power will change this
situation in the coming years.

1.3 Modeling Basics

1.3.1 What Is a Statistical Machine Learning Model?

A model is a simplified description, using mathematical tools, of the processes we
think that give rise to the observations in a set of data. A model is deterministic if it
explains (completely) the dependent variables based on the independent ones. In
many real-world scenarios, this is not possible. Instead, statistical (or stochastic)
models try to approximate exact solutions by evaluating probabilistic distributions.
For this reason, a statistical model is expressed by an equation composed of a
systematic (deterministic) and a random part (Stroup 2012) as given in the next
equation:

yi ¼ f xið Þ þ Ei, for i ¼ 1, 2, . . . , n, ð1:1Þ

where yi represents the response variable in individual i and f(xi) is the systematic
part of the model because it is determined by the explanatory variables (predictors).
For these reasons, the systematic part of the statistical learning model is also called
the deterministic part of the model, which gives rise to an unknown mathematical
function ( f ) of xi ¼ xi1, . . ., xip not subject to random variability. Ei is the ith random
element (error term) which is independent of xi and has mean zero. The Ei term tells
us that observations are assumed to vary at random about their mean, and it also
defines the uniqueness of each individual. In theory (at least in some philosophical
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domains), if we know the mechanism that gives rise to the uniqueness of each
individual, we can write a completely deterministic model. However, this is rarely
possible because we use probability distributions to characterize the observations
measured in the individuals. Most of the time, the error term (Ei) is assumed to follow
a normal distribution with mean zero and variance σ2 (Stroup 2012).

As given in Eq. (1.1), the f function that gives rise to the systematic part of a
statistical learning model is not restricted to a unique input variable, but can be a
function of many, or even thousands, of input variables. In general, the set of
approaches for estimating f is called statistical learning (James et al. 2013). Also,
the functions that f can take are very broad due to the huge variety of phenomena we
want to predict and due to the fact that there is no universally superior f that can be
used for all processes. For this reason, to be able to perform good predictions out of
sample data, many times we need to fit many models and then choose the one most
likely to succeed with the help of cross-validation techniques. However, due to the
fact that models are only a simplified picture of the true complex process that gives
rise to the data at hand, many times it is very hard to find a good candidate model.
For this reason, statistical machine learning provides a catalog of different models
and algorithms from which we try to find the one that best fits our data, since there is
no universally best model and because there is evidence that a set of assumptions that
works well in one domain may work poorly in another—this is called the no free
lunch theorem by Wolpert (1996). All these are in agreement with the famous
aphorism, “all models are wrong, but some are useful,” attributed to the British
statistician George Box (October 18, 1919–March 28, 2013) who first mentioned
this aphorism in his paper “Science and Statistics” published in the Journal of the
American Statistical Association (Box 1976). As a result of the no free lunch
theorem, we need to evaluate many models, algorithms, and sets of hyperparameters
to find the best model in terms of prediction performance, speed of implementation,
and degree of complexity. This book is concerned precisely with the appropriate
combination of data, models, and algorithms needed to reach the best possible
prediction performance.

1.3.2 The Two Cultures of Model Building: Prediction Versus
Inference

The term “two cultures” in statistical model building was coined by Breiman (2001)
to explain the difference between the two goals for estimating f in Eq. (1.1):
prediction and inference. These definitions are provided in order to clarify the
distinct scientific goals that follow inference and empirical predictions, respectively.
A clear understanding and distinction between these two approaches is essential for
the progress of scientific knowledge. Inference and predictive modeling reflect the
process of using data and statistical (or data mining) methods for inferring or
predicting, respectively. The term modeling is intentionally chosen over model to
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highlight the entire process involved, from goal definition, study design, and data
collection to scientific use (Breiman 2001).

Prediction
The prediction approach can be defined as the process of applying a statistical
machine learning model or algorithm to data for the purpose of predicting new or
future observations. For example, in plant breeding a set of inputs (marker informa-
tion) and the outcome Y (disease resistance: yes or no) are available for some
individuals, but for others only marker information is available. In this case, marker
information can be used as a predictor and the disease status should be used as the
response variable. When scientists are interested in predicting new plants not used to
train the model, they simply want an accurate model to predict the response using the
predictors. However, when scientists are interested in understanding the relationship
between each individual predictor (marker) and the response variable, what they
really want is a model for inference. Another example is when forest scientists are
interested in developing models to predict the number of fire hotspots from an
accumulated fuel dryness index, by vegetation type and region. In this context, it
is obvious that scientists are interested in future predictions to improve decision-
making in forest fire management. Another example is when an agro-industrial
engineer is interested in developing an automated system for classifying mango
species based on hundreds of mango images taken with digital cameras, mobile
phones, etc. Here again it is clear that the best approach to build this system should
be based on prediction modeling since the objective is the prediction of new mango
species, not any of those used for training the model.

Inference
Many areas of science are devoted mainly to testing causal theories. Under this
framework, scientists are interested in testing the validity of a theoretical causal
relationship between the causal variables (X; underlying factors) and the measured
variable (Y) using statistical machine learning models and collected data to test the
causal hypotheses. The type of statistical machine learning models used for testing
causal hypotheses are usually association-based models applied to observational
data (Shmueli 2012). For example, regression models are one type of association-
based models used for testing causal hypotheses. This practice is justified by the
theory itself, which assumes the causality. In this context, the role of the theory is
very strong and the reliance on data and statistical modeling is strictly through the
lens of the theoretical model. The theory–data relationship varies in different fields.
While the social sciences are very theory-heavy, in areas such as bioinformatics and
natural language processing, the emphasis on a causal theory is much weaker.
Hence, given this reality, Shmueli (2012) defined explaining as causal explanation
and explanatory modeling as the use of statistical models for testing causal
explanations.

Next, we provide some great examples used for testing causal hypotheses: for
example, between 1911 and 1912, Austrian physicist Victor Hess made a series of
ten balloon ascents to study why metal plates tend to charge spontaneously. At that
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time, it was assumed that the cause was the presence, in small quantities, of
radioactive materials in rocks. If this is the case, as one moves away from the
ground, the tendency of metal plates to be charged should decrease. Hess brought
with him three electroscopes, which are instruments composed basically of two
metal plates enclosed in a glass sphere. When charging the plates, they separated one
from the other. Hess observed that from a certain height, the three electroscopes
tended to be charged to a greater extent. On August 7, 1912, together with a flight
commander and a meteorologist, he made a 6-hour flight in which he ascended to
more than 5000 m in height (Schuster 2014). Hess published his results in 1913,
where he presented his conclusion that the cause of the charge of the electroscopes
was radiation of cosmic origin that penetrates the atmosphere from above. The
discovery of this cosmic radiation, for which Hess received the Nobel Prize in
1936, opened a new window for the study of the universe (Schuster 2014). It was
in 1925 when American physicist Robert Andrew Millikan introduced the term
“cosmic rays” to describe this radiation, and what it was made of was still unknown.
In this example, it is clear that the goal of the analysis was association.

No one suspected that tobacco was a cause of lung tumors until the final decade of
the nineteenth century. In 1898, Hermann Rottmann (a medical student) in
Würzburg proposed that tobacco dust—not smoke—might be causing the elevated
incidence of lung tumors among German tobacco workers. This was a mistake
corrected by Adler (1912) who proposed that smoking might be to blame for the
growing incidence of pulmonary tumors. Lung cancer was still a very rare disease;
so rare, in fact, that medical professors, when confronted with a case, sometimes told
their students they might never see another. However, in the 1920s, surgeons were
already faced with a greater incidence of lung cancer, and they began to get confused
about its possible causes. In general, smoking was blamed, along with asphalt dust
from recently paved roads, industrial air pollution, and the latent effects of poisonous
gas exposure during World War I or the global influenza pandemic of 1918–1919.
These and many other theories were presented as possible explanations for the
increase in lung cancer, until evidence from multiple research sources made it
clear that tobacco was the main culprit (Proctor 2012). Here again it is clear that
the goal of the analysis should be related to inference.

1.3.3 Types of Statistical Machine Learning Models
and Model Effects

1.3.3.1 Types of Statistical Machine Learning Models

Statistical machine learning models are most commonly classified as parametric
models, semiparametric models, and nonparametric models. Next, we define each
type of statistical machine learning models and provide examples that help to
understand each one.
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Parametric Model It is a type of statistical machine learning model in which all the
predictors take predetermined forms with the response. Linear models (e.g., multiple
regression: y ¼ β1x1 + β2x2 + β3x3 + E), generalized linear models [Poisson regres-
sion: E(y| x) ¼ exp (β1x1 + β2x2 + β3x3)], and nonlinear models (nonlinear regres-
sion: y ¼ β1x1 þ β2x2 þ β3e

β4x3 þ E) are examples of parametric statistical machine
learning models because we know the function that describes the relationship
between the response and the explanatory variables. These models are very easy to
interpret but very inflexible.

Nonparametric Model It is a type of statistical machine learning model in which
none of the predictors take predetermined forms with the response but are
constructed according to information derived from data. Two common statistical
machine learning models are kernel regression and smoothing spline. Kernel regres-
sion estimates the conditional expectation of y at a given value x using a weighted

filter on the data (y ¼ m(x) + E, with bm x0ð Þ ¼
Pn
i¼1

K
xi�x0

hð ÞyiPn
i¼1

K
xi�x0

hð Þ
), where h is the bandwidth

(this estimator of m(x) is called the Nadaraya–Watson (NW) kernel estimator) and
K is a kernel function. While smoothing splines minimize the sum of squared
residuals plus a term which penalizes the roughness of the fit

[y ¼ β0 þ β1xþ β2x
2 þ 3x3 þPJ

j¼1β1j x� θ j

� �3
þ , where (x � θj)+ ¼ x � θj,

x > θj and 0 otherwise], this model in brackets is a spline of degree 3 which is
represented as a power series. These models are very difficult to interpret but are very
flexible. Nonparametric statistical machine learning models differ from parametric
models in that the shape of the functional relationships between the response
(dependent) and the explanatory (independent) variables are not predetermined but
can be adjusted to capture unusual or unexpected features of the data. Nonparametric
statistical machine learning models can reduce modeling bias (the difference
between estimated and true values) by imposing no specific model structure other
than certain smoothness assumptions, and therefore they are particularly useful when
we have little information or we want to be flexible about the underlying statistical
machine learning model. In general, nonparametric statistical machine learning
models are very flexible and are better at fitting the data than parametric statistical
machine learning models. However, these models require larger samples than
parametric statistical machine learning models because the data must supply the
model structure as well as the model estimates.

Semiparametric Model It is a statistical machine learning model in which part of
the predictors do not take predetermined forms while the other part takes known
forms with the response. Some examples are (a) y ¼ β1x1 + β2x2 + β3x3 + m(x) + E
and (b) y ¼ exp (β1x1 + β2x2 + β3x3) + m(x) + E. This means that semiparametric
models are a mixture of parametric and nonparametric models.

When the relationship between the response and explanatory variables is known,
parametric statistical machine learning models should be used. If the relationship is
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unknown and nonlinear, nonparametric statistical machine learning models should
be used. When we know the relationship between the response and part of the
explanatory variables, but do not know the relationship between the response and
the other part of the explanatory variables, we should use semiparametric statistical
machine learning models. Any application area that uses statistical machine learning
analysis could potentially benefit from semi/nonparametric regression.

1.3.3.2 Model Effects

Many statistical machine learning models are expressed as models that incorporate
fixed effects, which are parameters associated with an entire population or with
certain levels of experimental factors of interest. Other models are expressed as
random effects, where individual experimental units are drawn at random from a
population, while a model with fixed effects and random effects is called a mixed-
effects model (Pinheiro and Bates 2000).

According to Milliken and Johnson (2009), a factor is a random effect if its levels
consist of a random sample of levels from a population of possible levels, while a
factor is a fixed effect if its levels are selected by a nonrandom process or if its levels
consist of the entire population of possible levels.

Mixed-effects models, also called multilevel models in the social science com-
munity (education, psychology, etc.), are an extension of regression models that
allow for the incorporation of random effects; they are better suited to describe
relationships between a response variable and some covariates in data that are
grouped according to one or more classification factors. Examples of such grouped
data include longitudinal data, repeated measures data, multilevel data, and block
designs. One example of grouped data are animals that belong to the same herd; for
example, assume we have 10 herds with 50 animals (observations) in each. By
associating to observations (animals) sharing the same level of a classification factor
(herd) a common random effect, mixed-effects models parsimoniously represent the
covariance structure induced by the grouping of data (Pinheiro and Bates 2000).
Most of the early work on mixed models was motivated by the animal science
community driven by the need to incorporate heritabilities and genetic correlations
in parsimonious fashion.

Next we provide an example to illustrate how to build these types of models.
Assume that five environments were chosen at random from an agroecological area
of Mexico. Then in each area, three replicates of a new variety (NV) of maize were
tested to measure grain yield (GY) in tons per hectare. The data collected from this
experiment are shown in Fig. 1.2.

Since the only factor that changes among the observations measured in this
experiment is the environment, they are arranged in a one-way classification because
they are classified according to a single characteristic: the environments in which the
observations were made (Pinheiro and Bates 2000). The data structure is very simple
since each row represents one observation for which the environment and GY were
recorded, as can be seen in Table 1.1.
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The breeder who conducted this experiment was only interested in the average
GY for a typical environment, that is, the expected GY, the variation in average GY
among environments (between-environment variability), and the variation in the
observed GY for a single environment (within-environment variability). Figure 1.2
shows that there is considerable variability in the mean GY for different
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Fig. 1.2 Grain yield (GY) in tons per hectare by environment

Table 1.1 Grain yield
(GY) measured in five envi-
ronments (Env) with three
repetitions (Rep) in each
environment

Env Rep GY

1 1 7.476

1 2 7.298

1 3 7.414

2 1 7.117

2 2 6.878

2 3 7.004

3 1 6.136

3 2 6.340

3 3 6.288

4 1 5.600

4 2 5.564

4 3 5.466

5 1 5.780

5 2 5.948

5 3 5.881
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environments and that the within-environment variability is smaller than the
between-environment variability.

Data from a one-way classification like the one given in Table 1.1 can be analyzed
under both approaches with fixed effects or random effects. The decision on which
approach to use depends basically on the goal of the study, since if the goal is to
make inferences about the population for which these environments (levels) were
drawn, then the random effect approach is the best option, but if the goal is to make
inferences about the particular environments (levels) selected in this experiment,
then the fixed-effects approach should be preferred.

Assuming a simple model that ignores the environment

GYij ¼ β þ eij, i ¼ 1, ::, 5, j ¼ 1, 2, 3, ð1:2Þ

where GYij denotes the GY of environment i in replication j, and β is the mean GY
across the population of environments sampled with eij�N(0, σ2). Using this model
we estimate bβ ¼ 6:4127 and the residual standard error is equal to bσ ¼ 0:7197. By
fitting this model and observing the boxplot of the residuals (Fig. 1.3a) versus the
environments, we can see that these residuals are very large and different for each
environment, which can be attributed to the fact that this model ignores the envi-
ronmental effect and was only fitted as a single-mean model, which implies that the
environmental effects are included in the residuals. For this reason, we then incor-
porated the environmental effect in the model as a separate effect. This fixed-effects
model is equal to a one-way classification model as
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Fig. 1.3 Box plot of residuals by environments of the fit (a) of a single-mean model, (b) of a fixed-
effects model with environment effect, and (c) of a mixed-effects model with environment effect
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GYij ¼ βi þ eij, i ¼ 1, ::, 5, j ¼ 1, 2, 3, ð1:3Þ

where βi represents the fixed effect of environment i, while the other terms in the
model are the same as those in Eq. (1.2). By fitting this model using least squares, we
now have a beta coefficient for each environment equal to: bβ1 ¼ 7:396, bβ2 ¼6.999,bβ3 ¼ 6:255, bβ4 ¼ 5:543, bβ5 ¼ 5:869, while the residual standard error is equal tobσ ¼0.095. Figure 1.3b shows that the residuals are considerably lower and more
centered around zero than in the first fitted model (single-mean model), which can be
observed in the residual standard error that is 7.47 times smaller. Therefore, we have
evidence that the model given in Eq. (1.3) successfully accounted for the environ-
mental effects. Two drawbacks of the model with fixed effects given in Eq. (1.3) are
that it is unable to provide an estimate of the between-environments variability and
that the number of parameters in the model increases linearly with the number of
environments. Fortunately, the random effects model circumvents these problems by
treating the environmental effects as random variations around a population mean.
Next we reparameterize model (1.3) as a random effects model. We write

GYij ¼ β þ βi �β
� �þ eij, ð1:4Þ

where β ¼ P5
i¼1βi=5 represents the average grain yield for the environments in the

experiment. The random effects model replaces β with the mean grain yield across
the population of environments and replaces the deviations βi �β with the random
variables whose distribution is to be estimated. If βi �β is not assumed random the
model belongs to fixed effects. Therefore, the random effects version of the model
given in Eq. (1.4) is equal to

GYij ¼ β þ bi þ eij, ð1:5Þ

where β is the mean grain yield across the population of environments, bi is a random
variable representing the deviation from the population mean of the grain yield for
the ith environment, and eij is defined as before. To complete this statistical machine
learning model, we must specify the distribution of the random variables bi, with
i ¼ 1, . . ., 5. It is common to assume that bi is normally distributed with mean zero
and variance between environments σ2b, that is, bi is distributed N 0, σ2b

�
). It is also

common to assume independence between the two random effects bi and eij. Models
with at least two sources of random variation are also called hierarchical models or
multilevel models (Pinheiro and Bates 2000). The covariance between observations
in the same environment is σ2b, which corresponds to a correlation of σ2b= σ2b þ σ2

� �
.

The parameters of the mixed model given in Eq. (1.5) are β, σ2b, and σ2, and
irrespective of the number of environments in the experiment, the required number
of parameters will always be three, although the random effects, bi, behave like
parameters. We will, however, require bbi predictions of these random effects, given
the observed data at hand. Note that when fitting this model (Eq. 1.5) for the
environmental data, the parameter estimates were β ¼ 6.413, σ2b ¼ 0:594, and bσ ¼
0.095. It is evident that there was no improvement in terms of fitting since the plot of
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residuals versus environment looks the same as the last fitted model (Fig. 1.3c) and
the estimated residual standard error was the same as that under the fixed-effects
model, which includes the effects of environment in the predictor, but as mentioned
above, many times requires considerably fewer parameter estimates than a fixed-
effects model.

1.4 Matrix Algebra Review

In this section, we provide the basic elements of linear algebra that are key to
understanding the machinery behind the process of building statistical machine
learning algorithms.

A matrix is a rectangular arrangement of numbers whose elements can be
identified by the row and column in which they are located. For example, matrix
E, consisting of three rows and five columns, can be represented as follows:

E ¼
E11 E12 E13 E14 E15

E21 E22 E23 E24 E25

E31 E32 E33 E34 E35

2
64

3
75

For example, by replacing the matrix with numbers, we have

E ¼
7 9 4 3 6

9 5 9 8 11

3 2 11 9 6

2
64

3
75

where the element Eij is called the ijth element of the matrix; the first subscript refers
to the row where the element is located and the second subscript refers to the column,
for example, E32 ¼ 2. The order of an array is the number of rows and columns.
Therefore, a matrix with r rows and c columns has an order of r� c. Matrix E has an
order of 3 � 5 and is denoted as E3 � 5.

In R, the way to establish an array is through the command matrix(...) with
parameters of this function given by matrix (data ¼ NA, nrow ¼ 3, ncol ¼ 5,
byrow ¼ FALSE) where data is the data for the matrix, nrow the number of rows,
ncol the number of columns, and byrow is the way in which you will accommodate
the data in the matrix by row or column. The data entered by default are FALSE, so
they will fill the matrix by columns, while if you specified TRUE, they will fill the
matrix by rows.

For example, to build matrix E in R, use the following R script:

E ¼
7 9 4 3 6

9 5 9 8 11

3 2 11 9 6

2
64

3
75
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E <- matrix(data= c(7,9,4,3,6,9,5,9,8,11,3,2,11,9,6), nrow = 3, ncol = 5, byrow = TRUE)
E

[,1] [,2] [,3] [,4] [,5]
[1,]    7    9    4    3    6
[2,]    9    5    9    8   11
[3,]    3    2   11    9    6

To access all the values of a row, for example, the first row of matrix E, you can
use:

E[1,]

[1] 7 9 4 3 6

While, to access all the values of a column, for example, the first column of matrix
E, you can use:

E[,1]

[1] 7 9 3

To access a specific element, for example, row 3, column 2 of matrix E, you can
specify:

E[3,2]

[1] 2

A matrix consisting of a single row is called a vector. For example, a vector that
has five elements can be represented as

e ¼ 8 10 5 4 7½ �

Here only a subscript is needed to specify the position of an element within the
vector. Therefore, the ith element in vector e refers to the element in the ith column.
For example, e3 ¼ 5.

To create a vector in R, we use the c (...) command that receives the data,
separated by a comma. For example, the vector named e can be created using the
following command:

e <- c(8,10,5,4,7)
e
[1] 8 10 5 4 7
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To access a specific index, you specify the value between brackets, for example,
index 3 of vector e.

e[3]

[1] 5

Next we provide definitions and examples of some common types of matrices.
We start with a square matrix, which is a matrix with the same number of rows and
columns. A matrix B of order 3 � 3 is shown below.

B ¼
3 5 0

5 1 5

�2 �3 7

2
64

3
75

The ij elements in the square matrix where i equals j are called diagonal elements.
The rest of the elements are known as elements that are outside the diagonal, so in
this example, the elements of the diagonal of matrix B are 3, 1, and 7.

To create this type of matrix in R, simply use the matrix (...) command and
specify the dimensions in the ncol and nrow parameters, as in the following
command:

B <- matrix(data = c(3,5,-2,5,1,-3,0,5,7), nrow = 3, ncol = 3)
B

[,1] [,2] [,3]
[1,]    3 5    0
[2,]    5    1    5
[3,]   -2   -3    7

Next we define a diagonal matrix as a square matrix that has zeros in all the
elements that are outside the diagonal. For example, by extracting the diagonal
elements of the above matrix (B), we can form the following diagonal matrix:

D ¼
3 0 0

0 1 0

0 0 7

2
64

3
75

Another special matrix is when the elements of the diagonal are 1; it is called an
identity matrix, and is usually denoted as Ir, and r denotes the order of the matrix.

In R there is the command diag (x¼ 1, ncol, nrow) that works to create a diagonal
matrix, but if you want to extract the diagonal of the B matrix, it can be extracted in
the following way:
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diag(B)
[1] 3 1 7

If we want to create an identity matrix, it is enough to specify the size of the
matrix. For example, to create an identity matrix of order 5� 5, the command to use
would be the following:

I <- diag(5)
I

[,1] [,2] [,3] [,4] [,5]
[1,]    1    0    0  0    0
[2,]    0    1    0    0    0
[3,]    0    0    1    0    0
[4,]    0    0    0    1    0
[5,]    0    0    0    0    1

A square matrix with all the elements above the diagonal equal to 0 is known as a
lower triangular matrix; when all the lower elements of the diagonal are 0, it is
known as an upper triangular matrix. In the example given below, matrix
F illustrates a lower triangular matrix and matrix G illustrates an upper triangular
matrix.

F ¼
8 0 0

10 7 0

4 3 12

2
64

3
75; G ¼

8 10 5

0 6 10

0 0 11

2
64

3
75

The lower triangular matrix can be extracted using the following commands:

F <- matrix(data = c(8,10,4,0,7,3,0,0,12), nrow = 3, ncol = 3)
F=F[upper.tri(F)] <- 0
F

[,1] [,2] [,3]
[1,]     8   0    0
[2,]   10    7    0
[3,]    4    3   12

The upper triangular matrix can be extracted using the following commands:

20 1 General Elements of Genomic Selection and Statistical Learning



G <- matrix(data = c(8,10,5,0,6,10,0,0,11), nrow = 3, ncol = 3, ,byrow=T)
G[lower.tri(G)] <- 0
G

[,1] [,2] [,3]
[1,]    8   10    5
[2,]    0    6   10
[3,]    0    0   11

Next we will illustrate some basic matrix operations. We start by illustrating the
transpose of matrix E, commonly indicated as E0 or ET; in this type of matrix, the
elements ji are the ij elements of the original matrix. That is, E0

ji ¼ Eij , where the
columns of E0 are the rows of E, and the rows of E0 are the columns of E. Below we
provide matrix H and its transpose H0.

H ¼
4 6

6 2

0 �1

2
64

3
75; H0 ¼ 4 6 0

6 2 �1

� �

To obtain the transpose of a matrix in H, the command t (...) is used:

H <- matrix(data = c(4,6,0,6,2,-1), nrow = 3, 2)
H

[,1] [,2]
[1,]    4    6
[2,]    6    2
[3,]    0   -1

t(H)
[1,]    4    6    0
[2,]    6    2   -1  

Two matrices can be added or subtracted only if they have the same number of
rows and columns. To demonstrate the adding process, we use the following
matrices:

J ¼ 15 15

25 35

� �
; L ¼ 55 65

75 85

� �
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We form matrixM as the sum of matrices J and L, so thatMij¼ Jij + Lij, and their
sum is the following:

M ¼ 15þ 55 15þ 65

25þ 75 35þ 85

� �
¼ 70 80

100 120

� �

Matrix N is reached by subtracting matrices J and L, so Nij ¼ Jij � Lij, and the
subtraction is the following:

N ¼ 15� 55 15� 65

25� 75 35� 85

� �
¼ �40 �50

�50 �50

� �

To do the addition and subtraction of matrices in R, it is enough to use the
addition or subtraction operator and fulfill the requirement that both matrices have
the same dimensions. Next we reproduce the two previous addition and subtraction
examples using the commands in R:

J <- matrix(data= c(15,15,25,35), ncol = 2, byrow = TRUE)
L <- matrix(data= c(55,65,75,85), ncol = 2, byrow = TRUE)

M<- J+L
M

[,1] [,2]
[1,]   70   80
[2,]  100  120

While the subtraction of matrices is:

N<- J-L
N

[,1]  [,2]
[1,]  -40  -50
[2,]  -50  -50

Two matrices can be multiplied only if the number of columns in the first matrix
equals the number of rows in the second. The resulting matrix will be equal to the
number of rows in the first matrix and the number of columns in the second. Since
O ¼ PQ, then

O ¼
Xm

j¼1

Xn

i¼1

Xz

k¼1
PikQkj,
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where m is the number of columns in matrix Q, n the number of rows in matrix P,
and z the number of rows in Q and number of columns in P. To demonstrate the
above, we have

P ¼
6 8 10

5 6 8

4 6 9

2
64

3
75;Q ¼

3 5

2 2

9 8

2
64

3
75

Then S is obtained as

S11 ¼ 6� 3þ 8� 2þ 10� 9 ¼ 124

S21 ¼ 5� 3þ 6� 2þ 8� 9 ¼ 99

S31 ¼ 4� 3þ 6� 2þ 9� 9 ¼ 105

S12 ¼ 6� 5þ 8� 2þ 10� 8 ¼ 126

S22 ¼ 5� 5þ 6� 2þ 8� 8 ¼ 101

S32 ¼ 4� 5þ 6� 2þ 9� 8 ¼ 104

Therefore,

S ¼
124 126

99 101

105 104

2
64

3
75

Note that S is of order 3 � 2, where 3 represents the number of rows in P and
2 equals the number of columns in Q.

In order to multiply matrices in R, it is necessary to use the operator %*%
between the two matrices, in addition to meeting the requirements mentioned above.

P <- matrix(data=c(6,5,4,8,6,6,10,8,9), ncol=3)
Q <- matrix(data=c(3,2,9,5,2,8), ncol=2)

S <- P%*%Q
S

[,1]    [,2]
[1,]  124  126
[2,]   99  101
[3,]  105  104

The inverse of a matrix usually is denoted as R�1, and when it is multiplied by the
original matrix, it results in an identity matrix, that is, R�1R ¼ I, where I is the
identity matrix. Only square matrices are invertible.
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If it is a diagonal matrix, its inverse can be calculated simply in the following
way:

R ¼
7 0 0

0 8 0

0 0 6

2
64

3
75

Then

R�1 ¼

1
7

0 0

0
1
8

0

0 0
1
6

2
666664

3
777775

For a square matrix of 2�2, its inverse can be calculated by finding the determi-
nant, which is the difference between the product of the two elements of the
diagonals and the product of the two elements outside the diagonal
(R11R22 � R12R21). Then the position of the elements of the diagonals is reversed
by multiplying the elements outside the diagonal by�1 and dividing all the elements
by the determinant.

R ¼ 4 2

1 6

� �

Then

R�1 ¼ 1
4� 6ð Þ � 1� 2ð Þ

6 �2

�1 4

� �
¼ 0:2727 �0:0909

�0:0455 0:1818

� �

To obtain the inverse in R, the solve(...) command is the function used to perform
this process, as shown in the following example, where the inverse of the matrix R is
obtained.

R <- matrix(data = c(4, 1, 2, 6), ncol = 2)
R

[,1]   [,2]
[1,]    4  2
[2,]    1    6

24 1 General Elements of Genomic Selection and Statistical Learning



solve(R)
[,1]        [,2]

[1,]  0.2727 -0.0909
[2,] -0.0455  0.1818

1.5 Statistical Data Types

1.5.1 Data Types

To use statistical learning methods correctly, it is very important to understand the
classification of the types of data that exist. This is of paramount importance because
data are the input to all statistical machine learning methods and because the data
type determines the appropriate and valid analysis to be implemented; in addition,
each statistical machine learning method is specific to a certain type of data. In
general, data are most commonly classified as quantitative (numerical) or qualitative
(categorical) (Fig. 1.4).

By quantitative (numerical) data, we understand that the result of the observation
or the result of a measurement is a number. They are classified as

(a) Discrete. The variable can only have point values and no values in between, that
is, the variable can only have a certain set of possible values and represent items
that can be counted because they only have isolated numerical values. Examples:
number of household members, number of surgical interventions, number of
reported cases of a certain pathology, number of accidents per month, etc.
Examples in the context of plant breeding are panicle number per plant, seed
number per panicle, weed count per plot, number of infected spikelets per spike,
etc. Also, discrete values are called as count responses and those models based
on Poisson and negative binomial distribution are appropriate for this type of
responses.

Fig. 1.4 Types of data
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(b) Continuous. They are usually the result of a measurement that is expressed in
particular units, and values are measured based on a zero point and are treated as
real numbers. There are many types of mathematical operations that can be
performed on this type of data. The measurements can theoretically have an
infinite set of possible values within a range and they do not need transformation.
In practice, the possible values of the variable are limited by the accuracy of the
measurement method or by the recording mode. Examples: plant height, age,
weight, grain yield, pH, blood cholesterol level, etc. The distinction between
discrete and continuous data is important for deciding which statistical learning
method to use for the analysis, since there are methods that assume that the data
are continuous. Consider, for example, the age variable. Age is continuous, but if
it is recorded in years, it turns out to be discrete. In studies with adults, in which
the age ranges from 20 to 70 years, for example, there are no problems in treating
age as continuous, since the number of possible values is large. But in the case of
preschool children, if the age is recorded in years, it should be treated as discrete,
while if it is recorded in months, it can be treated as continuous.

Similarly, the variable number of beats per minute is a discrete variable, but it is
treated as continuous due to the large number of possible values. Numerical data
(discrete or continuous) can be transformed into categorical and be treated as such.
Although this is correct, it is not necessarily efficient because information is lost
during the categorization process. It is always preferable to record the numerical
value of the measurement, since this makes it possible to (a) analyze the variable as
numerical because statistical analysis is simpler and more powerful and (b) form new
categories using different criteria. Only in special cases it is preferable to record
numerical data as categorical, for example, when the measurement is known to be
imprecise (number of cigarettes per day, number of cups of coffee per week).

Categorical variables result from registering the presence of an attribute. The
categories of a qualitative variable must be clearly defined during the design stage of
the research and must be mutually exclusive and exhaustive. This means that each
observation unit must be classified unambiguously in one, and only one, of the
possible categories and that there is a category to classify each individual. In this
sense, it is important to take into account all possibilities when constructing cate-
gorical variables, including a category such as “Do not know/No answer,” or “Not
Registered,” or “Other,” which ensures that all the observed individuals will be
classified based on the criteria that define the variable. Categorical data are also
classified as (a) dichotomous, (b) nominal, and (c) ordinal.

(a) Two categories (dichotomous). The individual or observation unit can be
assigned to only one of two categories. In general, it is about the presence or
absence of the attribute and it is advantageous to assign code 0 to the absence and
1 to the presence.

26 1 General Elements of Genomic Selection and Statistical Learning



(b) Examples: (1) resistance—no resistance, (2) disease—no disease, (3) tall—not
tall, and (4) red color—no red color. It should be noted that examples 1 and
2 definitely cover all categories, while 3 and 4 are simplifications of more
complex categories. In 3 and 4 it was necessary to establish a cutoff criterion
to assemble a categorical variable from a numerical variable.

(c) More than two categories. When there are more than two categories, data can be
nominal or ordinal. In nominal categories, there is no obvious order between the
categories. These types of data values are distinct symbols, and these values
serve as labels. The term “nominal” comes from the latin word for “name.”
Nominal attributes or labels have no relation to one another, nor is any order
implied (Patterson and Gibson 2017). Some examples are religion: Catholicism,
Islam, Judaism, etc.; race type: African, American, European, Asian, other; type
of species; location; plant color; etc. In ordinal data, there is an obvious order
between categories. Ordinal values have rank, giving us a notion of order but no
concept of distance between the values. We can compare ordinal values with one
another, but mathematical operations don’t make sense in the context of these
values (Patterson and Gibson 2017). Some examples are

1. Drought resistance: no resistance/low resistance/medium resistance/high
resistance/total resistance

2. Disease severity: absent/mild/moderate/severe
3. Temperature of a process: hot/mild/cool
4. Social class: lower/middle/upper

Even when ordinal data can be coded as numbers as in the case of stages of
drought resistance from 1 to 5 (1 ¼ no resistance, 2 ¼ low resistance, 3 ¼ medium
resistance, 4 ¼ high resistance, 5 ¼ total resistance), we cannot say that a plant in
stage 4 has a drought resistance twice as strong as the resistance of a plant in stage
2, nor that the difference between stages 1 and 2 is the same as between stages 3 and
4. In contrast, when considering the age of a person, 40 years is twice 20 and a
difference of 1 year is the same across the entire range of values. Therefore, we need
to be aware that in ordinal data the difference between categories does not make
sense.

Ordinal traits are very common in plant breeding programs for measuring disease
incidence and severity and for sensory evaluation, such as the perceived quality of a
product (e.g., taste, smell, color, decay) and plant development (e.g., developmental
stages, maturity). These types of data are often partially subjective since the scale
indicates only relative order and no absolute amounts; therefore, the intervals
between successive categories may not be the same (Simko and Piepho 2011).

For this reason, we must be careful when dealing with qualitative variables,
especially when they have been coded numerically, since they cannot be analyzed
as numbers but must be analyzed as categories. It is incorrect to present, for example,
the average stage of drought resistance in a group of plants.

In practice, scales are used to define degrees of a symptom or a disease, such as
1, 2, 3, 4, and 5. For this reason, it is important to operationally define this type of
variables and study their reliability in order to ensure that two observers placed in
front of the same plant will classify it in the same category.
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1.5.2 Multivariate Data Types

Practitioners and researchers in all applied disciplines often measure several vari-
ables in each observation, subject, unit, or experimental unit. That is, all variables are
simultaneously measured in the same observation. Multivariate data are very com-
mon in all disciplines due to the need and facility for data collection in most fields.
These variables can consist of only one type of data (for example, plant height
measured using a continuous scale on each plant 12 times every 15 days) or a
mixture of data types, for example, measuring, on each plant, four different traits:
grain yield (on a continuous scale), disease resistance (on an ordinal scale), flower
color (nominal scale), and days to flowering (discrete or count). Table 1.2 provides
other examples of multivariate data measured using only one scale or a mixture of
scales.

It is important to point out that here all measurements are done simultaneously in
each observation. For this reason, they are classified as multivariate type of data and
include data that will be used as dependent variables or independent variables in the
process of training the statistical machine learning algorithms that will be
studied here.

1.6 Types of Learning

The three most common ways of learning in statistical machine learning are
(a) supervised learning, (b) unsupervised learning, and (c) semi-supervised learning.
The three methods are explained below.

Table 1.2 Examples of multivariate data

Units Variables Types of data

Plant Several measurements of plant height on a single
plant in time

All continuous

Animal Measurement of three animal traits (average daily
weight gain, muscularity, and calving)

Mixture of continuous and
ordinal

Students Grades in mathematics, physics, chemistry, biology All continuous

People Income, type of residence, gender, educational
level, occupation

Mixture of nominal, ordinal,
and continuous

Wheat
plant

Measurement of four traits: grain yield, panicle
number per plant, drought resistance, and type of
wheat (common or durum)

Mixture of continuous, discrete,
ordinal, and nominal

Country Several measurements of school performance using
the programme for international student assessment
(PISA) test

Exam scores continuous in
mathematics, reading and
science
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1.6.1 Definition and Examples of Supervised Learning

Supervised learning can be defined as the process of learning a function that maps an
input to an output based on teaching the statistical machine learning method with
input–output pairs. The training data consist of pairs of objects (usually vectors): one
component of the pair is the input data (predictors ¼ explanatory variable ¼ input)
and the other, the desired results (response variable ¼ dependent variable ¼ output).
The output of the function can be a numerical value (as in regression problems) or a
class label (as in multinomial regression). The goal of supervised learning is to learn
a function that, given a sample of data and desired outputs, best approximates the
relationship between input and output observable in the data. This function should be
capable of predicting the value corresponding to any valid input object after having
seen a series of examples of training data. Under optimal conditions, the algorithm
correctly determines the class labels for unseen instances. This implies a learning
algorithm that is able to generalize from the training data to unseen situations in a
“reasonable” way.

Suppose you’re teaching your child to distinguish between corn and tomato
(Fig. 1.5). First you show him (her) a picture of an ear of corn and a picture of a
tomato. In the learning process, your child must keep in mind that if the color is
yellow and the shape is not round, then it is probably an ear of corn, but if the color is
red and the shape is round, then it is probably a tomato. This is how your child learns.
Then you can show a third picture and ask your child to classify the vegetable as
either ear of corn or tomato. When you show the third picture, he (she) will very
likely identify if the vegetable is ear of corn or tomato, due to the fact that we have
already labeled the two pictures into categories, so your child knows what is an ear of

Fig. 1.5 Supervised learning process for teaching a child to distinguish tomato from corn
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corn and what is a tomato. This example illustrates how supervised learning works
using ground truth data that consist of having prior knowledge of what the output
values of our samples should be.

To give another example, imagine that you’re training a seal to applaud (Fig. 1.6).
The goal is to make the seal applaud when you raise your right hand. The training
process consists of presenting the seal with enough examples by raising your right
hand and rewarding it with some great candy whenever it applauds when it sees your
right hand is raised. In the same way, the seal may be “punished” if it applauds
whenever your right hand is not raised, by doing something unpleasant for the seal
but not harmful. Supervision involves stimulating the seal to respond to positive
samples by rewarding it, and not to respond to negative samples by “punishing”
it. Hopefully, the seal then obtains a built-in feeling (hypothesis) for applauding
whenever you raise your hand right. The process is evaluated by presenting the seal
with another person raising his/her right hand, someone who did not take part in the
training process and who is unknown to the seal. However, based on its built-in
feeling for what a person with his/her raised right hand looks like, the seal should be
able to transfer this knowledge to the present person. It must then consider and
decide whether or not it wants to signal the presence of a right hand raised by
applauding.

Next we provide some real examples. In the first example, a scientist has
thousands of molecules and information about which ones are drugs and he trains

Fig. 1.6 Supervised learning process for teaching a seal to applaud
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a statistical machine learning model to determine whether a new molecule is also a
drug. In the context of plant breeding, a scientist collects hundreds of markers
(genetic information) and thousands of images of hundreds of plants. For this sample
of plants, he also measures their phenotype (grain yield) because he wants to
implement a statistical machine learning algorithm to estimate (predict) the grain
yield of new plants not used in the training process. Another example is in environ-
mental science, where scientists use historical data (as when it’s sunny and the
temperature is higher, or when it’s cloudy and the humidity is higher, etc.) to train a
statistical machine learning model to predict the weather for a given future time.

In a more mathematical way, under supervised learning, we usually have access
to a set of p predictor (input) variables X1, X2, . . ., Xpmeasured in n observations, and
a response variable (output) Y also measured in those same n observations (Fig. 1.7).
The goal is to predict Y using a function of X1, X2, . . ., Xp, that is, we use an algorithm
to learn the mapping function from the input to the output Y ¼ f(X1,X2, . . .,Xp), and
we expect to estimate the mapping function so well that when we have new input
data, we can predict the output variables for those data. The term supervised learning
was coined because the learning process of any statistical machine learning method
from the training dataset can be thought of as a teacher supervising the learning
process. We know the correct outputs (response variables), the algorithm iteratively
makes predictions on the training data and is corrected by the teacher. Learning stops
when the statistical machine learning algorithm achieves an acceptable level of
performance.

Fig. 1.7 Diagram illustrating a supervised learning process where there are inputs (X) and response
variables (y) for each observation
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1.6.2 Definitions and Examples of Unsupervised Learning

Unsupervised learning is when you only have input (predictors ¼ independent
variables) data (X) and no previous knowledge of corresponding labeled outputs
or response variables (Fig. 1.8). So its goal is to deduce the natural structure present
within a set of data points. In other words, to extract the underlying structure or
distribution in the data in order to learn more about the data, that is, the network uses
training patterns to discover emerging collective properties and organizes the data
into clusters. In unsupervised learning (unlike supervised learning), there is no
correct answer (output ¼ response variable ¼ dependent variable) and there is no
teacher. For this reason, we are not interested in prediction since we do not have an
associated response variable Y. Statistical machine learning algorithms under
unsupervised learning are left to their own devices to discover and present the
interesting structure in the data. However, there is no way to determine if our
work is correct since we don’t know the right answer because the job was done
without supervision. Unsupervised learning problems can be divided into clustering
and association problems.

Clustering: A clustering problem is when you want to discover the inherent
groupings in the data, such as grouping maize hybrids by their genetic architecture.
Another example is grouping people according to their consumption behaviors. But
in both cases we cannot check if the classifications are correct since we don’t know
the true grouping of each individual.

Fig. 1.8 Diagram illustrating an unsupervised learning process where there are only inputs (X), but
no response variables (y) for each observation
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Association: An association rule learning problem is when you want to discover
rules that describe large portions of your data, such as people who buy X also tend to
buy Y.

Some popular examples of unsupervised learning algorithms are

(a) Principal component analysis
(b) Multidimensional scaling for grouping
(c) A k-means algorithm for clustering problems
(d) An a priori algorithm for association rule learning problems

1.6.3 Definition and Examples of Semi-Supervised Learning

Semi-supervised learning problems are those that have a large amount of input data
(X) available but only some of the data are labeled (Y). For this reason, these
problems are positioned between supervised and unsupervised learning. A good
example is plant species classification using thousands of images where only some
of the images are labeled (e.g., species 1, species 2, species 3, etc.) and the majority
are unlabeled. Another example is the classification of exoplanets (exoplanets are
planets that are outside our solar system) also using thousands of photos where only
a small fraction of the photos is labeled (four types of exoplanets). Many real-world
problems in the context of statistical machine learning belong to this type of learning
process. This is because it is more expensive and time-consuming to use labeled data
than unlabeled data since many times this requires having access to domain experts,
whereas it is cheap and easy to collect and store unlabeled data.
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