
On Algebra of Program Correctness
and Incorrectness
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Abstract. Variants of Kleene algebra have been used to provide foun-
dations of reasoning about programs, for instance by representing Hoare
Logic (HL) in algebra. That work has generally emphasised program cor-
rectness, i.e., proving the absence of bugs. Recently, Incorrectness Logic
(IL) has been advanced as a formalism for the dual problem: proving the
presence of bugs. IL is intended to underpin the use of logic in program
testing and static bug finding. Here, we use a Kleene algebra with dia-
mond operators and countable joins of tests, which embeds IL, and which
also is complete for reasoning about the image of the embedding. Next
to embedding IL, the algebra is able to embed HL, and allows making
connections between IL and HL specifications. In this sense, it unifies
correctness and incorrectness reasoning in one formalism.

1 Introduction

1.1 Context

My basic mistake was to set up proof in opposition to testing, where in fact
both of them are valuable and mutually supportive ways of accumulating
evidence of the correctness and serviceability of programs. T. Hoare [17]

Beginning with fundamental work of Kozen and others, variants of Kleene
algebra have been used as foundations for program logics. Typically, a translation
is given from a logic, such as Hoare Logic (HL, [16]), into the algebra [22].
This approach has been extended to other program logics such as modal [11]
and concurrency logics [18]. Work has generally emphasised correctness, i.e.,
proving the absence of bugs. While that is a worthy ideal, significant programs
are often not wholly free of bugs and may never be as they continue evolving. So
much attention and energy is spent in engineering practice on testing and other
methods of finding specific bugs, rather than proving that none can ever occur.

Despite the practical importance of bug finding, theoretical research on rea-
soning about programs has concentrated to a much greater extent on correctness.
Testing and verification are sometimes even seen in opposition to one another.
The third author described his regret for this in the quotation above, from a
retrospective in 2009, 40 years after the appearance of Hoare’s Logic. In recent
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326 B. Möller et al.

years he and the second author have turned attention to theories of testing and
static analysis as ways of showing program incorrectness, and the second author
introduced Incorrectness Logic (IL) as a dual formalism to HL, oriented to prov-
ing the presence of bugs rather than their absence [25]. It was shown in [25] that
IL can be used to represent a variety of bug finding approaches, ranging from
traditional testing, to symbolic execution [8], to compositional analyses which
use logic to summarise the effect of a program component [14].

The present paper deals with representing IL in Kleene algebra. We don’t
repeat the motivations for IL or the examples illustrating it, and instead refer the
reader to the developments in [25,26]. Our interest here is to extend Kleene alge-
bra’s successful treatment of program correctness to encompass incorrectness as
well. The first aim is to pinpoint the algebraic properties needed to represent IL;
secondly we want to represent both IL and HL in the same algebra. This second
aim replaces the opposition described in the quotation at the beginning with
theoretical unification. We are building on work on the unifying role of Kleene
algebra in connecting denotational and operational semantics and program log-
ics for correctness (e.g., [18,19]); we are adding incorrectness to the picture here.
Note that both HL and IL deal with partial correctness, not with termination.
Other limitations of our results are mentioned at the end of the paper.

1.2 Technical Approach

IL uses an under-approximate triple [25,27], dual to Hoare’s triple:

(IL) [[ p ]] c [[ q ]] ⇔df q ⊆ sp(c, p) (HL) {p} c {q} ⇔df q ⊇ sp(c, p)

Here, sp(c, p) is the strongest postcondition: in a binary relation model, c is a
relation, p a set of states, and sp(c, p) the image of the restriction of c to p. In
the sequel we abbreviate pre/postcondition by just pre/post. The Hoare triple
{p} c {q} stipulates that the post q be a superset, an over-approximation, of
the states reachable via c from p, while the under-approximate triple [[ p ]] c [[ q ]]
requires that q be a subset, an under-approximation.

The terminology over/under-approximation comes from automatic program
analysis. The method of Floyd [13] associates an assertion describing a superset
of the reachable states with each program point, and this corresponds to Hoare
triples (or more generally to abstract interpretations [10]). Over-approximation
may lead to false positives (bug claims that are not true) in program analysis,
but not false negatives (missed bugs). Dually, an analysis computing an under-
approximation at each program point avoids false positives but may suffer from
false negatives. Under-approximate analysis is performed by testing and symbolic
bug-finding tools. In such an analysis there would be an under-approximate triple
relating the program start state with any given program point.

It is well known that sp(c, p) can be seen as a backwards diamond modality
in the sense of dynamic logic. So, it is natural to employ a Modal Kleene Algebra
[12] to represent the under-approximate triple algebraically. This has the pleasant
consequence that the Hoare triple, which is usually defined in Kleene algebra
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without recourse to sp(c, p), enjoys a description that can be connected at once
to its under-approximate cousin in a way that formalises aspects of testing and
verification as mutually supportive ways of obtaining evidence (see Theorem
4.1 and Theorem 4.5). In addition to connecting over- and under-approximate
triples, we also study a version of IL as in [25] in which assertions are embedded
as statements within programs in such a way that their violation signals an error.

We start from one of Kozen’s variants of Kleene algebra [21], an idempotent
semiring (equivalently, an ordered monoid with all finite joins, cf. Definition 2.1)
with an additional operator ∗ satisfying two unfolding and two induction axioms.
Modal Kleene Algebra enriches that with diamond operators [12]. This indeed
gives us a way to interpret all IL proof rules except an infinitary proof prin-
ciple which is used to obtain a completeness theorem for under-approximate
reasoning:

∀n ∈ N : [[ pn ]] a [[ pn+1 ]]

[[ p0 ]] a∗ [[
∨

n∈N

pn ]] (Iteration)

To model this rule we need countable joins of tests, where a test is a com-
plemented algebra element below the unit of sequential composition. We show
that Kleene Algebra with diamonds and countable joins of tests is sound and
(relatively) complete for under-approximate triples. A version of this infinitary
principle is actually sound in Hoare logic but usually not stated because loop
invariants provide a complete reasoning technique for over-approximation. Loop
invariants are not complete for under-approximation.

Our technical development begins in Sect. 2 with the algebraic framework,
viz. Modal Kleene algebra with countable suprema of tests (CTC algebras).
In Sect. 3 we prove soundness and completeness of a proof system for under-
approximate triples over CTC algebras. Section 4 connects under-approximation
to incorrectness by showing how under-approximate triples can be used to dis-
prove Hoare triples, as well as treating a language with embedded assertions with
error and ok information. In Sect. 5 we use the algebra to present another vari-
ant of incorrectness reasoning based on backwards rather than forwards under-
approximation. Section 6 concludes.

2 Modal Kleene Algebra

Throughout the paper we refer to a particular example, the “relation model”,
which is an algebra where the carrier A = P (S×S) is the set of binary relations
on a set S. a · b denotes the composition in diagrammatic order (sequential
composition) of relations, + denotes their union, 1 is the identity relation, 0
the empty relation, and a∗ is the reflexive-transitive closure of a. If p ⊆ S then
sp(a, p) is the image {s′ | ∃s ∈ p : (s, s′) ∈ a}. The relation model is a Boolean
quantale (details below) where a∗ is a certain least fixed-point. Some Boolean
quantales, like the algebras of relations and of sets of graph paths, satisfy the
algebraic properties we need to interpret IL, thus giving us a wide range of
models, but we seek to identify lesser structure that supports interpretation.



328 B. Möller et al.

2.1 Idempotent Semirings, Tests and Diamonds

Definition 2.1
1. An idempotent semiring, briefly I-semiring, is a structure (A,+, ·, 0, 1) such

that (A,+, 0) is a commutative monoid with idempotent addition, (A, ·, 1) is
a monoid, multiplication distributes from both sides over addition and 0 is
an annihilator for multiplication, that is, 0 · a = 0 = a · 0 for all a ∈ A.

2. Every I-semiring can be partially ordered by setting a ≤ b ⇔df a + b = b.
Then + and · are isotone w.r.t. ≤ and 0 is the least element. This makes A
an upper semilattice with join operator + and least element 0. If existing,
the least upper bound (lub) of a subset B ⊆ A is denoted by 	B. With this,
a + b = 	{a, b}. For uniformity we write

⊔

i<k

ai instead of Σ
i<k

ai.

Definition 2.2. A test in an I-semiring is an element p that has a complement
¬p relative to the multiplicative unit 1, namely p+¬p = 1 and p·¬p = 0 = ¬p·p.
The set of all tests in A is denoted by test(A). A is called countably test-complete
(CTC) if every countable subset of test(A) has a lub. (This is equivalent to
stipulating that every countable chain of tests has a lub.)

The complement ¬p is unique when it exists. The composition p · q of tests
represents logical conjunction and is the meet of p and q. Symmetrically, p + q
represents disjunction and is the join. Finally, p ≤ q represents implication.

Using tests we can axiomatise the modal operators diamond and box. For IL
we only need the backward diamond. For a ∈ A and p ∈ test(A) the test 〈〈a||p
characterises the set of states that can be reached from p in a single a-step, i.e.,
the image of p under a. We use the following axiomatization of diamond.

Definition 2.3. A backward diamond semiring is a structure (A,+, ·, 0, 1, 〈〈 ||)
such that (A,+, ·, 0, 1) is an I-semiring and 〈〈 || : A × test(A) → test(A) is an
operator satisfying the axioms

〈〈a||q ≤ p ⇔ q · a ≤ a · p (bdia1) 〈〈a · b||q = 〈〈b||(〈〈a||p) (bdia2)
The backward box is the De Morgan dual of the diamond: [[a||p =df ¬〈〈a||¬q.

(bdia1) implies that diamond is additive in both arguments, while (bdia2)
stipulates that it is multiplicative in its first argument and hence preserves com-
position. In the relation model the diamond 〈〈a||p corresponds to sp(a, p).

Our presentation uses a direct axiomatisation of backward modalities. An
alternative is to axiomatise a codomain operator � : A → test(A) and then
define 〈〈a||p = (p · a)�. Conversely, one can define codomain in terms of dia-
mond as a� =df 〈〈a||1. Adopting a definition based on Kleene Algebra with
(Co)Domain [12] or based on diamonds is just a presentational choice.

Definition 2.4. A modal semiring is a structure (A,+, ·, 0, 1, 〈〈 ||, 〈〈 ||) such that
(A,+, ·, 0, 1, 〈〈 ||) is a backward diamond semiring and the forward diamond oper-
ator || 〉〉 : A × test(A) → test(A) satisfies the (dual) axiom

||a〉〉q ≤ p ⇔ a · q ≤ p · a (fdia1 )
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The test ||a〉〉q algebraically represents the inverse image of q under a. It has been
shown in [12] (Cor. 5.8) that (bdia1), (bdia2) and (fdia1) imply multiplicativity of
forward diamond, i.e., ||a · b〉〉q = ||a〉〉(||b〉〉p) (fdia2). The forward box is ||a]]p =df

¬||a〉〉¬q; it corresponds to the weakest liberal precondition wlp(a, q).

The following property is fundamental for our completeness results; see [23]
for more details. Moreover, forward diamonds have good other use later.

Lemma 2.5. Assume a modal semiring.
1. We have Galois connections 〈〈a||p ≤ q ⇔ p ≤ ||a]]q and ||a〉〉p ≤ q ⇔ p ≤ [[a||q.
2. As lower adjoints of Galois connections the diamonds preserve all existing

lubs in their second argument.

We discuss some related axiomatisations. The purely relational monotype fac-
tor of [3] coincides with the forward box and wlp. The dynamic negation of [20] in
dynamic relation algebras (reducts of relation algebras) coincides with the com-
plement of domain. In Boolean quantales, the domain operator was defined via
a Galois connection in [5]. Since here we strive for a maximally general algebraic
basis, we have decided for an axiomatisation equivalent to that in [11,12].

2.2 Iteration and Kleene Algebra

Next we represent arbitrary finite iteration by an additional operator ∗ : A → A.

Definition 2.6. An I-semiring with star is called a Kleene algebra if ∗ satisfies

1 + a · a∗ ≤ a∗ 1 + a∗ · a ≤ a∗ (Star Unfold)
b + a · c ≤ c ⇒ a∗ · b ≤ c b + c · a ≤ c ⇒ b · a∗ ≤ c (Star induction)

The following property (by an easy induction on n) is essential for a number
of rules of IL.

Lemma 2.7. In an I-semiring with star and one of the star unfold axioms, the
element a∗ is an upper bound of the sets {an |n ∈ N} and {a≤n |n ∈ N}, where
a≤i =df Σ

j<i
aj.

Lemma 2.8 [12]. In a Kleene algebra with backward diamond one has, without
any further assumptions, the rules

p + 〈〈a||〈〈a∗||p ≤ 〈〈a∗||p (Diamond Star Unfold)
p + 〈〈a||q ≤ q ⇒ 〈〈a∗||p ≤ q . (Diamond Star Induction)

Dual rules hold for the forward diamond.

Definition 2.9. A quantale (e.g. [28]) is an I-semiring in which the order ≤
induces a complete lattice and · preserves arbitrary lubs in both arguments. It
is Boolean if its complete lattice is a Boolean algebra.

Lemma 2.10 [12]. Any Boolean quantale is a CTC Kleene Algebra (cf. Defini-
tion 2.2) and admits pre-diamonds satisfying (bdia1) and (fdia1).
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3 Under-Approximation and Over-Approximation

It is standard that one can encode while programs into Kleene algebra. Given
test p and algebra elements a, b, we can represent while p do a as (p · a)∗ · ¬p,
if p then a else b as p · a + ¬p · b, a; b as a · b and the identity skip as 1. 0 is
equivalent to while true do skip. Throughout this section, by a program we mean
a Kleene algebra element generated from 0, 1 and a set of atomic commands and
arbitrary tests using +, · and ∗. (In the next section we will need to distinguish
programs from algebra when working with expressions that map less directly to
algebra.)

3.1 Under-Approximate Triples

Definition 3.1. We assume a CTC Kleene algebra A with backward diamond.
1. An under-approximate (or IL) triple is a formula [[ p ]] a [[ q ]], where p, q ∈

test(A) and a ∈ A is a program.
2. [[ p ]] a [[ q ]] is valid in A, in signs |= [[ p ]] a [[ q ]], iff q ≤ 〈〈a||p.
3. [[ p ]] a [[ q ]] is provable iff it can be derived using the rules in Fig. 1.

Fig. 1. Proof rules for under-approximation

As in [22] we are dealing with a “propositional” program logic: rules involving
variables are left out. Some of these, such as an axiom for assignment statements

[[ p ]] x := e [[∃x′ : p[x′/x] ∧ x′ = e[x′/x]] ]]

could be covered (in a particular model) by the axiom for atoms in Fig. 1, which
requires that the strongest post be present for each atomic command. Others,
such as the frame rule for variable mutation and substitution rules, would require
additional inference rules.
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An example triple is [[x = 0 ]] (x := x+ 1)∗ [[x ≥ 0 ]], saying that execution of
the loop can result in x taking on any non-negative integer. This property can
be proven using (Iteration) with pn = (n ≥ 0 ∧ x = n). The triple [[x = n ]] x :=
x + 1 [[x = n + 1 ]] used in the premise of the rule shows n decreasing in the
backwards direction (hence the name Backwards Variant for this rule in [25]).
The post can be written as an infinite disjunction, or finitely using a quantifier:
[[x = 0 ]] (x := x+1)∗ [[∃n : n ≥ 0 ∧ x = n ]]. This is where the CTC assumption
has its place; without it such countable disjunctions are not well defined. The
assertion x ≥ 0 is the strongest post, and this pre/post pair actually gives us a
valid Hoare triple as well. But we can shrink the post using (Consequence) to go
below the strongest post, to obtain [[x = 0 ]] (x := x + 1)∗ [[x ≥ 1 ]]: the positive
integers are a valid under-aproximation.

We record this example as loop1() in Fig. 4, where presumes is used for
the pre-assertion in an under-approximate triple, and achieves for the post-
assertion. In a program analysis tool we would not expect the human to specify
the presumes and achieves, or the variant p; they would (hopefully) be inferred.

It can be helpful to contrast these rules with those from the over-approximate
logic HL (see Fig. 3). The rule for divergence has “false” as the post for under-
approximation, where “true” is the post in HL, the choice rule has an ∃ in the
premise where HL has ∀, the consequence rule uses ≤ where over-approximation
uses ≥, and the iterate rule uses a possibly infinite disjunction while for over-
approximation we can use loop invariance with no need for infinitary constructs.

It is worth noting that ≤ of the algebra is used in the proof rules only between
tests (assertions), and not general algebra elements (commands). In program
logic this is done because one expects to have a reasonable way to decide ≤
between tests, by means of a theorem prover or an abstract interpreter, but decid-
ing ≤ between commands has been less common (at least, historically). However,
rules involving ≤ between commands can be handy, especially for metatheory.

Fig. 2. Further Proof Rules for Under-Approximation

One such is the rule (Isotony in Command) from Fig. 2. (In contrast, Hoare
triples are anti-isotone in their command.) Isotony together with (Star Unfold) of
Kleene algebra justifies the three (Unfold) rules (all of which are unsound in HL).
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It turns out that these are what is called in logic admissible rules: if the premises
are derivable from the given rules then so is the conclusion (but there might not
be a single direct derivation from the premises to the conclusion). O’Hearn [25]
included the first and second rules as they allow a direct derivation of a rule for
bounded model checking. De Vries and Koutavas [27] avoided unrolling rules,
and a justification for this decision is a completeness theorem (where all true
triples can be derived, if not all true proof rules).

The two further admissible but non-derivable rules (Full Disjunction) and
(False Post) deal with choice. Note that in the premise of (Full Disjunction) we
use semiring lub (sum), whereas in the conclusion we use meta-conjunction.

Theorem 3.2. (Soundness and Completeness). Assume a modal CTC
semiring with star.
1. With star unfold, the rules in Figs. 1 and 2 are sound (preserve validity).
2. If also star induction holds then the rules in Fig. 1 are complete, i.e., every

valid triple is provable.

Note that these results do not require any form of ∗-continuity.

Proof [Iteration Soundness]. Here is the proof for the iteration rule. First we
show by induction on n that pn ≤ 〈〈a∗||p0 for all n ∈ N.
– For n = 0, by 1 ≤ a∗ with isotony of diamond, p0 = 〈〈1||p0 ≤ 〈〈a∗||p0.
– Assume pn ≤ 〈〈a∗||p0. Then by the rule premise with the definition of under-

approximate triples, the induction hypothesis with isotony of diamond, mul-
tiplicativity of diamond and a · a∗ ≤ a∗ with isotony of diamond:

pn+1 ≤ 〈〈a||pn ≤ 〈〈a||〈〈a∗||p0 = 〈〈a · a∗||p0 ≤ 〈〈a∗||p0
Hence 〈〈a∗||p0 is an upper bound of all the pn and by the definition of a lub we
obtain

∨

n∈N

pn ≤ 〈〈a∗||p0, which is the conclusion of the rule.

The proofs for the other rules are not difficult, and do not use CTC at all. �	
The completeness result (proof overleaf) is sometimes termed “relative” com-

pleteness because it uses a proof theory with potential incomputable elements
that we assume oracles for deciding or writing: in our case ≤ queries and infinite
disjunctions. Also, an assumption that posts 〈〈a||p be expressible is sidestepped
by allowing arbitrary tests instead of those built following a specific syntax.

The completeness argument is standard: first we show that triples for
strongest posts are provable. This, in turn, relies on a characterization of the
strongest post for iteration, which is where induction principles from Kleene
algebra are used.

Lemma 3.3. In a modal CTC Kleene algebra all elements a and tests p satisfy
〈〈a∗||p =

∨

n∈N

〈〈an||p.

Proof (≥). This is immediate from an ≤ a∗ for all n ∈ N (Lemma 2.7), isotony
of diamond and the definition of lubs.
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(≤) We use (Diamond Star Induction) for q =df

∨

n∈N

〈〈an||p. The premise of that

rule is by lattice algebra equivalent to p ≤ q ∧ 〈〈a||q ≤ q. The first conjunct
is true, since p = 〈〈1||p = 〈〈a0||p. For the second conjunct we calculate by the
definition of q, diamond preserving existing lubs (Lm. 2.5.1), multiplicativity of
diamond, laws of powers, lattice algebra and definition of q:

〈〈a||q=〈〈a||(
∨

n∈N

〈〈an||p) =
∨

n∈N

〈〈a||〈〈an||p =
∨

n∈N

〈〈an · a||p =
∨

n∈N

〈〈an+1||p ≤
∨

k∈N

〈〈ak||p =q

�	
Lemma 3.4. In a modal CTC Kleene algebra the triple [[ p ]] a [[ 〈〈a||p ]] is provable.

Proof. By induction on the generation of the program a. For atomic a the claim
holds by the proof rule for atoms.
– For choice, additivity of diamond yields [[ p ]] a + b [[ 〈〈a + b||p ]] ⇔ [[ p ]] a +

b [[ 〈〈a||p + 〈〈b||p ]]. Now, by (Disjunction), (Choice) twice and the induction
hypothesis for a, b:

[[ p ]] a + b [[ 〈〈a||p + 〈〈b||p ]] � [[ p ]] a + b [[ 〈〈a||p ]] ∧ [[ p ]] a + b [[ 〈〈b||p ]]
� [[ p ]] a [[ 〈〈a||p ]] ∧ [[ p ]] b [[ 〈〈b||p ]] � TRUE

– For composition, multiplicativity of diamond yields [[ p ]] a · b [[ 〈〈a · b||p ]] ⇔
[[ p ]] a · b [[ 〈〈b||〈〈a||p ]]. Now, by (Sequencing) and induction hypothesis for a, b:

[[ p ]] a · b [[ 〈〈b||〈〈a||p ]] � [[ p ]] a [[ 〈〈a||p ]] ∧ [[ 〈〈a||p ]] b [[ 〈〈b||〈〈a||p ]] � TRUE

– For iteration, by the induction hypothesis for a, all triples [[ pn ]] a [[ pn+1 ]]
are derivable, since pn+1 = 〈〈a||pn. Therefore, (Iteration) yields the triple
[[ p0 ]] a∗ [[

∨

n∈N

pn ]], which is equivalent to [[ p0 ]] a∗ [[ 〈〈a∗||p0 ]] by Lemma 3.3.

�	
Completeness then follows since from [[ p ]] a [[ 〈〈a||p ]] we can shrink the post

using (Consequence) to obtain that [[ p ]] a [[ q ]] is provable for any q ≤ 〈〈a||p.

3.2 Over-Approximate Triples

We have established that the algebra provides a faithful representation of under-
approximate reasoning. In this section we briefly indicate how the prior strength
of Kleene algebra for correctness (over-approximation) is maintained.

Definition 3.5
1. An over-approximate triple is a formula {p} a {q}, where p, q ∈ test(A) and

a ∈ A is a program.
2. {p} a {q} is valid in A, in signs |= {p} a {q}, just if q ≥ 〈〈a||p.
3. {p} a {q} is provable iff it can be derived using the rules in Fig. 3.
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Theorem 3.6 (Soundness and Completeness) [23]. The proof rules in
Fig. 3 are sound and complete in any modal Kleene algebra.

Fig. 3. Proof Rules for Over-Approximation

Revisiting our earlier example, {x = 0} (x := x + 1)∗ {x ≥ 1} is not valid
but {x = 0} (x := x + 1)∗ {x ≥ −1} is, as can be proven by selecting x ≥
−1 as the loop invariant, together with use of the Consequence rule with the
implication from x = 0 to x ≥ −1. x ≥ −42 is strictly over-approximate, and
[[x = 0 ]] (x := x+1)∗ [[x ≥ −1 ]] can’t be proven because (Consequence) reverses
the implications between tests and the implication from x = 0 to x ≥ −1 is in
the wrong direction for under-approximate reasoning.

In contrast to our result for under-approximation (Theorem 3.2(1)), we do
not need the CTC hypothesis to show soundness here: the iteration rule is based
on loop invariants rather than an infinite disjunction. But, we do need to have
a Kleene algebra requirement for soundness, where the under-approximate case
(Theorem 3.2(1)) does not: star induction implies the over-approximate itera-
tion rule. These differences underline that the under-approximate theory is not
obtained from the over-approximate theory at once by appeal to order duality.

The completeness proof for Theorem 3.6 follows the same pattern as our
earlier completeness result: we establish by generation induction on a that
{p} a {〈〈a||p} is derivable and then apply the rule of consequence. An algebraic
relative completeness result for HL was given already in [23] using forwards dia-
monds, and a proof with backwards diamonds is possible and omitted. (Note
that the under-approximate triple does not admit a backwards predicate trans-
former semantics [25], and that is why we have used backwards diamonds in the
present paper.)

This result extends at once to CTC algebras. We have included it to empha-
sise: in modal CTC Kleene algebras, we have sound and complete representations
of both under-approximate and over-approximate triples, in the same algebra.
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Aside: The Ideal Formulation. We have axiomatised the strongest post via a
backwards diamond. There are other algebraic encodings which avoid modalities,
as in a generalized representation of {b} a {c} as b · a ≤ c, where b and c are not
required to be tests [18]. Here, ≤ judges approximation between entire programs
and not just tests. A similar under-approximate triple is obtained by defining
[[ b ]] a [[ c ]] as b · a ≥ c. Let’s call this the generalized under-approximate triple.

To connect the generalized and classical triples we represent pres and posts
in terms of the programs b and c. If p is a test and our semilattice has a greatest
element T, then T ·p is the test ideal for p. Intuitively, T ·p represents a program
that can do anything but, if it terminates, must leave p being true at the end.
In the relation model, it is the relation that maps any input state to every state
in p. Using test ideals, we can define under- and over-approximate triples as

|= [[ p ]] a [[ q ]] ⇔df T · p · a ≥ T · q |= {p} a {q} ⇔df T · p · a ≤ T · q

The right hand sides of the equivalences are generalized triples, with T · p and
T · q for b and c. Let us call these the ideal interpretations of the two triples,
and the ones in rest of the paper the modal interpretations. The ideal and modal
interpretations agree in the concrete relation model ([25], Fact 11). We chose to
work with modalities as their direct connection to the official definition of the
under-approximate triple seemed natural, but we emphasize that it is possible
to develop a full treatment of IL based on ideals rather than modalities.

Another encoding represents {p} a {q} as p · a · ¬q = 0: assuming p then
executing a cannot contradict q [22]. We are not aware of a similar interpretation,
avoiding ideals and modalities, for the under-approximate triple. End of Aside

4 Incorrectness

An under-approximate triple [[ p ]] a [[ q ]] on its own tells us nothing about whether
a program is incorrect: it just tells us a subset of what can happen. In the
terminology of program testing, such a triple gives us information that is similar
to a “test case”, with the generalization that if p and q are assertions describing
multiple program states then a single triple can cover more than a single input
or output. A test case is not yet a test, as it has no way to judge violation: we
also need a “test oracle”, which tells us if a run is considered erroneous.

4.1 Disproving Hoare Triples

Suppose we are given a Hoare triple {p} c {q}, but we are not told whether it
is valid. We can consider such a triple as “putative”, a test oracle (or a speci-
fication): given an input/output pair of states the oracle says “no” if the input
state satisfies p and the output state doesn’t satisfy q.
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Fig. 4. Iteration Examples

See Fig. 4 for an example. In specloop1() we use the keywords requires and
ensures to indicate the pre and post in a putative Hoare triple. The presumes
and ensures assertions from loop1() are those of an under-approximate triple,
and give us a way to prove falsity of the Hoare triple: the achieves assertion
in loop1() says that x can be any positive integer, and this is incompatible
with the ensures assertion in specloop1(). Note also that if we were to change
specloop1() by replacing 42,000,000 with 86,000,000 then we could re-use
the achieves assertion in loop1() to give us another disproof.

These ideas on testing and oracles/specification are captured in the following
result, which refers to interpretations of triples in modal Kleene algebra.

Theorem 4.1. �|= {p} a {q} ⇔ ∃ p′, q′ : p′ ≤ p ∧ q′ �≤ q ∧ |= [[ p′ ]] a [[ q′ ]].

Proof. (⇒) By the definitions, �|= {p} a {q} ⇔ 〈〈a||p �≤ q and |= [[ p ]] a [[ 〈〈a||p ]].
Hence we may choose p′ = p and q′ = 〈〈a||p.
(⇐) By generalised contraposition, the definitions and isotony of diamond with
transitivity of ≤,

((p′ ≤ p ∧ q′ �≤ q ∧ |= [[ p′ ]] a [[ q′ ]]) ⇒ �|= {p} a {q}) ⇔
((p′ ≤ p ∧ |= [[ p′ ]] a [[ q′ ]] ∧ |= {p} a {q}) ⇒ q′ ≤ q) ⇔
((p′ ≤ p ∧ q′ ≤ 〈〈a||p′ ∧ 〈〈a||b ≤ q) ⇒ q′ ≤ q) ⇔ TRUE �

Informally, if an execution of a lands outside the post, then the post can’t
hold. In concrete program testing in the relation model, p′ and q′ denote sin-
gleton sets. But the theorem also covers cases where we use assertions to cover
many states at once, as in loop1(). Connecting back to the discussion of false
positives and under-approximation in the Introduction: if we were to attempt to
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apply Theorem 4.1, if q′ did not under-approximate the reachable states we might
get incorrect suggested disproofs; false positives. Also, under-approximation fur-
nishes information for verification: when we shouldn’t try to verify. Conversely,
if a Hoare triple holds, we needn’t try to use testing to falsify it.

These remarks connecting verification and testing are obvious intuitively in
concrete models [25]. The point of stating this theorem is as a sanity check that
the algebra faithfully represents their connection.

4.2 Error Statements and Embedded Assertions

Hoare triples provide a popular form of specifications/test oracles, especially in
theoretical work. An even more popular method, in widespread use across indus-
try in program testing, is embedded “assert” statements. When an assert fails
it indicates program error and execution halts. This gives us a facility similar to
the post in a Hoare triple, as in testloop1() in Fig. 4. But, an assert statement
does not need to be in post position, and in this sense is more flexible than
pre/post specs. A concocted example is loop2() from Fig. 4. A more realistic
example is testing code in Fig. 5, taken from the open source code of the toolkit
OpenSSL. The call to test dtls1 heartbleed excessive plaintext length()
in the main() program eventually calls dtls1 write bytes() after executing
other instructions and, as we can see from the comment, the embedded assert
statement catches a bug which was present in earlier versions of the software.
The assert statement functions like the post in a Hoare triple, in that its fail-
ure indicates a program error, but it has further statements following it: it is a
program statement, and it need not be placed at the end of a function.

int main(int argc , char *argv[])
{ ....

/* The following test causes an assertion failure at
* ssl/ d1_pkt.c: dtls1_write_bytes() in versions prior to

1.0.1g: */
(OPENSSL_VERSION_NUMBER >= 0x1000107fL ?
test_dtls1_heartbleed_excessive_plaintext_length()

....
int dtls1_write_bytes(SSL *s, int type , const void *buf , int len)

{
int i;
OPENSSL_assert(len <= SSL3_RT_MAX_PLAIN_LENGTH);
s->rwstate = SSL_NOTHING;
i=do_dtls1_write(s, type , buf, len, 0);
return i;
}}

Fig. 5. Test code from heartbeat test.c in openssl1.0.1h

Turning back to theory, these assert statements are distinct from the “tests”
used in Kleene algebra. The latter corresponds more to the “assume” statement
in programming language theory: assume(p) simply discards the current program
path when p is false but does not halt execution, whereas assert(p) results in



338 B. Möller et al.

abnormal program termination. Hence, c is not executed in assert(p); c when p
fails. Abnormal termination is itself different from the 0 of Kleene algebra, which
means program divergence, since it is equivalent to while true do skip (or 1∗;¬1).

We approach the use of embedded assertions to specify incorrectness following
Incorrectness Logic, which itself follows the lead of C and other programming
languages. A special instruction error , distinct from 1 and 0, is used to cause
abnormal termination before a program’s end is reached; assert statements can
be described using a combination of tests/Booleans and error .

We consider the following grammar of commands,

c :: = atom | skip | diverge | error | p | c + c | c; c | c∗

and set assert(p) =def (p; error)+¬p = if p then error else skip. Although error
does not correspond directly to a Kleene algebra element, we can do a semantics
of a language with error by representing a program as a pair (a, e) of Kleene
algebra expressions. The a component describes what happens in executions
where no errors are raised, while the e component describes what happens when
errors do occur. In terms of the relation model, a program denotes a pair of
relations (a, e) ∈ P (S×S)×P (S×S), and this model is equivalent to a treatment
of exceptions in denotational semantics via the isomorphism with P (S×(S+S)).

The mapping of such program expressions to pairs of Kleene algebra elements
is given in Fig. 6. This semantics, when specialised to the relation model, is
that of [25]. Notice how neither sequencing nor iteration map pointwise to their
Kleene cousins · and ∗: Sequencing uses “short circuiting”, where upon an error
in the first operand execution halts and does not continue with the second, while
iteration allows an error to happen on a final execution of a loop body, after some
number of normally terminating executions. Finally, note that [[error ]] is distinct
from [[diverge]] = (0, 0) = [[while true do skip]].

Fig. 6. Semantics for Programs with Embedded Errors; [[c]] ∈ A × A

4.3 Incorrectness Logic

We are now in a position to formulate a general algebraic form of the program
logic from [25]. This is based on distinguishing two post-assertion forms, one
[[ p ]] c [[ ok : q ]] for normal termination and the other [[ p ]] c [[ er : q ]] for erroneous.
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Definition 4.2
1. An under-approximate triple with error information is a formula [[ p ]] c [[ ok : q ]]

or [[ p ]] c [[ er : q ]], where p, q ∈ test(A) and c is a program.
2. (a) [[ p ]] c [[ ok : q ]] is valid, in signs |= [[ p ]] c [[ ok : q ]], iff q ≤ 〈〈fst [[c]]||p.

(b) [[ p ]] c [[ er : q ]] is valid, in signs |= [[ p ]] c [[ er : q ]], iff q ≤ 〈〈snd [[c]]||p.

Fig. 7. Under-approximate Proof Rules for Embedded Errors

For the proof rules, first we translate all of the earlier proof rules for under-
approximate triples [[ p ]] c [[ q ]] into the [[ p ]] c [[ ok : q ]] form.

Definition 4.3. For each rule in Fig. 1 define a corresponding proof rule for
[[ p ]] c [[ ok : q ]] triples by replacing · with ; , 0 with diverge, 1 with skip and add
strongest post axioms for atomic commands. Also, add (Choice) and (Disjunc-
tion) with er and ok conclusions. Call the resulting set of rules Fig. 1 translated.

Theorem 4.4 (Soundness and Completeness). Assume a modal CTC
semiring with star.
1. With star unfold, the rules in Figs. 7 plus Fig. 1 translated are sound.
2. If also star induction holds then every true triple is provable.

There is a departure from [25]: we include the rule (Iterate:er) for er con-
clusions only. The soundness of this rule follows from the semantics of iteration
in the error case. If we included this rule for ok conclusions as well (as in [25]),
then we would appeal to the Kleene law c∗; c ≤ c∗ plus isotony in command for
soundness, and this would require stronger assumptions than Theorem 4.4(1).
From the point of view of provability it is possible to leave out the stronger
rule for ok conclusions, as the backwards variant rule lets us prove all true ok
conclusions. The proof of completeness of each error case is straightforward and
omitted.

An example which utilises (Iterate:er) is loop2() from Fig. 4. The assertion
eventually fails after the loop body is successfully executed 42,000,000 times,
and then upon the next iteration abnormal termination occurs. We leave as an
exercise for the reader to supply the assertions formalizing this argument.
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4.4 Over-Approximating Errors

It is possible to formulate an over-approximate system for reasoning about errors
as well. We define {p} c {ok : q} to be valid iff q ≥ 〈〈fst [[c]]||p, and {p} c {er : q}
to be valid iff q ≥ 〈〈snd [[c]]||p. Such triples can be used to show that a program
doesn’t raise an error (when the er conclusion is empty), or that it doesn’t
terminate normally (when the ok conclusion is empty).

As before there are properties in the algebra connecting testing and verifica-
tion. Specifically, if 0 over-approximates the error states, then no non-0 under-
approximate error conclusion is possible (we needn’t test for it); and, if a non-0
under-approximates error, then some errors must occur (we needn’t verify).

Theorem 4.5. 1. |= {p} c {er : 0} ⇔ ∀ q : (|= [[ p ]] c [[ er : q ]] ⇒ q = 0).
2. ∃ q : |= [[ p ]] c [[ er : q ]] and q �= 0 ⇔ �|= {p} c {er : 0}.

We don’t give a full treatment of proof theory for this extension of HL,
but it is worth contrasting some rules with those for under-approximation.
First, sequencing again takes into account short-circuit evaluation, but now
must consider the short-circuit and normal cases together top achieve over-
approximation.

{p} c1 {er : r1} {p} c1 {ok : q} {q} c2 {er : r2}
{p} c1; c2 {er : r1 ∨ r2}

Second, iteration cannot (however implicitly) make use of c∗; c ≤ c∗ plus isotony
in command, because in over-approximate logic isotony fails (anti-isotony holds).
Instead, even in the error case, can make use of a loop invariant (cf. [9]).

{p} c {ok : p} {p} c {er : p}
{p} c∗ {er : p}

5 Backwards Under-Approximation and Incorrectness

A broadly similar technical development can be done if we replace the strongest
post, or the image of a relation, by the inverse image. We obtain a triple [[p}} a [[q}}
where p under-approximates the states obtained executing a backwards from q.

More precisely, in the relation model define the weakest possible pre of a
relation, wpp(a, q) =df {s | ∃s′.(s, s′) ∈ a ∧ s′ ∈ q}. Then we can define

|= [[p}} a [[q}} ⇔df p ⊆ wpp(q, a)

Another way to describe [[p}} a [[q}} is by saying that every state in p can reach
some state in q via a [27]. Note that wpp is neither Dijkstra’s weakest precondi-
tion, nor the weakest liberal precondition. This triple is different from {p} a {q},
because a still might land outside of q when executing in the forwards direction.

This yields a logic for reasoning about backwards under-approximation. We
don’t develop the logic in full, but mention several salient points.
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1. Algebraically, wpp(q, a) is represented by the forward diamond ||q〉〉a from Def-
inition 2.4, and we define [[p}} a [[q}} ⇔df p ≤ ||a〉〉q.

2. The iteration rule becomes

∀n ∈ N : [[pn+1}} a [[pn}}
[[

∨

n∈N

pn}} a∗ [[p0}}

This is in the form of variant rules for total correctness [1] except that the
triple does not ensure termination on every path or that no path leads outside
the post. It is similar to a rule for diamonds in first-order dynamic logic [15].

3. The assignment axiom is now the backwards-running one

[[q[e/x}} x := e [[q}}
4. Disproving a Hoare triple can still be done but requires a different approach

than Theorem 4.1: landing outside q falsifies a Hoare triple.

�|= {p} a {q} ⇔ ∃ p′, q′ : 0 �= p′ ≤ p ∧ q′ · q = 0 ∧ |= [[p′}} a [[q′}}

Kleene algebra can serve as a foundation for reasoning about backwards
under-approximation; e.g., must transitions [4] and reachability witnesses [2].

6 Conclusion and Outlook

Kleene algebra encapsulates basic principles of simple imperative programs, and
many works have shown how these principles can provide a foundation for pro-
gram verification. In this paper we have studied how Kleene algebra can also
be used as a foundation for reasoning about the presence of bugs, as in (static
or dynamic) program testing. This has the potential to significantly expand the
application area of Kleene algebra. While logics for verification have received
voluminous treatment in theoretical research, the practical impact of program
testing currently dwarfs that of verification: it is much more widely deployed in
engineering practice, helping the creation of almost all software products.

In this paper we looked at two specific theories, Hoare Logic (HL) and Incor-
rectness Logic (IL). The main difference between them is that HL (like veri-
fication of safety properties, generally) is a formalism of over-approximation,
where IL (like testing generally) rests on under-approximation. We used Modal
Kleene algebra to express the under-approximate triple directly. As a happy
consequence, the power of Kleene algebra to describe HL is preserved, and prop-
erties can be stated linking HL and IL specifications. In this sense, the modal
Kleene algebra of the current paper can be said to unify HL and IL.

Our technical results pertain to the specific theories of HL and IL, not to the
entire broader informal concepts of correctness and incorrectness. The results
here concern safety properties and not liveness properties or hyperproperties.
Also, HL and IL are basic theories, and the extension of our results to further
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programming features is not obvious. For example, Concurrent Kleene Algebra
[18] through its exchange law supports a proof rule for over-approximate and
not under-approximate reasoning about concurrent processes, and reversing the
law furnishes a rule for under-approximation, but how to treat correctness and
incorrectness in one algebra for concurrency is not immediately obvious. For
another, sequential separation logic relies on an interpretation of triples which
avoids memory errors, where the incorrectness version does not use such an
interpretation [26]; again, they do not connect at once as HL and IL do here.

A contribution of the paper has been to pinpoint properties relevant to
completeness of under-approximate reasoning (test completeness), when Kleene
properties are and are not needed, and that ∗-continuity is not. These observa-
tions should persist into extensions to other programming features, whether or
not the exact form of unification achieved here can survive extension.

To conclude, under-approximation and incorrectness have been under-studied
in foundational theory, and there is much to be learnt about them and their rela-
tion to correctness theories (see [7] for an example of recent theoretical learnings
in the area between them, albeit without algebra). It is our hope that some of
the problems in this area will be taken up by others.
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12. Desharnais, J., Möller, B., Struth, G.: Kleene algebra with domain. ACM TOCL
7, 798–833 (2006)

13. Floyd, R.W.: Assigning meanings to programs. Mathematical aspects of computer
science. In: Proceedings of Symposium on Applied Mathematics. vol. 19, pp. 19–32.
AMS (1967)

14. Godefroid, P.: Compositional dynamic test generation. In: POPL, pp 47–54 (2007)
15. Harel, D. (ed.): First-Order Dynamic Logic. LNCS, vol. 68. Springer, Heidelberg

(1979). https://doi.org/10.1007/3-540-09237-4
16. Hoare, C.A.R.: An axiomatic basis for computer programming. CACM 12(10),

576–580 (1969)
17. Hoare, T.: Retrospective: an axiomatic basis for computer programming. CACM

52(10), 30–32 (2009)
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