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Abstract Predictions such as forecasts of congestion effects in transportation
networks can be based on complex simulations that include many aspects of actual
transportation systems. On the other hand, rigorousmathematical traffic models give
rise to theoretical analyses, very general statements, and various traffic optimization
opportunities. There has been a huge development in the last years to make
mathematical traffic models more realistic. This chapter provides an overview of the
mathematical traffic models developed recently and some state-of-the-art results.

1 Introduction

One of the major challenges in logistics is the steadily growing traffic activity. The
European Commission expects that passenger transport activities across Europe will
increase by 42% by 2050 and freight transport by 60% (Mobility and Transport
2019). This puts pressure on the capacity of the available transport network since
congestion leads to high associated costs, such as lost time, increased vehicle
operating costs, and environmental aspects. The Department of Transport, Tourism
and Sport’s Economic and Financial Unit of the Republic of Ireland estimated the
cost of time lost due to aggravated congestion in the Greater Dublin Area to bee358
million in 2012. They forecast a cost of e2.08 billion per year in 2033 (Department
of Transport, Tourism and Sport 2017). Ensuring that congestion does not reach an
unacceptable level is of significant high importance for all future logistics processes.

Climate change is one of the main challenges of our times. In 2019, global CO2
emissions increased to 38 gigatons due to a report by the Netherlands Environmental
Assessment Agency (Olivier and Peters 2020). The transport sector is still one
of the major contributors to greenhouse gas emissions, and congestion increases
the emissions of greenhouse gases of vehicles. Additionally, congestion imposes a
negative impact on local noise and water quality (Department of Transport, Tourism
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and Sport 2017). As a consequence, reducing congestion does not only reduce travel
times and reduce the cost of time for logistics operators, but it also has positive
effects on greenhouse gas emissions and quality of life.

One of the first steps to reduce congestion and increase the efficiency of
networks is to understand the behavior of traffic. Typically, researchers evaluate
traffic by creating a theoretical model that aims to capture as many aspects of
real-life traffic as possible. We can differentiate the existing traffic models into
macroscopic, mesoscopic, and microscopic models. Macroscopic models focus on
the joint behavior of vehicle flows, and thus it is usually not possible to track a
single vehicle. Examples of macroscopic models are function-based network load
models. Microscopic models usually track single vehicles in a highly temporal
solution. They capture microscopic aspects like overtaking, traffic lanes, human
driver behavior, and others. Mesoscopic models can be seen as hybrids. For a
nice comparison of the models, we refer the reader to the survey of Wang et al.
(2018). Usually, macroscopic models are easier to understand and easier to use in
software but typically lack precision and many local aspects of real-life traffic. The
traffic simulation software MATSim is one of the state-of-the-art implementations
of a microscopic to mesoscopic model; we refer to the MATSim book for a great
introduction (Horni et al. 2016). Individual vehicles can be tracked and followed,
and crossings are implemented from a microscopic point of view, but the actual
behavior of vehicles on a road segment is not modeled precisely. The current
implementation can be roughly described as follows. The traffic network is modeled
by a graph which consists of vertices and edges. A vertex corresponds to a
crossing. The directed edges connect vertices and model the road segments between
crossings. Vehicles that enter some edge at some point in time are instantaneously
moved to the end of the edge and have to wait there for at least the externally given
free-flow travel time of that edge (Horni et al. 2016). At the head of the edge, a
capacity constraint is checked, and the vehicle is only allowed to leave the edge if
the capacity is not exceeded. The software drops some precision in modeling the
microscopic behavior on an edge with the aim to reduce computation time and thus
increase the size of the models that can be analyzed.

Microscopic to mesoscopic simulations are a great tool to get insights on traffic
behavior, but usually one can only observe properties of the model by simulations,
and it is very hard to prove properties of the model or the solution. To illustrate
this, consider MATSim’s co-evolutionary algorithm. Usually, MATSim simulates
traffic for 1 day. The simulation is done in multiple iterations. Agents in the
simulation have a list of plans (although plans capture more, it is easiest to think
of different plans being different possible routes). In each iteration, each agent
picks a randomly chosen plan from the list with a probability that depends on the
current score of this plan. After each agent has chosen a plan, the actual day is
simulated and the agents evaluate their plan and update the score of the chosen
plan with respect to the observed traffic. The updated score is used in the next
iteration. Additionally, in each iteration, some agents (usually ∼10%) are allowed
to create new plans. The process is repeated until the average population score
does not change more than some threshold. For more details, we refer the reader
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to the MATSim book (Horni et al. 2016). A main drawback of this model is that
rigorously proving properties both for the process and for this final state is a very
challenging task. Sering et al. (2021) recently showed first provable results on the
network loading model in MATSim, but even the question if there is a best response
dynamic that converges to an approximate equilibrium is still open. This implies that
rigorously proving properties of the resulting states is a very challenging task, and
we cannot use theoretical insights to improve the results, e.g., by trying to enforce a
provable optimal traffic distribution. Generally, microscopic to mesoscopic models
can currently only give an estimation of what might happen to, e.g., a change of
the input of other questions of interest, and the obtained results cannot be justified
analytically.

Macroscopic models on the other hand can be analyzed mathematically but
lack many important properties of traffic flows. Naturally, researchers aim to set
up mathematical models that cover as many properties of traffic flows as possible
and are still analyzable. There was a huge breakthrough in this direction in the
last years, and the aim of this chapter is to cover this development. One of the
most important differences in mathematical traffic models is the difference between
discrete and continuous flows. Discrete flows are a model with indivisible particles
of a certain size. The motivation and connection to traffic are immediately clear,
and some of these models also work with particles of different sizes. On the other
hand, continuous models treat traffic as divisible in arbitrarily small pieces. Another
very important property of mathematical traffic models is the existence of strategic
users. Typically, traffic flow cannot be controlled by a central authority, and the
users strategically decide which route to take. This behavior can be seen as the
mathematical analog to the agents that individually (and randomly) choose their
best plans in MATSim. Note that in this work, we are interested in dynamic flows,
which in contrast to their static counterparts implement a time component. Thus, the
network can have different states at different times. There is a very rich literature
on static strategic routing models (i.e., without a time component), which we will
not cover in this chapter. For the readers interested in static models, we refer to the
termsWardrop games, network congestion games, and (non-) atomic selfish routing.

The rest of the chapter is divided into two parts. Section 2 covers the continuous
model and Sect. 3 the discrete variants.

2 Continuous Flows: Nash Flows Over Time

Vickrey (1969) was the first to describe a basic model for continuous flows over
time. The model captures the time-dependent behavior of arbitrarily splittable flow
in networks with edges with a limited throughput capacity. This model is typically
called dynamic flows with deterministic queuing. Koch and Skutella extended this
model and added strategic user’s behavior (Koch and Skutella 2011). Their model
is called Nash flows over time. In recent years, Cominetti, Correa, Cristi, Olver,
Oosterwijk, and many others proved many properties of flows in this model, see,
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e.g., Cominetti et al. (2011, 2015, 2017); Correa et al. (2019). Sering and Vargas
Koch achieved a huge breakthrough by adding spillback to this setting. In their
extension, traffic users need some space for queuing, and thus edges can become
full (Sering and Vargas Koch 2019). In this sense, highly congested parts of the
network now can have an impact on previous edges as traffic users might spill back
to other parts of the network while queuing. Additional properties of this model
have been shown by Israel and Sering (2020). Ziemke et al. recently presented
experiments that indicate a strong connection of the limit of the MATSim flow
model for decreasing vehicle and time step size and Nash flows over time with
spillback (Ziemke et al. 2021). Their article provides a strong justification and
motivation for the studies of mathematical traffic models.

We will proceed by describing the ideas of the basic model by Vickrey. The
model definition is mainly based on the works of Koch and Skutella (2011),
Cominetti et al. (2011), and Sering (2020). In the subsequent subsections, we present
the extensions and some results established in the literature.

2.1 Continuous Flows Over Time

The most important ingredient to the flow over time model is the edge dynamics.
Road networks are modeled by a graph G = (V ,E) with vertices V and directed
edges E. Each edge e ∈ E is equipped with a (free-flow) travel time τe ≥ 0 and
outflow capacity νe > 0. Usually, it is assumed that there are no cycles of length
0 in G. The inflow rate into an edge can be arbitrarily large and is not restricted.
However, if the inflow rate exceeds the capacity at some point in time θ , the outflow
rate at θ +τe is restricted to νe due to the outflow capacity of the edge. All additional
flow is stored in a point queue, or sometimes called horizontal queue. In this sense,
each edge can store an arbitrary amount of flow in a queue and can never get full. If
there is a queue at some edge, first the flow waiting in the queue is allowed to leave
the edge, i.e., in this sense, there is a FIFO property in each edge. Put differently,
overtaking is not possible. The total mass that is stored in the queue of edge e at
time θ is denoted by ze(θ). Figure 1 is an illustration of the basic notions of the
edge dynamics.

2.1.1 Connectors of the Edges: Vertices

Edges are connected to each other by vertices and thus vertices model crossings.
They only connect edges and flow leaving an edge e1 is just forwarded to the
subsequent edges. This will change drastically in the later parts of the section.



Recent Developments in Mathematical Traffic Models 75

Fig. 1 An illustration of the basic notions of the edge dynamics

2.2 Mathematical Consistency

In order to set up the model precisely, we need to formalize all properties. Formally,
a flow over time is defined by a family of functions f = (f +

e , f −
e )e∈E , where f +

e

and f −
e are integrable nonnegative functions and specify the flow rate entering or

leaving edge e at a given time, respectively. We can calculate

F+
e (θ) =

∫ θ

0
f +

e (ξ) dξ and F−
e (θ) =

∫ θ

0
f −

e (ξ) dξ .

Note that in this chapter, we will enforce all relevant conditions for all times θ > 0.
In the original literature, they are only enforced for almost all times θ , i.e., typically
they are allowed to be not fulfilled for a set of times that forms a null set. In this
chapter, we aim for giving the main ideas and decided to lack this mathematical
detail as it simplifies arguments and notations. We refer the reader to the original
works for more details.

We say that flow conservation on a vertex v ∈ V is fulfilled if

∑
e∈δ+(v)

f −
e (θ) =

∑
e∈δ−(v)

f +
e (θ) ,

for all θ . Here, δ+(v) and δ−(v) denote the incoming and outgoing edges from
vertex v, respectively. Thus, flow conservation at v is fulfilled if for all times θ the
total flow rate entering vertex v is equal to the total flow rate leaving v. We do
not enforce flow conservation on all vertices. In the basic model, there is a single
designated vertex s ∈ V , called source, for which

∑
e∈δ+(s)

f −
e (θ) + r =

∑
e∈δ−(s)

f +
e (θ) ,
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for some externally given constant inflow rate r into s. Additionally, there is one
sink t ∈ V for which we only enforce

∑
e∈δ+(v)

f −
e (θ) ≥

∑
e∈δ−(v)

f +
e (θ) .

These constraints ensure that flow enters the system with a constant flow rate r at
s ∈ V , is maintained in the system at intermediate vertices v ∈ V \ {s, t}, and is
allowed to leave the system at t .

The amount of flow that is stored in the queue at the head of edge e ∈ E at time
θ + τe is the amount of flow that has already entered edge e by θ and not left e by
time θ + τe. It can be calculated by

ze(θ + τe) = F+
e (θ) − F−

e (θ + τe) .

Now, we have all ingredients to define a feasible flow over time. We say a flow
f = (f +

e , f −
e )e∈E is a feasible flow over time with source s, inflow rate r , and sink

t if it fulfills flow conservation on all vertices v ∈ V \ {s, t}, the above conditions
for s and t , and the following property. The outgoing flow rates f −

e have to fulfill

f −
e (θ + τe) =

{
νe ifze(θ + τe) > 0 ,

min{νe, f
+
e (θ)} otherwise ,

where νe denotes the outflow capacity of edge e. This condition also ensures that
flow is not created inside edges, i.e.,

F−
e (θ + τe) ≤ F+

e (θ) ,

for all times θ ≥ 0 and all edges e ∈ E. Note that for given flow rates f +
e , the

flow rates f −
e are uniquely defined and can be calculated according to the equation

above.
The flow in this model can be any integrable nonnegative function, and thus flow

can be divided arbitrarily and this is a continuous flow model. On the other hand,
we aim for traffic models and are particularly interested in the behavior of single
vehicles. In this model, one can interpret the flow as infinitely many infinitesimal
small particles. Given some feasible flow over time, we are typically interested in
the travel time of some particle from s to t . In order to calculate that, we need to
track the chosen path and the observed waiting time in queues for this particle. We
follow standard notation in the literature and define the waiting times of a particle
entering edge e at time θ as

qe(θ) = ze(θ + τe)

νe

.
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Analogously, one can calculate the exit time of a particle entering e at θ by

Te(θ) = θ + τe + qe(θ) .

2.3 The Nash Condition

The model described so far is a well-defined mathematical model for traffic. Given
some road networks with edge capacities and free-flow travel time, we can build a
mathematical twin of a traffic network. This model respects over-time behavior and
assumes that traffic flow is arbitrarily splittable, i.e., we expect the model to be most
accurate with an increasing number of users that individually have a neglectable
contribution to congestion. Given some inflow into a certain vertex and specified
paths for the traffic users, we can set up a feasible flow over time respecting the
setup and the flow conservation constraint. Generally, in traffic optimization, we
are mostly interested in a traffic model that can actually predict traffic, while we are
only given the network and a certain demand, represented by the inflow (and desired
outflow). In order to do so, we need to define a system that describes how the paths
of the traffic particles in the network are chosen. In the following, we will follow
the road of Koch and Skutella (2011) and extend the model with strategic users.

We assume that flow particles always try to individually minimize travel time to
the destination and choose a currently shortest path with respect to the other flow
particles. Formally, given some flow f , for a particle entering the source at time φ,
we define lv(φ) to be the earliest possible arrival time at vertex v. With Te(θ) being
the exit time on e of a particle entering e at θ , this imposes the characterization

lv(φ) = min
(u,v)∈δ+(v)

T(u,v)(lu(φ)) ,

for all v ∈ V \ {s} and ls (φ) = φ. We now set up the current shortest path network
as follows. We say an edge (u, v) ∈ E is active for entering time φ and flow f

if lv(φ) = T(u,v)(lu(φ)). These are exactly the edges that can possibly be used by
a particle entering at time φ on a shortest path. The current shortest path network
G′

f (φ) = (V ,E′
f (φ)) contains exactly all active edges for φ and f , i.e.,

E′
f (φ) = {

(u, v) ∈ E | lv(φ) = T(u,v)(lu(φ))
}

.

Definition 1 (Based on Koch and Skutella (2011)) A flow over time f is called a
dynamic equilibrium or a Nash flow over time if

f +
(u,v)(lu(φ)) > 0 ⇒ (u, v) ∈ E′

f (φ) ,

for all edges (u, v) ∈ E and departure times φ.
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Equivalently, all particles only use edges that are part of their current shortest
path network. Cominetti, Correa, and Larré established the following property of
Nash flows over time.

Theorem 1 (Based on Cominetti et al. (2011)) A flow over time f is a Nash flow
if and only if

F+
e (lu(φ)) = F−

e (lv(φ))

for all edges e = (u, v) ∈ E and departure times φ.

Note that in the original works, both Definition 1 and Theorem 1 are only valid
for almost all times θ , so they allow for null sets of times for which the conditions are
not true. Informally, the theorem assures that the Nash flow condition is equivalent
to the fact that exactly all flow that has entered edge (u, v) by time lu(φ) has left
the edge by time lv(φ). This ensures that, for a particle entering the network at φ,
we can define xe(φ) = F+

e (lu(φ)) for all edges. It can be shown that (xe(φ))e∈E

is a static flow with flow value rφ, where r denotes the constant inflow rate, see,
e.g., Cominetti et al. (2011). Due to the definition of x, the flow value xe(φ)

measures exactly the amount of flow that has entered edge e before particles starting
at φ can reach e. The derivative x ′

e(φ) (if it exists) is also a static flowwith flow value
r and given by

x ′
e(φ) = f +

e (lu(φ)) · l′u(φ) .

The term l′u(φ) can be interpreted as the factor incorporating the shift of time present
at u, i.e. the behavior of lu(φ) in contrast to φ. In the subsequent section, we
describe the main ideas for constructing a Nash flow over time by making use of this
characterization. Throughout the construction,we will make sure that the derivatives
l′u do exist.

2.4 Constructing Nash Flows Over Time

Koch and Skutella (2011) were the first to describe the existence of Nash flows over
time. Cominetti, Correa, and Larré improved and extended their results (Cominetti
et al. 2011). Here, we will only give an informal description and the main ideas of
the constructive procedure described by Cominetti et al. (2011). We refer the reader
to the original work or to the nice description of the procedure in Sering’s PhD
thesis (Sering 2020) for more mathematical details.

The main idea builds on the fact that there is always a Nash flow over time that
can iteratively be constructed in phases. In order to do so, we split the set of edges
into three disjoint sets. Let E′

f (φ) denote the set of active edges, E∗
f (φ) ⊆ E′

f (φ)

be the set of resetting edges, i.e., those edges (u, v) ∈ E′
f (φ) for which there is a
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non-empty queue at time lu(φ) + τe, and the inactive edges E \ E′
f (φ). It turns out

that these three sets of edges define the phases of the Nash flow and that we can
define a static flow x ′ corresponding to the static flow x ′ defined earlier, which does
not change during a phase. For a proof of this statement, see Cominetti et al. (2011).
In the following, we will fix some phase and give a description of constraints for the
static flow x ′ in this phase.

We define the phases with respect to starting times of particles. Let some phase
cover the particles leaving s in the interval [φ1, φ2) and x ′ be the corresponding
static flow for this phase. The values for φ1 and φ2 will be chosen such that the
sets of active and resetting edges do not change within a phase. As the particles
leaving s in the interval [φ1, φ2) can only arrive at some edge (u, v) during time
[lu(φ1), lu(φ2)), this is the interesting time interval for the edge for this phase.
However, if the inflow f +

(u,v) into some edge (u, v) is constant during the phase, the
outflow corresponding to the phase (and thus shifted by the time needed to traverse
the edge) is given as follows. The outflow is equal to νe if the edge e has a queue of
positive size and f +

e otherwise. This ensures constant outflow during a phase, and
thus we establish constant inflow and outflow for all edges. Given this, the change of
the queues is also constant on all edges, and the idea is to construct a static flow x ′
such that all flow particles only use active edges and to distribute the flow particles
such that the change of the total waiting time is the same for all used paths and
subpaths. Then, l′u(θ) exists for all θ ∈ (ρ1, ρ2), the right derivative exists at ρ1, and
all are equal.

Due to the desired behavior of x ′ and l′, we have to make sure that x ′ is chosen
such that l′s = 1 and

l′v = min
e=(u,v)∈E′ ρe(l

′
u, x ′

e) ,

where

ρe(l
′
u, x

′
e) =

⎧⎨
⎩

x ′
e

νe
for e ∈ E∗ ,

max
{
l′u,

x ′
e

νe

}
otherwise .

After the calculation of x ′
e and l′u, we can define

f +
e (θ) = x ′

e

l′u

for all θ ∈ [lu(ρ1), lu(ρ2)). This ensures that the static flow is an equilibrium not
only for particles starting at time φ1 but also for all later particles in the phase, since
the travel times change on all used paths and subpaths by the same amount. Koch
and Skutella have already introduced these static flows, and Cominetti, Correa, and
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Larré have extended their results. For more mathematical details, we refer to the
original works (Cominetti et al. 2011; Koch and Skutella 2011).

We construct the equilibrium phase by phase starting at time 0. Clearly, a phase
ends if a new edge enters the current shortest path network or if some queue depletes.
Note that this procedure by Cominetti et al. (2011) constructively shows existence
of Nash flows over time. We conclude the following theorem.

Theorem 2 (Cominetti et al. (2011)) There is always a Nash flow over time.

However, the procedure does not give rise to a polynomial time algorithm. More-
over, one of the main open problems is to answer the question if the number of
phases is bounded.

2.5 Analysis of Equilibria

Equilibria in general and also those that are constructed according to the method
above are not unique. As an easy example, consider a graph with two parallel edges
with equal travel time τ and capacity νe1 = νe2 = 2 and an inflow rate of r = 1,
cf. Fig. 2. As it turns out, there are no queues and all static flows are feasible for
the first (and only) phase. The values lt (φ) are equal to φ + τ and coincide for all
choices. The particles leaving at time φ still arrive at the same time in all possible
choices. More generally, Cominetti, Correa, and Larré have shown that the arrival
time functions lv(φ) are equivalent as long as we restrict ourselves to Nash flows
over time f with right-continuous inflow and outflow rates (Cominetti et al. 2011).
It is not proven formally that this is true for all equilibria, but it is conjectured to be
true (Sering 2020).

In order to evaluate the existing equilibria or Nash flows in a network, the notions
price of anarchy and price of stability have been established. Usually, one defines
an objective function from the central’s authority’s point of view, and the objective
function value of an equilibrium solution is compared to the solution value of an
optimal solution with respect to this objective function. If all equilibria in the same
network have the same objective function value, the prices of anarchy and stability
coincide. As this is currently conjectured for Nash flows over time, we will focus on
results on the price of anarchy. The price of anarchy is defined as the worst possible
objective function value of a Nash flow divided by the optimal solution value in this

Fig. 2 An example showing
that Nash flows over time are
not unique

1 = 2

2 = 2

= 1
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instance. For flows over time, two different objective functions have been analyzed
in the literature, see Bhaskar et al. (2015).

For the first measure, we assume that there is a certain amount of flow volume A

that has to be sent from s to t . The makespan price of anarchy measures the arrival
time of the latest particle. This can be useful in a situation, where we are interested in
sending the total flow volume as fast as possible, e.g., in some evacuation scenarios.

The second measure assumes that we are given a time horizon and are allowed to
send as much flow as we can from s to t before the deadline. This throughput price
of anarchy measures the total amount of flow that arrives at t before the deadline.
This can be useful for many logistics processes, where we are interested in sending
as much flow as possible in a given time.

For Nash flows over time, it is shown that the throughput price of anarchy is
unbounded in the network size.

Theorem 3 (Koch and Skutella (2011)) The throughput price of anarchy lies in
	(|E|).
Correa, Cristi, and Oosterwijk showed that the makespan price of anarchy is upper
bounded by e

e−1 if the following conjecture is true. Consider the same graph with
two different inflow rates r1 > r2. Let f1 be a Nash flow over time for inflow r1

and f2 be a Nash flow over time for inflow r2. Then, l
f1
v ( A

r1
) ≤ l

f2
v ( A

r2
), i.e., a faster

arrival of the same particles does not induce a later arrival time for the latest of these
particles (Correa et al. 2019).

Theorem 4 (Correa et al. (2019)) Under the assumption that a higher inflow does
not lead to a later arrival time at the sink of the last particle of a constant size flow
mass, the makespan price of anarchy is at most e

e−1 .

From a traffic planner’s point of view, the price of anarchy is a measure of the
inefficiency of the network due to selfishness and the individual objective functions
of the users. In this sense, it tells the network designer how much efficiency is lost
in the worst case equilibrium, because there is no central authority that controls all
vehicles.

One of the main open problems in the area is to prove or disprove the conjecture
that the assumption in Theorem 4 is always true.

2.6 Spillback

Sering and Vargas Koch made a huge breakthrough and extended the model
by storage capacities and inflow capacities on the edges. The storage capacities
represent the number of particles that can wait on an edge and induce an important
property of real-life traffic into the model. As soon as the storage capacity is reached,
the inflow cannot be larger than the outflow of the edge. This imposes spillback
behavior as waiting particles are no longer local but might have a global effect. In
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order to extend the procedure to calculate a Nash flow over time in the spillback
model, they added two additional events that introduce new phases. The static flow
can only remain constant as long as the set of full edges does not change, the
outflow on an edge does not change, and the sets of active and resetting edges remain
constant. With this change to the procedure, they showed the following result.

Theorem 5 (Sering and Vargas Koch (2019)) There is always a Nash flow over
time with spillback.

If some edge becomes full, it still accepts flow equal to the current outflow of
this edge. Sering and Vargas Koch assumed a fair allocation condition, that is, flow
entering an edge merges proportional to the outflow capacity of the previous edges.
The authors only use this assumption for establishing the spillback model, but it
can also be used to implement traffic lights in the mathematical model. In practice,
most traffic lights run in the so-called cycles. Each cycle has a certain length and
each lane gets at once a green light in a cycle. The split time determines for how
long the lights should stay green. Main roads can get preference by a longer split
time in the corresponding phase. From a global point of view, traffic lights can be
seen as splitting up the inflow capacities of a certain edge to the incoming edges.
However, by limiting the inflow capacity of a certain edge and setting the outflow
capacities according to the traffic lights, the model by Sering and Vargas Koch does
also provide features to mimic traffic lights.

2.7 Further Notes and Remarks

The procedure that we described here to calculate Nash flows over time does not
give rise to a polynomial time algorithm to calculate the static flows of the phases.
It was shown by Sering (2020) that one can set up a mixed-integer program (MIP)
to calculate the static flows and the end of the phases in the basic model. The MIP
formulation for the spillback model can be found in Sering and Vargas Koch (2019).
Sering and Zimmer published a tool that is based on the MIP formulations and can
be used to calculate Nash flows over time (Sering and Zimmer 2020), even in the
spillback model.

Cominetti et al. (2017) analyzed the long-term behavior of Nash flows over time
in the basic model. They were interested in the studies of the last phase of a Nash
flow over time. They showed that there is a steady state, i.e., an infinitely long last
phase in which the travel time remains constant for all particles if and only if the
inflow rate does not exceed the minimum cut capacity of the network. This might
be particularly interesting from a traffic designer’s point of view.

So far, we have only described models with networks with a single source and
a single sink vertex. Cominetti et al. (2015) showed that the basic model can also
be extended to a multi-commodity network, i.e., to a network with multiple source–
sink pairs while still possessing a Nash flow over time.
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Mathematical traffic models are already capable of modeling capacitated roads,
congestion, individual particles’ objectives, spillback effects, and traffic lights. In
this sense, the models are quite accurate, but mathematical results are mainly
established for single source–single sink networks, which are quite limited for
applications. There are results on the price of anarchy and the efficiency of
equilibria. A main aspect for future work could be the question if it is possible
to change the network by, e.g., artificially limiting the capacity of certain roads or
by introducing tolls to improve the equilibrium solution. Researchers have already
shown similar results in the static (i.e., non-over-time) setting, see, e.g., Beckmann
et al. (1956), Dafermos and Sparrow (1969), and it would be an interesting and
promising direction to establish similar results for dynamic traffic models. Results
of this kind could potentially be applied to real-life traffic and reduce congestion in
transportation networks, i.e., improve on logistics services.

3 Discrete Flows: Competitive Packet Routing

The second research direction in mathematical traffic models is models for discrete
flows over time. In contrast to the continuous model, individual indivisible users are
present. Dependent on the exact definition of the model, users may be weighted.
Werth, Holzhauser, and Krumke were the first to introduce a discrete variant of
Koch and Skutella’s Nash flows over time (Werth et al. 2014). The model was later
called competitive packet routing (Harks et al. 2018) as it can also be seen as the
competitive variant of the well-studied packet routing model.

The main idea is to use integral travel times. Each edge has some certain outflow
capacity and only users with an aggregated weight smaller or equal to the edge
capacity can leave the edge at each integral point in time. Those who are not allowed
to leave the edge have to queue and wait.

3.1 The Mathematical Model

An instance of the problem is given by a graph G = (V ,E), integral travel times
τe, capacities νe for all e ∈ E, and n users, each with a start vertex si ∈ V , a target
vertex ti ∈ V , and a weight wi for all i ∈ {1, . . . , n}. Typically, an instance is called
unweighted if wi = 1 for all i ∈ {1, . . . , n}. A strategy profile P = (P1, . . . , Pn)

specifies a path for each user, where for Pi we only allow a simple path from si to
ti such that νe ≥ wi for all edges e ∈ Pi .

The edge’s behavior and the vertices are set up using discrete time steps. A user
that arrives at some vertex u ∈ V at an integral time θ can immediately enter the
next edge e = (u, v) on the specified path. Then, we assume that the user needs
τe time units to travel along the edge and reaches the queue Qe at the head of the
edge at time θ + τe. After adding users to the queues at time θ + τe, the first users
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from Qe with maximum aggregated weight not exceeding the capacity νe can leave
edge e and enter vertex v. However, in order to define the model properly, one needs
to specify rules that describe which users are allowed to leave the edge if not all
can leave the edge due to capacity issues. Werth, Holzhauser, and Krumke assume
that the users are processed in the order of arrival at the edge (Werth et al. 2014).
However, if multiple users enter the edge at the same time, there is a tie-breaking
according to some priority list. For tie-breaking, Werth, Holzhauser, and Krumke
use either a global order of users valid in the whole network or a priority order
depending on the edge from which the users have entered the questionable edge.

They consider two different objective functions, namely a sum and a bottleneck
objective. For the bottleneck objective, users aim for minimizing the maximum time
they spend on an edge and the social cost is given by the maximum value of all
users. As this objective does not seem closely related to traffic, we focus on the sum
objective. In this variant, the users aim to minimize the sum of travel times on their
path and the social objective is given by the makespan, i.e., by the largest arrival
time of all users. Werth, Holzhauser, and Krumke show that Nash equilibria exist in
the case that all users share the same source and smaller users have a higher priority
than larger users. If this is not the case, they showed that Nash equilibria might not
exist.

3.2 Extensions of the Model

Scarsini et al. (2018) analyzed a model equivalent to the one by Werth, Holzhauser,
and Krumke for users that arrive at the source node sequentially. Their aspect was
on how the system evolves to a steady state. Harks et al. considered almost the same
model but with other objective functions (Harks et al. 2018). In their work, the social
objective is the sum of the user’s arrival times (in contrast to the maximum in the
work by Werth, Holzhauser, and Krumke). Users are unweighted and at a queue of
some edge users are either prioritized with respect to a given global order of users
or with respect to a local order of users that is only valid at this edge. This is in
contrast to the FIFO setup in the original model, and it is the only model covered
here that allows users to overtake other users on the same path. Harks et al. show
that Nash equilibria exist in networks with global priorities (Harks et al. 2018). The
idea is that if some user i has higher priority than some other user j in all parts of
the network, i can never be delayed by j . Thus, greedily assigning the users to their
best responses in the priority order constructs a Nash equilibrium. Additionally, they
gave various results on the prices of stability and anarchy for both local and global
priorities that depend either on the number of users and edge capacities or on the
length of a longest path. For more details, we refer the reader to their work (Harks
et al. 2018).

Scheffler et al. (2018) modified the model by Harks et al. (2018) and studied
their setting under edge priorities. These edge priorities are motivated by traffic
rules and are a way more natural setup for traffic. They also provided the existence
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of equilibria for single-commodity instances and showed bounds on the prices of
stability and anarchy. They provided examples whereNash equilibria contain cycles,
which might also happen in real-world traffic. Cao et al. extended their model by
adding the concept of dynamic route choices, i.e., users only choose their path while
traveling (Cao et al. 2017). At each crossing, they decide on the next edge to take,
instead of having to fix the whole path before starting to travel. This adaptive route
choice is motivated by the replanning of routes while using GPS systems. Ismaili
introduced the same behavior back to the original model of Werth, Holzhauser, and
Krumke (Ismaili 2017).

Tauer et al. presented results on a train routing model which is based on the
discrete store-and-forward packing routing model (Tauer et al. 2020). In their
model, the users occupy space and deadlock and spillback effects are in place.
Unfortunately, they do not consider strategic users, as trains can usually be routed
by a central authority. Peis et al. considered a model for discrete flows over time,
where some users might cooperate (Peis et al. 2018).

Hoefer et al. (2011) considered a slightly different variant than all the models
mentioned above. They studied a variant with capacities on the number of users that
are on an edge at the same point in time instead of having a constraint on the inflow
or outflow of an edge. Additionally, their model works in a continuous-time setting.

3.3 Summary

Up to date, competitive packet routing models contain capacitated roads, con-
gestion, individual particles’ objectives, right of way rules, and model discrete
indivisible users. Unfortunately, Nash equilibria are generally not unique, and the
price of anarchy is quite large (in most cases linearly in the number of users).
Additionally, spillback effects are usually not present, which is a huge drawback
for traffic modeling. Although the variants with discrete users seem to be the more
accurate model in the first place, it widely opens to understand spillback effects
in the discrete model. The role and effects of discretization of time steps are often
unclear. Sering et al. (2021) recently established first results in this direction and
showed an interesting connection between continuous and discrete models. They
proved that for decreasing packet sizes and time steps, the packet routing model
converges to a flow over time model. In the discrete models, there are instances
where different equilibria lead to huge differences in the travel times and it would
be interesting to see in future work how much this is in line with real-world
traffic. Similar to the continuous version, almost all discrete variants do not give
the opportunity for users to overtake other users. An additional main aspect for
future work could be the question of modifying the network in order to improve the
quality of equilibria. This could be a first step in order to apply the gained knowledge
to traffic networks and thus to logistics.



86 D. Schmand

References

Beckmann, M., McGuire, C.B., Winsten, C.B.: Studies in the economics of transportation.
Technical Report (1956)

Bhaskar, U., Fleischer, L., Anshelevich, E.: A stackelberg strategy for routing flow over time.
Games Eco. Behav. 92, 232–247 (2015)

Cao, Z., Chen, B., Chen, X., Wang, C.: A network game of dynamic traffic. In: Proceedings of the
2017 ACM Conference on Economics and Computation, EC ’17, pp. 695–696. Association for
Computing Machinery, New York (2017). https://doi.org/10.1145/3033274.3085101

Cominetti, R., Correa, J.R., Larré, O.: Existence and uniqueness of equilibria for flows over time.
In: Aceto, L., Henzinger, M., Sgall, J. (eds.) Proceedings of the Automata, Languages and
Programming – 38th International Colloquium, ICALP 2011, Zurich, Switzerland, July 4–8.
Part II, Lecture Notes in Computer Science, vol. 6756, pp. 552–563. Springer, Berlin (2011).
https://doi.org/10.1007/978-3-642-22012-8_44

Cominetti, R., Correa, J.R., Larré, O.: Dynamic equilibria in fluid queueing networks. Oper. Res.
63(1), 21–34 (2015). https://doi.org/10.1287/opre.2015.1348

Cominetti, R., Correa, J.R., Olver, N.: Long term behavior of dynamic equilibria in fluid queuing
networks. In: Eisenbrand, F., Könemann, J. (eds.) Proceedings of the Integer Programming and
Combinatorial Optimization – 19th International Conference, IPCO 2017, Waterloo, ON, June
26–28. Lecture Notes in Computer Science, vol. 10328, pp. 161–172. Springer, Berlin (2017).
https://doi.org/10.1007/978-3-319-59250-3_14

Correa, J.R., Cristi, A., Oosterwijk, T.: On the price of anarchy for flows over time. In: Karlin, A.,
Immorlica, N., Johari, R. (eds.) Proceedings of the 2019 ACM Conference on Economics and
Computation, EC 2019, Phoenix, June 24–28, pp. 559–577. ACM, New York (2019). https://
doi.org/10.1145/3328526.3329593

Dafermos, S., Sparrow, F.: Traffic assignment problem for a general network. J. Res. Natl. Bur.
Stand. Sect. B Math. Sci. 91 (1969)

Department of Transport, Tourism and Sport: The Costs of Congestion. An Analysis of the Greater
Dublin Area. Technical report. Government of Ireland (2017)

Harks, T., Peis, B., Schmand, D., Tauer, B., Vargas Koch, L.: Competitive packet routing
with priority lists. ACM Trans. Eco. Comput. 6(1), 4:1–4:26 (2018). https://doi.org/10.1145/
3184137

Hoefer, M., Mirrokni, V.S., Röglin, H., Teng, S.: Competitive routing over time. Theor. Comput.
Sci. 412(39), 5420–5432 (2011). https://doi.org/10.1016/j.tcs.2011.05.055

Horni, A., Nagel, K., Axhausen, K. (eds.): Multi-Agent Transport Simulation MATSim. Ubiquity
Press, London (2016). https://doi.org/10.5334/baw

Ismaili, A.: Routing games over time with FIFO policy. In: Devanur, N.R., Lu, P. (eds.) Web and
Internet Economics, pp. 266–280. Springer International Publishing, Cham (2017)

Israel, J., Sering, L.: The impact of spillback on the price of anarchy for flows over time. In:
Harks, T., Klimm, M. (eds.) Proceedings of the Algorithmic Game Theory – 13th International
Symposium, SAGT 2020, Augsburg, September 16–18. Lecture Notes in Computer Science,
vol. 12283, pp. 114–129. Springer, Berlin (2020). https://doi.org/10.1007/978-3-030-57980-
7_8

Koch, R., Skutella, M.: Nash equilibria and the price of anarchy for flows over time. Theory
Comput. Syst. 49(1), 71–97 (2011). https://doi.org/10.1007/s00224-010-9299-y

Mobility and Transport: Transport in the European Union. Current Trends and Issues. Technical
report. European Commission (2019)

Olivier, J., Peters, J.: Trends in Global CO2 and Total Greenhouse Gas Emissions. PBL Netherlands
Environmental Assessment Agency, The Hague (2020)

Peis, B., Tauer, B., Timmermans, V., Vargas Koch, L.: Oligopolistic competitive packet routing. In:
Borndörfer, R., Storandt, S. (eds.) 18th Workshop on Algorithmic Approaches for Transporta-
tion Modelling, Optimization, and Systems, ATMOS 2018, August 23–24, Helsinki. OASICS,

https://doi.org/10.1145/3033274.3085101
https://doi.org/10.1007/978-3-642-22012-8_44
https://doi.org/10.1287/opre.2015.1348
https://doi.org/10.1007/978-3-319-59250-3_14
https://doi.org/10.1145/3328526.3329593
https://doi.org/10.1145/3328526.3329593
https://doi.org/10.1145/3184137
https://doi.org/10.1145/3184137
https://doi.org/10.1016/j.tcs.2011.05.055
https://doi.org/10.5334/baw
https://doi.org/10.1007/978-3-030-57980-7_8
https://doi.org/10.1007/978-3-030-57980-7_8
https://doi.org/10.1007/s00224-010-9299-y


Recent Developments in Mathematical Traffic Models 87

vol. 65, pp. 13:1–13:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Wadern (2018).
https://doi.org/10.4230/OASIcs.ATMOS.2018.13

Scarsini, M., Schröder, M., Tomala, T.: Dynamic atomic congestion games with seasonal flows.
Oper. Res. 66(2), 327–339 (2018). https://doi.org/10.1287/opre.2017.1683

Scheffler, R., Strehler, M., Vargas Koch, L.: Equilibria in routing games with edge priorities. In:
Christodoulou, G., Harks, T. (eds.) Proceedings of the Web and Internet Economics – 14th
International Conference, WINE 2018, Oxford, December 15–17. Lecture Notes in Computer
Science, vol. 11316, pp. 408–422. Springer, Berlin (2018). https://doi.org/10.1007/978-3-030-
04612-5_27

Sering, L.: Nash flows over time. Doctoral Thesis, Technische Universität Berlin, Berlin (2020).
https://doi.org/10.14279/depositonce-10640

Sering, L., Vargas Koch, L.: Nash flows over time with spillback. In: Chan, T.M. (ed.) Proceedings
of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019,
San Diego, January 6–9, pp. 935–945. SIAM, Philadelphia (2019). https://doi.org/10.1137/1.
9781611975482.57

Sering, L., Zimmer, M.: Nash Flow Computation (2020). https://www.coga.tu-berlin.de/v_menue/
download_media/nash_flow_computation/

Sering, L., Vargas Koch, L., Ziemke, T.: Convergence of a packet routing model to flows over time.
CoRR abs/2105.13202 (2021). https://arxiv.org/abs/2105.13202

Tauer, B., Fischer, D., Fuchs, J., Vargas Koch, L., Zieger, S.: Waiting for trains: complexity results.
In: Conference on Algorithms and Discrete Applied Mathematics, pp. 282–303. Springer,
Berlin (2020)

Vickrey, W.S.: Congestion theory and transport investment. Am. Econ. Rev. 59(2), 251–260 (1969)
Wang, Y., Szeto, W., Han, K., Friesz, T.L.: Dynamic traffic assignment: a review of the method-

ological advances for environmentally sustainable road transportation applications. Transp.
Res. BMethodol. 111, 370–394 (2018). https://doi.org/10.1016/j.trb.2018.03.011. https://www.
sciencedirect.com/science/article/pii/S0191261517308056

Werth, T., Holzhauser, M., Krumke, S.O.: Atomic routing in a deterministic queuing model. Oper.
Res. Perspect. 1(1), 18–41 (2014)

Ziemke, T., Sering, L., Vargas Koch, L., Zimmer, M., Nagel, K., Skutella, M.: Flows over time as
continuous limits of packet-based network simulations. Transp. Res. Proc. 52, 123–130 (2021).
23rd EUROWorking Group on Transportation Meeting, EWGT 2020, 16–18 September 2020,
Paphos. https://doi.org/10.1016/j.trpro.2021.01.014

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter is included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.4230/OASIcs.ATMOS.2018.13
https://doi.org/10.1287/opre.2017.1683
https://doi.org/10.1007/978-3-030-04612-5_27
https://doi.org/10.1007/978-3-030-04612-5_27
https://doi.org/10.14279/depositonce-10640
https://doi.org/10.1137/1.9781611975482.57
https://doi.org/10.1137/1.9781611975482.57
https://www.coga.tu-berlin.de/v_menue/download_media/nash_flow_computation/
https://www.coga.tu-berlin.de/v_menue/download_media/nash_flow_computation/
https://arxiv.org/abs/2105.13202
https://doi.org/10.1016/j.trb.2018.03.011
https://www.sciencedirect.com/science/article/pii/S0191261517308056
https://www.sciencedirect.com/science/article/pii/S0191261517308056
https://doi.org/10.1016/j.trpro.2021.01.014
http://creativecommons.org/licenses/by/4.0/

	Recent Developments in Mathematical Traffic Models
	1 Introduction
	2 Continuous Flows: Nash Flows Over Time
	2.1 Continuous Flows Over Time
	2.1.1 Connectors of the Edges: Vertices

	2.2 Mathematical Consistency
	2.3 The Nash Condition
	2.4 Constructing Nash Flows Over Time
	2.5 Analysis of Equilibria
	2.6 Spillback
	2.7 Further Notes and Remarks

	3 Discrete Flows: Competitive Packet Routing
	3.1 The Mathematical Model
	3.2 Extensions of the Model
	3.3 Summary

	References


