Skip to main content

Physics-Informed Self-supervised Deep Learning Reconstruction for Accelerated First-Pass Perfusion Cardiac MRI

  • Conference paper
  • First Online:
Machine Learning for Medical Image Reconstruction (MLMIR 2021)

Abstract

First-pass perfusion cardiac magnetic resonance (FPP-CMR) is becoming an essential non-invasive imaging method for detecting deficits of myocardial blood flow, allowing the assessment of coronary heart disease. Nevertheless, acquisitions suffer from relatively low spatial resolution and limited heart coverage. Compressed sensing (CS) methods have been proposed to accelerate FPP-CMR and achieve higher spatial resolution. However, the long reconstruction times have limited the widespread clinical use of CS in FPP-CMR. Deep learning techniques based on supervised learning have emerged as alternatives for speeding up reconstructions. However, these approaches require fully sampled data for training, which is not possible to obtain, particularly high-resolution FPP-CMR images. Here, we propose a physics-informed self-supervised deep learning FPP-CMR reconstruction approach for accelerating FPP-CMR scans and hence facilitate high spatial resolution imaging. The proposed method provides high-quality FPP-CMR images from 10x undersampled data without using fully sampled reference data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). https://www.tensorflow.org/. Software available from tensorflow.org

  2. Aggarwal, H.K., Mani, M.P., Jacob, M.: MoDL: model-based deep learning architecture for inverse problems. IEEE Trans. Med. Imaging 38(2), 394–405 (2018)

    Article  Google Scholar 

  3. Chollet, F., et al.: Keras (2015). https://keras.io

  4. Correia, T., Schneider, T., Chiribiri, A.: Model-based reconstruction for highly accelerated first-pass perfusion cardiac MRI. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 514–522. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_57

    Chapter  Google Scholar 

  5. Do, W.J., Seo, S., Han, Y., Ye, J.C., Choi, S.H., Park, S.H.: Reconstruction of multicontrast MR images through deep learning. Med. Phys. 47(3), 983–997 (2020)

    Article  Google Scholar 

  6. Foley, J.R.J.: Cardiovascular magnetic resonance imaging for the investigation of ischaemic heart disease. Ph.D. thesis, University of Leeds (2018)

    Google Scholar 

  7. Hendel, R.C., et al.: CMR first-pass perfusion for suspected inducible myocardial ischemia. JACC Cardiovasc. Imaging 9(11), 1338–1348 (2016)

    Google Scholar 

  8. Heo, R., Nakazato, R., Kalra, D., Min, J.K.: Noninvasive imaging in coronary artery disease. In: Seminars in Nuclear Medicine, vol. 44, pp. 398–409. Elsevier (2014)

    Google Scholar 

  9. Hsu, L.Y., et al.: Diagnostic performance of fully automated pixel-wise quantitative myocardial perfusion imaging by cardiovascular magnetic resonance. JACC Cardiovasc. Imag. 11(5), 697–707 (2018)

    Google Scholar 

  10. Huang, Q., Yang, D., Wu, P., Qu, H., Yi, J., Metaxas, D.: MRI reconstruction via cascaded channel-wise attention network. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 1622–1626. IEEE (2019)

    Google Scholar 

  11. Kellman, P., et al.: Myocardial perfusion cardiovascular magnetic resonance: optimized dual sequence and reconstruction for quantification. J. Cardiovasc. Magn. Reson. 19(1), 1–14 (2017)

    Article  Google Scholar 

  12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  13. Kocanaogullari, D., Eksioglu, E.M.: Deep learning for MRI reconstruction using a novel projection based cascaded network. In: 2019 IEEE 29th International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6. IEEE (2019)

    Google Scholar 

  14. Lingala, S.G., Hu, Y., DiBella, E., Jacob, M.: Accelerated dynamic MRI exploiting sparsity and low-rank structure: KT SLR. IEEE Trans. Med. Imaging 30(5), 1042–1054 (2011)

    Article  Google Scholar 

  15. Liu, F., Kijowski, R., El Fakhri, G., Feng, L.: Magnetic resonance parameter mapping using model-guided self-supervised deep learning. Magn. Reson. Med. 85, 3211–3226 (2021)

    Article  Google Scholar 

  16. Otazo, R., Kim, D., Axel, L., Sodickson, D.K.: Combination of compressed sensing and parallel imaging for highly accelerated first-pass cardiac perfusion MRI. Magn. Reson. Med. 64(3), 767–776 (2010)

    Article  Google Scholar 

  17. Patlak, C.S., Blasberg, R.G., Fenstermacher, J.D.: Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J. Cereb. Blood Flow Metab. 3(1), 1–7 (1983)

    Article  Google Scholar 

  18. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  19. Schlemper, J., Caballero, J., Hajnal, J.V., Price, A.N., Rueckert, D.: A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 37(2), 491–503 (2017)

    Article  Google Scholar 

  20. Schwitter, J., et al.: MR-IMPACT II: magnetic resonance imaging for myocardial perfusion assessment in coronary artery disease trial: perfusion-cardiac magnetic resonance vs. single-photon emission computed tomography for the detection of coronary artery disease: a comparative multicentre, multivendor trial. Eur. Heart J. 34(10), 775–781 (2013)

    Google Scholar 

  21. Vitanis, V., et al.: High resolution three-dimensional cardiac perfusion imaging using compartment-based K-T principal component analysis. Magn. Reson. Med. 65(2), 575–587 (2011)

    Article  Google Scholar 

  22. Yaman, B., et al.: Self-supervised learning of physics-guided reconstruction neural networks without fully sampled reference data. Magn. Reson. Med. 84(6), 3172–3191 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 867450. Authors also thank European Social Fund, Operational Programme of Castilla y León, and the Junta de Castilla y León. This work has also been supported by Agencia Estatal de Investigación through grant TEC2017-82408-R and by Fundação para a Ciência e Tecnologia (FCT) through grant UIDP/50009/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Martín-González .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Martín-González, E. et al. (2021). Physics-Informed Self-supervised Deep Learning Reconstruction for Accelerated First-Pass Perfusion Cardiac MRI. In: Haq, N., Johnson, P., Maier, A., Würfl, T., Yoo, J. (eds) Machine Learning for Medical Image Reconstruction. MLMIR 2021. Lecture Notes in Computer Science(), vol 12964. Springer, Cham. https://doi.org/10.1007/978-3-030-88552-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88552-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88551-9

  • Online ISBN: 978-3-030-88552-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics