Skip to main content

An Overall Characterization of the Project Portfolio Optimization Problem and an Approach Based on Evolutionary Algorithms to Address It

  • Chapter
  • First Online:
Evolutionary and Memetic Computing for Project Portfolio Selection and Scheduling

Abstract

This chapter describes the main features of project portfolio selection and formalizes a problem statement that considers these features. We provide a simple but comprehensive illustrative example that shows the usefulness of the problem statement and argue that there are no published approaches so far that deal with its whole complexity. We also provide some guidelines to build such an approach based on the use of evolutionary algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Almeida, A.T., Duarte, M.D.: A multi-criteria decision model for selecting Project Portfolio with consideration being given to a new concept for synergies. Pesqui. Oper. 31(2), 301–318 (2011). https://doi.org/10.1590/S0101-74382011000200006. www.scielo.br/pope

  2. Andrade, R.A.E., Fernández, E., González, E.: Compensatory fuzzy logic: a frame for reasoning and modeling preference knowledge in intelligent systems. Studies in Computational Intelligence, vol. 537, pp. 3–23 (2014). https://doi.org/10.1007/978-3-642-53737-0_1. https://link.springer.com/chapter/10.1007/978-3-642-53737-0_1

  3. Arratia, M.N., López, I.F., Schaeffer, S.E., Cruz-Reyes, L.: Static R&D project portfolio selection in public organizations. Decis. Support Syst. 84, 53–63 (2016). https://doi.org/10.1016/j.dss.2016.01.006

    Article  Google Scholar 

  4. Baker, E., Bosetti, V., Salo, A.: Robust portfolio decision analysis: an application to the energy research and development portfolio problem. Eur. J. Oper. Res. 284(3), 1107–1120 (2020). https://doi.org/10.1016/j.ejor.2020.01.038

    Article  MathSciNet  MATH  Google Scholar 

  5. Balderas, F., Fernandez, E., Gomez-Santillan, C., Rangel-Valdez, N., Cruz, L.: An interval-based approach for evolutionary multi-objective optimization of project portfolios. Int. J. Inf. Technol. Decis. Mak. 18(4), 1317–1358 (2019). https://doi.org/10.1142/S021962201950024X

    Article  MATH  Google Scholar 

  6. Barbati, M., Greco, S., Kadziński, M., Słowiński, R.: Optimization of multiple satisfaction levels in portfolio decision analysis. Omega (United Kingdom) 78, 192–204 (2018). https://doi.org/10.1016/j.omega.2017.06.013

    Article  Google Scholar 

  7. Bouyssou, D., Marchant, T., Perny, P., Pirlot, M., Tsoukás, A., Vincke, P.: Evaluation And Decision Models: A Critical Perspective, 1st edn. Springer, New York (2000). https://doi.org/10.1007/978-1-4615-1593-7

  8. Carazo, A.F., Gómez, T., Molina, J., Hernández-Díaz, A.G., Guerrero, F.M., Caballero, R.: Solving a comprehensive model for multiobjective project portfolio selection. Comput. Oper. Res. 37(4), 630–639 (2010). https://doi.org/10.1016/j.cor.2009.06.012

    Article  MathSciNet  MATH  Google Scholar 

  9. Chassein, A., Goerigk, M., Kasperski, A., Zieliński, P.: On recoverable and two-stage robust selection problems with budgeted uncertainty. Eur. J. Oper. Res. 265(2), 423–436 (2018). https://doi.org/10.1016/j.ejor.2017.08.013

    Article  MathSciNet  MATH  Google Scholar 

  10. Cooper, R., Edgett, S., Kleinschmidt, E.: Portfolio management for new product development: results of an industry practices study. R D Manag. 31(4), 361–380 (2001). https://doi.org/10.1111/1467-9310.00225

  11. Corrente, S., Figueira, J.R., Greco, S., Słowiński, R.: A robust ranking method extending ELECTRE III to hierarchy of interacting criteria, imprecise weights and stochastic analysis. Omega (United Kingdom) 73, 1–17 (2017). https://doi.org/10.1016/j.omega.2016.11.008

    Article  Google Scholar 

  12. Corrente, S., Greco, S., SŁowiński, R.: Multiple criteria hierarchy process with ELECTRE and PROMETHEE. Omega (United Kingdom) 41(5), 820–846 (2013). https://doi.org/10.1016/j.omega.2012.10.009

  13. Corrente, S., Greco, S., Słowiński, R.: Multiple criteria hierarchy process for ELECTRE Tri methods. Eur. J. Oper. Res. 252(1), 191–203 (2016). https://doi.org/10.1016/j.ejor.2015.12.053

    Article  MathSciNet  MATH  Google Scholar 

  14. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002). https://doi.org/10.1109/4235.996017

    Article  Google Scholar 

  15. Doerner, K.F., Gutjahr, W.J., Hartl, R.F., Strauss, C., Stummer, C.: Pareto ant colony optimization with ILP preprocessing in multiobjective project portfolio selection. Eur. J. Oper. Res. 171(3), 830–841 (2006). https://doi.org/10.1016/j.ejor.2004.09.009

    Article  MathSciNet  MATH  Google Scholar 

  16. Espin-Andrade, R.A., Caballero, E.G., Pedrycz, W., Fernández González, E.R.: Archimedean-compensatory fuzzy logic systems. Int. J. Comput. Intell. Syst. 8(Supplement 2), 54–62 (2015). https://doi.org/10.1080/18756891.2015.1129591. www.uas.edu.mx

  17. Fernández, E., Figueira, J.R., Navarro, J.: An interval extension of the outranking approach and its application to multiple-criteria ordinal classification. Omega (United Kingdom) 84, 189–198 (2019). https://doi.org/10.1016/j.omega.2018.05.003

    Article  Google Scholar 

  18. Fernández, E., Figueira, J.R., Navarro, J.: Interval-based extensions of two outranking methods for multi-criteria ordinal classification. Omega (United Kingdom) 95, 102065 (2020). https://doi.org/10.1016/j.omega.2019.05.001

  19. Fernandez, E., Gomez-Santillan, C., Rangel-Valdez, N., Cruz-Reyes, L., Balderas, F.: An interval-based evolutionary approach to portfolio optimization of new product development projects. Math. Probl. Eng. 2019 (2019). https://doi.org/10.1155/2019/4065424

  20. Fernandez, E., Lopez, E., Bernal, S., Coello Coello, C.A., Navarro, J.: Evolutionary multiobjective optimization using an outranking-based dominance generalization. Comput. Oper. Res. 37(2), 390–395 (2010). https://doi.org/10.1016/j.cor.2009.06.004

    Article  MATH  Google Scholar 

  21. Fernandez, E., Lopez, E., Lopez, F., Coello Coello, C.A.: Increasing selective pressure towards the best compromise in evolutionary multiobjective optimization: the extended NOSGA method. Inf. Sci. 181(1), 44–56 (2011). https://doi.org/10.1016/j.ins.2010.09.007

    Article  MathSciNet  MATH  Google Scholar 

  22. Fernandez, E., Lopez, E., Mazcorro, G., Olmedo, R., Coello Coello, C.A.: Application of the non-outranked sorting genetic algorithm to public project portfolio selection. Inf. Sci. 228, 131–149 (2013). https://doi.org/10.1016/j.ins.2012.11.018

    Article  MathSciNet  MATH  Google Scholar 

  23. Fernández González, E.: Análisis de la decisión para evaluar y formar carteras de proyectos de I&D: un enfoque Crítico Y Propositivo. Gestión y Política Pública XII(1), 43–79 (2003). https://www.redalyc.org/articulo.oa?id=13312102

  24. Figueira, J.R., Greco, S., Roy, B.: ELECTRE methods with interaction between criteria: an extension of the concordance index. Eur. J. Oper. Res. 199(2), 478–495 (2009). https://doi.org/10.1016/j.ejor.2008.11.025

    Article  MathSciNet  MATH  Google Scholar 

  25. Fox, G.E., Baker, N.R., Bryant, J.L.: Economic models for R and D project selection in the presence of project interactions. Manag. Sci. 30(7), 890–902 (1984). https://doi.org/10.1287/mnsc.30.7.890

  26. Gatzert, N., Martin, A., Schmidt, M., Seith, B., Vogl, N.: Portfolio optimization with irreversible long-term investments in renewable energy under policy risk: a mixed-integer multistage stochastic model and a moving-horizon approach. Eur. J. Oper. Res. 290(2), 734–748 (2021). https://doi.org/10.1016/j.ejor.2020.08.033

    Article  MathSciNet  MATH  Google Scholar 

  27. Ghasemzadeh, F., Archer, N., Lyogun, P.: A zero-one model for project portfolio selection and scheduling. J. Oper. Res. Soc. 50(7), 745–755 (1999). https://doi.org/10.1057/palgrave.jors.2600767

  28. Gunasekaran, A., Kirytopoulos, K., Leopoulos, V., Mavrotas, G., Voulgaridou, D.: Multiple sourcing strategies and order allocation: an ANPAUGMECON meta model. Supply Chain. Manag.: Int. J. 15(4), 263–276 (2010). https://doi.org/10.1108/13598541011054643

    Article  Google Scholar 

  29. Hao, P., Guo, J.P., Chen, Y., Xie, B.C.: Does a combined strategy outperform independent policies? Impact of incentive policies on renewable power generation. Omega (United Kingdom) 97, 102100 (2020). https://doi.org/10.1016/j.omega.2019.08.007

  30. Henriksen, A.D., Traynor, A.J.: A practical R&D project-selection scoring tool. IEEE Trans. Eng. Manage. 46(2), 158–170 (1999). https://doi.org/10.1109/17.759144

    Article  Google Scholar 

  31. Klapka, J., Piňos, P.: Decision support system for multicriterial R&D and information systems projects selection. Eur. J. Oper. Res. 140(2), 434–446 (2002). https://doi.org/10.1016/S0377-2217(02)00081-4

    Article  MATH  Google Scholar 

  32. Korotin, V., Popov, V., Tolokonsky, A., Islamov, R., Ulchenkov, A.: A multi-criteria approach to selecting an optimal portfolio of refinery upgrade projects under margin and tax regime uncertainty. Omega (United Kingdom) 72, 50–58 (2017). https://doi.org/10.1016/j.omega.2016.11.003

    Article  Google Scholar 

  33. Korotkov, V., Wu, D.: Evaluating the quality of solutions in project portfolio selection. Omega (United Kingdom) 91, 102029 (2020). https://doi.org/10.1016/j.omega.2019.01.007

  34. Korotkov, V., Wu, D.: Benchmarking project portfolios using optimality thresholds. Omega (United Kingdom) 99, 102166 (2021). https://doi.org/10.1016/j.omega.2019.102166

  35. Li, X., Huang, Y.H., Fang, S.C., Zhang, Y.: An alternative efficient representation for the project portfolio selection problem. Eur. J. Oper. Res. 281(1), 100–113 (2020). https://doi.org/10.1016/j.ejor.2019.08.022

    Article  MathSciNet  MATH  Google Scholar 

  36. Liberatore, M.J., Titus, G.J.: Practice of management science in R&D project management. Manag. Sci. 29(8), 962–974 (1983). https://doi.org/10.1287/mnsc.29.8.962

  37. Liesiö, J., Mild, P., Salo, A.: Preference programming for robust portfolio modeling and project selection. Eur. J. Oper. Res. 181(3), 1488–1505 (2007). https://doi.org/10.1016/j.ejor.2005.12.041

    Article  MATH  Google Scholar 

  38. Litvinchev, I.S., López, F., Alvarez, A., Fernández, E.: Large-scale public R&D portfolio selection by maximizing a biobjective impact measure. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 40(3), 572–582 (2010). https://doi.org/10.1109/TSMCA.2010.2041228

    Article  Google Scholar 

  39. Martinsuo, M., Geraldi, J.: Management of project portfolios: relationships of project portfolios with their contexts. Int. J. Project Manage. 38(7), 441–453 (2020). https://doi.org/10.1016/j.ijproman.2020.02.002

    Article  Google Scholar 

  40. Mavrotas, G., Diakoulaki, D., Caloghirou, Y.: Project prioritization under policy restrictions. A combination of MCDA with 0-1 programming. Eur. J. Oper. Res. 171(1), 296–308 (2006). https://doi.org/10.1016/j.ejor.2004.07.069

  41. Mavrotas, G., Diakoulaki, D., Kourentzis, A.: Selection among ranked projects under segmentation, policy and logical constraints. Eur. J. Oper. Res. 187(1), 177–192 (2008). https://doi.org/10.1016/j.ejor.2007.03.010

    Article  MATH  Google Scholar 

  42. Mavrotas, G., Makryvelios, E.: Combining multiple criteria analysis, mathematical programming and monte carlo simulation to tackle uncertainty in research and development project portfolio selection: A case study from greece. Eur. J. Oper. Res. 291(2), 794–806 (2021)

    Article  Google Scholar 

  43. Mavrotas, G., Pechak, O.: Combining mathematical programming and monte carlo simulation to deal with uncertainty in energy project portfolio selection. Green Energy Technol. 129, 333–356 (2013). https://doi.org/10.1007/978-1-4471-5143-2_16

  44. Medaglia, A.L., Graves, S.B., Ringuest, J.L.: A multiobjective evolutionary approach for linearly constrained project selection under uncertainty. Eur. J. Oper. Res. 179(3), 869–894 (2007). https://doi.org/10.1016/j.ejor.2005.03.068

    Article  MATH  Google Scholar 

  45. Moore, R.E.: Interval arithmetic and automatic error analysis in digital computing. Ph. D. dissertation,, Stanford University, Stanford, CA, United States (1963). https://dl.acm.org/doi/10.5555/904631

  46. Morton, A., Keisler, J.M., Salo, A.: Multicriteria portfolio decision analysis for project selection. Int. Ser. Oper. Res. Manag. Sci. 233, 1269–1298 (2016). https://doi.org/10.1007/978-1-4939-3094-4_28

  47. Mukherjee, K., Bera, A.: Application of goal programming in project selection decision - a case study from the Indian coal mining industry. Eur. J. Oper. Res. 82(1), 18–25 (1995). https://doi.org/10.1016/0377-2217(94)00197-K

    Article  MATH  Google Scholar 

  48. Programme, U.N.D.: Human Development Report 1997. Oxford University, Oxford, Technical report (1997)

    Google Scholar 

  49. Relich, M., Pawlewski, P.: A fuzzy weighted average approach for selecting portfolio of new product development projects. Neurocomputing 231, 19–27 (2017). https://doi.org/10.1016/j.neucom.2016.05.104

    Article  Google Scholar 

  50. Ritzenhofen, I., Birge, J.R., Spinler, S.: The structural impact of renewable portfolio standards and feed-in tariffs on electricity markets. Eur. J. Oper. Res. 255(1), 224–242 (2016). https://doi.org/10.1016/j.ejor.2016.04.061

    Article  MathSciNet  MATH  Google Scholar 

  51. Roy, B.: The outranking approach and the foundations of electre methods. Theory Decis. 31(1), 49–73 (1991). https://doi.org/10.1007/BF00134132

  52. Roy, B., Figueira, J., Almeida-Dias, J.: Discriminating thresholds as a tool to cope with imperfect knowledge in multiple criteria decision aiding: theoretical results and practical issues. Omega 43, 9–20 (2014)

    Article  Google Scholar 

  53. Salo, A., Keisler, J., Morton, A. (eds.): Portfolio Decision Analysis. International Series in Operations Research & Management Science, vol. 162. Springer, New York (2011). https://doi.org/10.1007/978-1-4419-9943-6

  54. Stummer, C., Heidenberger, K.: Interactive R&D portfolio analysis with project interdependencies and time profiles of multiple objectives. IEEE Trans. Eng. Manage. 50(2), 175–183 (2003). https://doi.org/10.1109/TEM.2003.810819

    Article  Google Scholar 

  55. Szilágyi, I., Sebestyén, Z., Tóth, T.: Project ranking in petroleum exploration. Eng. Econ. 65(1), 66–87 (2020). https://doi.org/10.1080/0013791X.2019.1593570

  56. Tervonen, T., Liesiö, J., Salo, A.: Modeling project preferences in multiattribute portfolio decision analysis. Eur. J. Oper. Res. 263(1), 225–239 (2017). https://doi.org/10.1016/j.ejor.2017.04.051

    Article  MathSciNet  MATH  Google Scholar 

  57. Toppila, A., Salo, A.: Binary decision diagrams for generating and storing non-dominated project portfolios with interval-valued project scores. Eur. J. Oper. Res. 260(1), 244–254 (2017). https://doi.org/10.1016/j.ejor.2016.12.019

    Article  MathSciNet  MATH  Google Scholar 

  58. Vetschera, R., De Almeida, A.T.: A PROMETHEE-based approach to portfolio selection problems. Comput. Oper. Res. 39(5), 1010–1020 (2012). https://doi.org/10.1016/j.cor.2011.06.019

    Article  MathSciNet  MATH  Google Scholar 

  59. Yunes, T.H., Napolitano, D., Scheller-Wolf, A., Tayur, S.: Building efficient product portfolios at John Deere and Company. Oper. Res. 55(4), 615–629 (2007). https://doi.org/10.1287/opre.1070.0405

    Article  MATH  Google Scholar 

  60. Zanakis, S.H., Mandakovic, T., Gupta, S.K., Sahay, S., Hong, S.: A review of program evaluation and fund allocation methods within the service and government sectors. Socioecon. Plann. Sci. 29(1), 59–79 (1995). https://doi.org/10.1016/0038-0121(95)98607-W

    Article  Google Scholar 

Download references

Acknowledgements

Carlos A. Coello Coello acknowledges support from CONACyT project no. 2016-01-1920 (Investigación en Fronteras de la Ciencia 2016) and from a project from the 2018 SEP-Cinvestav Fund (application no. 4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Efrain Solares .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fernández, E., Solares, E., Coello Coello, C.A., De-León-Gómez, V. (2022). An Overall Characterization of the Project Portfolio Optimization Problem and an Approach Based on Evolutionary Algorithms to Address It. In: Harrison, K.R., Elsayed, S., Garanovich, I.L., Weir, T., Boswell, S.G., Sarker, R.A. (eds) Evolutionary and Memetic Computing for Project Portfolio Selection and Scheduling. Adaptation, Learning, and Optimization, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-030-88315-7_4

Download citation

Publish with us

Policies and ethics