Skip to main content

Learning-Based Approaches to Estimate Job Wait Time in HTC Datacenters

  • Conference paper
  • First Online:
Job Scheduling Strategies for Parallel Processing (JSSPP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12985))

Included in the following conference series:

Abstract

High Throughput Computing datacenters are a cornerstone of scientific discoveries in the fields of High Energy Physics and Astroparticles Physics. These datacenters provide thousands of users from dozens of scientific collaborations with tens of thousands computing cores and Petabytes of storage.

The scheduling algorithm used in such datacenters to handle the millions of (mostly single-core) jobs submitted every month ensures a fair sharing of the computing resources among user groups, but may also cause unpredictably long job wait times for some users. The time a job will wait can be caused by many entangled factors and configuration parameters and is thus very hard to predict. Moreover, batch systems implementing a fair-share scheduling algorithm cannot provide users with any estimation of the job wait time at submission time.

Therefore, we investigate in this paper how learning-based techniques applied to the logs of the batch scheduling system of a large HTC datacenter can be used to get an estimation of job wait time. First, we illustrate the need for users for such an estimation. Then, we identify some intuitive causes of this wait time from the information found in the batch system logs. We also formally analyze the correlation between job and system features and job wait time. Finally, we study several Machine Learning algorithms to implement learning-based estimators of both job wait time and job wait time ranges. Our experimental results show that a regression-based estimator can predict job wait time with a median absolute percentage error of about 54%, while a classifier that combines regression and classification assigns nearly 77% of the jobs in the right wait time range or in an immediately adjacent one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Azevedo, F., Gombert, L., Suter, F.: Reducing the human-in-the-loop component of the scheduling of large HTC workloads. In: Klusáček, D., Cirne, W., Desai, N. (eds.) JSSPP 2018. LNCS, vol. 11332, pp. 39–60. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-10632-4_3

    Chapter  Google Scholar 

  2. Azevedo, F., Klusáček, D., Suter, F.: Improving fairness in a large scale HTC system through workload analysis and simulation. In: Yahyapour, R. (ed.) Euro-Par 2019. LNCS, vol. 11725, pp. 129–141. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29400-7_10

    Chapter  Google Scholar 

  3. Breiman, L.: Stacked regressions. Mach. Learn. 24(1), 49–64 (1996). https://doi.org/10.1007/BF00117832

    Article  MathSciNet  MATH  Google Scholar 

  4. Brevik, J., Nurmi, D., Wolski, R.: Predicting bounds on queuing delay for batch-scheduled parallel machines. In: Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPOPP), New York, NY, pp. 110–118, March 2006. https://doi.org/10.1145/1122971.1122989

  5. Feitelson, D.G.: Metrics for parallel job scheduling and their convergence. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 2001. LNCS, vol. 2221, pp. 188–205. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45540-X_11

    Chapter  MATH  Google Scholar 

  6. Feitelson, D., Tsafrir, D., Krakov, D.: Experience with using the parallel workloads archive. J. Parallel Distri. Comput. 74(10), 2967–2982 (2014)

    Article  Google Scholar 

  7. Freund, Y., Schapire, R.: A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997). https://doi.org/10.1006/jcss.1997.1504

    Article  MathSciNet  MATH  Google Scholar 

  8. Gombert, L., Suter, F.: Companion of the “learning-based approaches to estimate job wait time in HTC datacenters” article (2021). https://doi.org/10.6084/m9.figshare.13913912

  9. Jancauskas, V., Piontek, T., Kopta, P., Bosak, B.: Predicting queue wait time probabilities for multi-scale computing. Philos. Trans. Roy. Soc. A 377(2142) (2019). https://doi.org/10.1098/rsta.2018.0151

  10. Kay, J., Lauder, P.: A fair share scheduler. Commun. ACM 31(1), 44–55 (1988)

    Article  Google Scholar 

  11. Kumar, R., Vadhiyar, S.: Prediction of queue waiting times for metascheduling on parallel batch systems. In: Cirne, W., Desai, N. (eds.) JSSPP 2014. LNCS, vol. 8828, pp. 108–128. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15789-4_7

    Chapter  Google Scholar 

  12. Li, H., Chen, J., Tao, Y., Groep, D., Wolters, L.: Improving a local learning technique for QueueWait time predictions. In: Proceedings of the Sixth IEEE International Symposium on Cluster Computing and the Grid (CCGrid), Singapore, pp. 335–342, May 2006.https://doi.org/10.1109/CCGRID.2006.57

  13. Li, H., Groep, D., Wolters, L.: Efficient response time predictions by exploiting application and resource state similarities. In: Proceedings of of the 6th IEEE/ACM International Conference on Grid Computing (GRID), Seattle, WA, pp. 234–241, November 2005. https://doi.org/10.1109/GRID.2005.1542747

  14. Loh, W.Y.: Classification and regression trees. Wiley Interdisc. Rev.: Data Min. Knowl. Discov. 1, 14–23 (2011). https://doi.org/10.1002/widm.8

    Article  Google Scholar 

  15. Mu’alem, A., Feitelson, D.: Utilization, predictability, workloads, and user runtime estimates in scheduling the IBM SP2 with backfilling. IEEE TPDS 12(6), 529–543 (2001)

    Google Scholar 

  16. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Schlagkamp, S., Ferreira da Silva, R., Allcock, W., Deelman, E., Schwiegelshohn, U.: Consecutive job submission behavior at mira supercomputer. In: Proceedings of the 25th ACM International Symposium on High-Performance Parallel and Distributed Computing (HPDC), Kyoto, Japan, pp. 93–96, May 2016. https://doi.org/10.1145/2907294.2907314

  18. Smith, W.: A service for queue prediction and job statistics. In: Proceedings of the 2010 Gateway Computing Environments Workshop, Los Alamitos, CA, pp. 1–8, November 2010. https://doi.org/10.1109/GCE.2010.5676119

  19. Smith, W., Foster, I., Taylor, V.: Predicting application run times with historical information. JPDC 64(9), 1007–1016 (2004). https://doi.org/10.1016/j.jpdc.2004.06.008

    Article  MATH  Google Scholar 

  20. Smith, W., Taylor, V., Foster, I.: Using run-time predictions to estimate queue wait times and improve scheduler performance. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 1999. LNCS, vol. 1659, pp. 202–219. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-47954-6_11

    Chapter  Google Scholar 

  21. The IN2P3/CNRS Computing Center. http://cc.in2p3.fr/en/

  22. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc. Ser. B (Methodol.) 58(1), 267–288 (1996). https://doi.org/10.2307/2346178

  23. Univa Corporation: Grid Engine. http://www.univa.com/products/

Download references

Acknowledgments

The authors would like to thank Wataru Takase and his colleagues from the Japanese High Energy Accelerator Research Organization (KEK) for providing the initial motivation for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Suter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gombert, L., Suter, F. (2021). Learning-Based Approaches to Estimate Job Wait Time in HTC Datacenters. In: Klusáček, D., Cirne, W., Rodrigo, G.P. (eds) Job Scheduling Strategies for Parallel Processing. JSSPP 2021. Lecture Notes in Computer Science(), vol 12985. Springer, Cham. https://doi.org/10.1007/978-3-030-88224-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88224-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88223-5

  • Online ISBN: 978-3-030-88224-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics