Skip to main content

Computing with Magnetic Thin Films: Using Film Geometry to Improve Dynamics

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12984))

Abstract

Inspired by the nonlinear dynamics of neural networks, new unconventional computing hardware has emerged under the name of physical reservoir computing. In this paradigm, an input-driven dynamical system (the reservoir) is exploited and trained to perform computational tasks. Recent spintronic thin-film reservoirs show state-of-the-art performances despite simplicity in their design. Here, we explore film geometry and show that simple changes to film shape and input location can lead to greater memory and improved performance across various time-series tasks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Accessible from: http://soma.ece.mcmaster.ca/ipix/ (2021).

References

  1. Adamatzky, A., Costello, B.D.L., Asai, T.: Reaction-Diffusion Computers. Elsevier, Amsterdam (2005)

    Google Scholar 

  2. Antonik, P., Marsal, N., Brunner, D., Rontani, D.: Bayesian optimisation of large-scale photonic reservoir computers. Cogn. Comput. 1–9 (2021). https://doi.org/10.1007/s12559-020-09732-6

  3. Appeltant, L., et al.: Information processing using a single dynamical node as complex system. Nat. Commun. 2, 468 (2011). https://doi.org/10.1038/ncomms1476

    Article  Google Scholar 

  4. Atiya, A.F., Parlos, A.G.: New results on recurrent network training: unifying the algorithms and accelerating convergence. IEEE Trans. Neural Netw. 11(3), 697–709 (2000). https://doi.org/10.1109/72.846741

    Article  Google Scholar 

  5. Bala, A., Ismail, I., Ibrahim, R., Sait, S.M.: Applications of metaheuristics in reservoir computing techniques: a review. IEEE Access 6, 58012–58029 (2018). https://doi.org/10.1109/ACCESS.2018.2873770

    Article  Google Scholar 

  6. Chen, T., et al.: Classification with a disordered dopant-atom network in silicon. Nature 577(7790), 341–345 (2020). https://doi.org/10.1038/s41586-019-1901-0

    Article  Google Scholar 

  7. Chumak, A.V., Vasyuchka, V.I., Serga, A.A., Hillebrands, B.: Magnon spintronics. Nat. Phys. 11(6), 453–461 (2015). https://doi.org/10.1038/nphys3347

    Article  Google Scholar 

  8. Dale, M., et al.: Reservoir computing with thin-film ferromagnetic devices. arXiv preprint arXiv:2101.12700 (2021)

  9. Dale, M., Miller, J.F., Stepney, S., Trefzer, M.A.: Evolving carbon nanotube reservoir computers. In: Amos, M., Condon, A. (eds.) UCNC 2016. LNCS, vol. 9726, pp. 49–61. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41312-9_5

    Chapter  Google Scholar 

  10. Dale, M., O’Keefe, S., Sebald, A., Stepney, S., Trefzer, M.A.: Reservoir computing quality: connectivity and topology. Nat. Comput. 20(2), 205–216 (2020). https://doi.org/10.1007/s11047-020-09823-1

    Article  MathSciNet  MATH  Google Scholar 

  11. Dale, M., Stepney, S., Miller, J.F., Trefzer, M.: Reservoir computing in materio: a computational framework for in materio computing. In: IJCNN 2017, pp. 2178–2185. IEEE (2017). https://doi.org/10.1109/IJCNN.2017.7966119

  12. Duport, F., Schneider, B., Smerieri, A., Haelterman, M., Massar, S.: All-optical reservoir computing. Opt. Express 20(20), 22783–22795 (2012). https://doi.org/10.1364/OE.20.022783

    Article  Google Scholar 

  13. Evans, R.F.L., Fan, W.J., Chureemart, P., Ostler, T.A., Ellis, M.O.A., Chantrell, R.W.: Atomistic spin model simulations of magnetic nanomaterials. J. Phys. Condens. Matter 26(10) (2014). https://doi.org/10.1088/0953-8984/26/10/103202

  14. Fernando, C., Sojakka, S.: Pattern recognition in a bucket. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 588–597. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39432-7_63

    Chapter  Google Scholar 

  15. Grollier, J., Querlioz, D., Camsari, K., Everschor-Sitte, K., Fukami, S., Stiles, M.D.: Neuromorphic spintronics. Nat. Electron. 3(7), 360–370 (2020). https://doi.org/10.1038/s41928-019-0360-9

    Article  Google Scholar 

  16. Ichimura, T., Nakane, R., Tanaka, G., Hirose, A.: A numerical exploration of signal detector arrangement in a spin-wave reservoir computing device. IEEE Access 9, 72637–72646 (2021). https://doi.org/10.1109/ACCESS.2021.3079583

    Article  Google Scholar 

  17. Izhikevich, E.M., Hoppensteadt, F.C.: Polychronous wavefront computations. Int. J. Bifurcat. Chaos 19(05), 1733–1739 (2009). https://doi.org/10.1142/S0218127409023809

    Article  MathSciNet  Google Scholar 

  18. Jaeger, H.: Short term memory in echo state networks. GMD-Forschungszentrum Informationstechnik (2001)

    Google Scholar 

  19. Jaeger, H., Haas, H.: Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304(5667), 78–80 (2004). https://doi.org/10.1126/science.1091277

    Article  Google Scholar 

  20. Jakubowski, M.H., Steiglitz, K., Squier, R.: Computing with solitons: a review and prospectus. In: Adamatzky, A. (ed.) Collision-Based Computing, pp. 277–297. Springer, London (2002). https://doi.org/10.1007/978-1-4471-0129-1_10

    Chapter  Google Scholar 

  21. Kurenkov, A., Fukami, S., Ohno, H.: Neuromorphic computing with antiferromagnetic spintronics. J. Appl. Phys. 128(1), 010902 (2020). https://doi.org/10.1063/5.0009482

    Article  Google Scholar 

  22. Lilak, S., et al.: Spoken digit classification by in-materio reservoir computing with neuromorphic atomic switch networks. arXiv preprint arXiv:2103.12835 (2021)

  23. Lukoševičius, M.: A practical guide to applying echo state networks. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 659–686. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_36

    Chapter  Google Scholar 

  24. Macià, F., Kent, A.D., Hoppensteadt, F.C.: Spin-wave interference patterns created by spin-torque nano-oscillators for memory and computation. Nanotechnology 22(9), 095301 (2011). https://doi.org/10.1088/0957-4484/22/9/095301

    Article  Google Scholar 

  25. Miller, J.F., Harding, S.L., Tufte, G.: Evolution-in-materio: evolving computation in materials. Evol. Intell. 7(1), 49–67 (2014). https://doi.org/10.1007/s12065-014-0106-6

    Article  Google Scholar 

  26. Nakajima, K., Hauser, H., Li, T., Pfeifer, R.: Information processing via physical soft body. Sci. Rep. 5(1), 1–11 (2015). https://doi.org/10.1038/srep10487

    Article  Google Scholar 

  27. Paquot, Y., et al.: Optoelectronic reservoir computing. Sci. Rep. 2 (2012). https://doi.org/10.1038/srep00287

  28. Penty, A., Tufte, G.: A representation of artificial spin ice for evolutionary search. In: ALIFE 2021: The 2021 Conference on Artificial Life. MIT Press (2021). https://doi.org/10.1162/isal_a_00436

  29. Pinna, D., Bourianoff, G., Everschor-Sitte, K.: Reservoir computing with random skyrmion textures. Phys. Rev. Appl. 14, 054020 (2020). https://doi.org/10.1103/PhysRevApplied.14.054020

    Article  Google Scholar 

  30. Rodan, A., Tiňo, P.: Simple deterministically constructed recurrent neural networks. In: Fyfe, C., Tino, P., Charles, D., Garcia-Osorio, C., Yin, H. (eds.) IDEAL 2010. LNCS, vol. 6283, pp. 267–274. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15381-5_33

    Chapter  Google Scholar 

  31. Romera, M., et al.: Vowel recognition with four coupled spin-torque nano-oscillators. Nature 563(7730), 230–234 (2018). https://doi.org/10.1038/s41586-018-0632-y

    Article  Google Scholar 

  32. Stepney, S., Rasmussen, S., Amos, M.: Computational Matter. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-65826-1

    Book  MATH  Google Scholar 

  33. Tanaka, G., et al.: Recent advances in physical reservoir computing: a review. Neural Netw. 115, 100–123 (2019). https://doi.org/10.1016/j.neunet.2019.03.005

    Article  Google Scholar 

  34. Torrejon, J., et al.: Neuromorphic computing with nanoscale spintronic oscillators. Nature 547(7664), 428–431 (2017). https://doi.org/10.1038/nature23011

    Article  Google Scholar 

  35. Verstraeten, D., Schrauwen, B., d’Haene, M., Stroobandt, D.: An experimental unification of reservoir computing methods. Neural Netw. 20(3), 391–403 (2007). https://doi.org/10.1016/j.neunet.2007.04.003

    Article  MATH  Google Scholar 

  36. Xue, Y., Yang, L., Haykin, S.: Decoupled echo state networks with lateral inhibition. Neural Netw. 20(3), 365–376 (2007). https://doi.org/10.1016/j.neunet.2007.04.014

    Article  MATH  Google Scholar 

Download references

Acknowledgments

Thanks to Richard Evans and Sarah Jenkins for help with the VAMPIRE simulator. All experiments were carried out using the Viking Cluster, a high performance compute facility provided by the University of York. This work was funded by the SpInspired project, EPSRC grant EP/R032823/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Stepney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dale, M., O’Keefe, S., Sebald, A., Stepney, S., Trefzer, M.A. (2021). Computing with Magnetic Thin Films: Using Film Geometry to Improve Dynamics. In: Kostitsyna, I., Orponen, P. (eds) Unconventional Computation and Natural Computation. UCNC 2021. Lecture Notes in Computer Science(), vol 12984. Springer, Cham. https://doi.org/10.1007/978-3-030-87993-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87993-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87992-1

  • Online ISBN: 978-3-030-87993-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics