Skip to main content

How Safe is Plasma Treatment in Clinical Applications?

  • Chapter
  • First Online:
Textbook of Good Clinical Practice in Cold Plasma Therapy

Abstract

The principal aim of this chapter is to provide a comprehensive overview of safety aspects and potential health risks in humans related to the exposure to cold physical plasma. Numerous studies were concerned with these critical aspects, as it is pivotal for the general acceptance of cold physical plasma among biologists, physicists, physicians, and patients. The chapter consists of five sections. It starts with an introduction to risk management, describing fundamentals in the risk assessment process and standardization. The next section summarizes the basics of cold physical plasma use and a description of sources, components, and biological effectors. The critical parameters of the multi-component plasma system are discussed, which are likely to be effective, but also potentially hazardous in their application to biological tissue. The next part covers risk estimations of plasma applications, a comprehensive analysis of studies assessing the preclinical and clinical relevance, and an analysis of the reliability of utilizing plasma treatment in clinical trials. A majority of studies pointed to a lack of mutagenic- and genotoxic-related effects along with beneficial effects in chronic wound healing, decontamination, and the killing of microorganisms and tumor cells. The last paragraph addresses the perspectives and limitations of plasma use in clinical plasma medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Privat-Maldonado A, Schmidt A, Lin A, Weltmann KD, Wende K, Bogaerts A, et al. ROS from physical plasmas: redox chemistry for biomedical therapy. Oxidative Med Cell Longev. 2019;2019:9062098. https://doi.org/10.1155/2019/9062098.

    Article  CAS  Google Scholar 

  2. Graves DB. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J Phys D Appl Phys [Internet]. 2012;45:263001 p.

    Google Scholar 

  3. Bernhardt T, Semmler ML, Schafer M, Bekeschus S, Emmert S, Boeckmann L. Plasma medicine: applications of cold atmospheric pressure plasma in dermatology. Oxidative Med Cell Longev. 2019;2019:3873928. https://doi.org/10.1155/2019/3873928.

    Article  CAS  Google Scholar 

  4. Izadjoo M, Zack S, Kim H, Skiba J. Medical applications of cold atmospheric plasma: state of the science. J Wound Care. 2018;27(Sup9):S4–S10. https://doi.org/10.12968/jowc.2018.27.Sup9.S4.

    Article  PubMed  Google Scholar 

  5. Metelmann H-R, Von Woedtke T, Weltmann K-D. Comprehensive clinical plasma medicine: cold physical plasma for medical application. Berlin: Springer; 2018.

    Book  Google Scholar 

  6. Semmler ML, Bekeschus S, Schafer M, Bernhardt T, Fischer T, Witzke K, et al. Molecular mechanisms of the efficacy of cold atmospheric pressure plasma (CAP) in cancer treatment. Cancers (Basel). 2020;12(2). https://doi.org/10.3390/cancers12020269.

  7. Weltmann KD, von Woedtke T. Plasma medicine-current state of research and medical application. Plasma Phys Control Fusion. 2017;59(1):014031. https://doi.org/10.1088/0741-3335/59/1/014031.

    Article  CAS  Google Scholar 

  8. Helmke A, Gerling T, Weltmann K-D. Plasma sources for biomedical applications. In: Metelmann H-R, von Woedtke T, Weltmann K-D, editors. Comprehensive clinical plasma medicine. Cham: Springer International Publishing; 2018. p. 23–41.

    Chapter  Google Scholar 

  9. Metelmann H-R, von Woedtke T, Weltmann K-D. Comprehensive clinical plasma medicine. Cham: Springer International Publishing; 2018.

    Book  Google Scholar 

  10. Adamovich I, Baalrud SD, Bogaerts A, Bruggeman PJ, Cappelli M, Colombo V, et al. The 2017 plasma roadmap: low temperature plasma science and technology. J Phys D Appl Phys. 2017;50(32):323001. https://doi.org/10.1088/1361-6463/aa76f5.

    Article  CAS  Google Scholar 

  11. Reuter S, von Woedtke T, Weltmann KD. The kINPen-a review on physics and chemistry of the atmospheric pressure plasma jet and its applications. J Phys D Appl Phys. 2018;51(23). https://doi.org/10.1088/1361-6463/aab3ad.

  12. von Woedtke T, Schmidt A, Bekeschus S, Wende K, Weltmann KD. Plasma medicine: A field of applied redox biology. In Vivo. 2019;33(4):1011–26. https://doi.org/10.21873/invivo.11570.

    Article  CAS  Google Scholar 

  13. Mann MS, Tiede R, Gavenis K, Daeschlein G, Bussiahn R, Weltmann K-D, et al. Introduction to DIN-specification 91315 based on the characterization of the plasma jet kINPen® MED. Clin Plasma Med. 2016;4(2):35–45. https://doi.org/10.1016/j.cpme.2016.06.001.

    Article  Google Scholar 

  14. Herbst F, van Schalkwyk J, McGovern M. MicroPlaSter and SteriPlas. In: Metelmann H-R, von Woedtke T, Weltmann K-D, editors. Comprehensive Clinical Plasma Medicine. Cham: Springer International Publishing; 2018. p. 503–9.

    Chapter  Google Scholar 

  15. Wandke D. PlasmaDerm® - based on di_CAP technology. In: Metelmann H-R, von Woedtke T, Weltmann K-D, editors. Comprehensive clinical plasma medicine. Cham: Springer International Publishing; 2018. p. 495–502.

    Chapter  Google Scholar 

  16. von Woedtke T, Reuter S, Masur K, Weltmann KD. Plasmas for medicine. Phys Rep. 2013;530(4):291–320. https://doi.org/10.1016/j.physrep.2013.05.005.

    Article  CAS  Google Scholar 

  17. Memar MY, Ghotaslou R, Samiei M, Adibkia K. Antimicrobial use of reactive oxygen therapy: current insights. Infect Drug Resist. 2018;11:567–76. https://doi.org/10.2147/Idr.S142397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fan HG, Kovacevic R. A unified model of transport phenomena in gas metal arc welding including electrode, arc plasma and molten pool. J Phys D Appl Phys. 2004;37(18):2531–44. https://doi.org/10.1088/0022-3727/37/18/009.

    Article  CAS  Google Scholar 

  19. Khakpour A, Franke S, Uhrlandt D, Gorchakov S, Methling R-P. Electrical arc model based on physical parameters and power calculation. IEEE Transactions on Plasma Science. 2015;43(8):2721–9. https://doi.org/10.1109/tps.2015.2450359.

    Article  CAS  Google Scholar 

  20. Gerling T, Helmke A, Weltmann K-D. Relevant plasma parameters for certification. In: Comprehensive Clinical Plasma Medicine; 2018. p. 43–70. https://doi.org/10.1007/978-3-319-67627-2_3.

    Chapter  Google Scholar 

  21. Brandenburg R. Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments. Plasma Sources Sci Technol. 2017;26(5):053001. https://doi.org/10.1088/1361-6595/aa6426.

    Article  Google Scholar 

  22. Bekeschus S, Lin A, Fridman A, Wende K, Weltmann KD, Miller V. A comparison of floating-electrode DBD and kINPen jet: plasma parameters to achieve similar growth reduction in colon cancer cells under standardized conditions. Plasma Chem Plasma Process. 2018;38(1):1–12. https://doi.org/10.1007/s11090-017-9845-3.

    Article  CAS  Google Scholar 

  23. Wolff CM, Steuer A, Stoffels I, von Woedtke T, Weltmann K-D, Bekeschus S, et al. Combination of cold plasma and pulsed electric fields – A rationale for cancer patients in palliative care. Clin Plasma Med 2020. https://doi.org/10.1016/j.cpme.2020.100096.

  24. Steuer A, Schmidt A, Laboha P, Babica P, Kolb JF. Transient suppression of gap junctional intercellular communication after exposure to 100-nanosecond pulsed electric fields. Bioelectrochemistry. 2016;112:33–46. https://doi.org/10.1016/j.bioelechem.2016.07.003.

    Article  CAS  PubMed  Google Scholar 

  25. Yusupov M, Van der Paal J, Neyts EC, Bogaerts A. Synergistic effect of electric field and lipid oxidation on the permeability of cell membranes. Biochim Biophys Acta Gen Subj. 2017;1861(4):839–47. https://doi.org/10.1016/j.bbagen.2017.01.030.

    Article  CAS  PubMed  Google Scholar 

  26. Steuer A, Wolff CM, von Woedtke T, Weltmann KD, Kolb JF. Cell stimulation versus cell death induced by sequential treatments with pulsed electric fields and cold atmospheric pressure plasma. PLoS One. 2018;13(10):e0204916. https://doi.org/10.1371/journal.pone.0204916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Babaeva NY, Tian W, Kushner MJ. The interaction between plasma filaments in dielectric barrier discharges and liquid covered wounds: electric fields delivered to model platelets and cells. J Phys D Appl Phys. 2014;47(23). https://doi.org/10.1088/0022-3727/47/23/235201.

  28. Koch R. The coupling of electromagnetic power to plasmas. Fusion Sci Technol. 2017;45(2T):193–202. https://doi.org/10.13182/fst04-a483.

    Article  Google Scholar 

  29. Yarmolenko PS, Moon EJ, Landon C, Manzoor A, Hochman DW, Viglianti BL, et al. Thresholds for thermal damage to normal tissues: an update. Int J Hyperth. 2011;27(4):320–43. https://doi.org/10.3109/02656736.2010.534527.

    Article  Google Scholar 

  30. Kuchenbecker M, Bibinov N, Kaemlimg A, Wandke D, Awakowicz P, Viol W. Characterization of DBD plasma source for biomedical applications. J Phys D Appl Phys. 2009;42(4):045212. https://doi.org/10.1088/0022-3727/42/4/045212.

    Article  CAS  Google Scholar 

  31. Bussiahn R, Lembke N, Gesche R, von Woedtke T, Weltmann K-D. Plasma sources for biomedical applications. Hyg Med. 2013;38:212–6.

    Google Scholar 

  32. Weltmann KD, Kindel E, Brandenburg R, Meyer C, Bussiahn R, Wilke C, et al. Atmospheric pressure plasma jet for medical therapy: plasma parameters and risk estimation. Contrib Plasma Phys. 2009;49(9):631–40. https://doi.org/10.1002/ctpp.200910067.

    Article  Google Scholar 

  33. Schmidt A, Bekeschus S, Wende K, Vollmar B, von Woedtke T. A cold plasma jet accelerates wound healing in a murine model of full-thickness skin wounds. Exp Dermatol. 2017;26(2):156–62. https://doi.org/10.1111/exd.13156.

    Article  CAS  PubMed  Google Scholar 

  34. Schmidt A, Woedtke TV, Stenzel J, Lindner T, Polei S, Vollmar B, et al. One year follow-up risk assessment in SKH-1 mice and wounds treated with an argon plasma jet. Int J Mol Sci. 2017;18(4). https://doi.org/10.3390/ijms18040868.

  35. Hasse S, Duong Tran T, Hahn O, Kindler S, Metelmann HR, von Woedtke T, et al. Induction of proliferation of basal epidermal keratinocytes by cold atmospheric-pressure plasma. Clin Exp Dermatol. 2016;41(2):202–9. https://doi.org/10.1111/ced.12735.

    Article  CAS  PubMed  Google Scholar 

  36. Isbary G, Heinlin J, Shimizu T, Zimmermann JL, Morfill G, Schmidt HU, et al. Successful and safe use of 2 min cold atmospheric argon plasma in chronic wounds: results of a randomized controlled trial. Br J Dermatol. 2012;167(2):404–10. https://doi.org/10.1111/j.1365-2133.2012.10923.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. von Woedtke T, Metelmann HR, Weltmann KD. Clinical plasma medicine: state and perspectives ofin VivoApplication of cold atmospheric plasma. Contrib Plasma Physics. 2014;54(2):104–17. https://doi.org/10.1002/ctpp.201310068.

    Article  CAS  Google Scholar 

  38. Lademann J, Richter H, Alborova A, Humme D, Patzelt A, Kramer A, et al. Risk assessment of the application of a plasma jet in dermatology. J Biomed Opt. 2009;14(5):054025. https://doi.org/10.1117/1.3247156.

    Article  CAS  PubMed  Google Scholar 

  39. Lademann J, Richter H, Patzelt A, Meinke MC, Fluhr JW, Kramer A, et al. Antisepsis of the skin by treatment with tissue-tolerable plasma (TTP): risk assessment and perspectives. In: Plasma for bio-decontamination, medicine and food security. Dordrecht: Springer; 2012. p. 281–91.

    Chapter  Google Scholar 

  40. Lademann J, Ulrich C, Patzelt A, Richter H, Kluschke F, Klebes M, et al. Risk assessment of the application of tissue-tolerable plasma on human skin. Clin Plasma Med. 2013;1(1):5–10. https://doi.org/10.1016/j.cpme.2013.01.001.

    Article  Google Scholar 

  41. Brehmer F, Haenssle HA, Daeschlein G, Ahmed R, Pfeiffer S, Gorlitz A, et al. Alleviation of chronic venous leg ulcers with a hand-held dielectric barrier discharge plasma generator (PlasmaDerm((R)) VU-2010): results of a monocentric, two-armed, open, prospective, randomized and controlled trial (NCT01415622). J Eur Acad Dermatol Venereol. 2015;29(1):148–55. https://doi.org/10.1111/jdv.12490.

    Article  CAS  PubMed  Google Scholar 

  42. Rutkowski R, Daeschlein G, von Woedtke T, Smeets R, Gosau M, Metelmann HR. Long-term risk assessment for medical application of cold atmospheric pressure plasma. Diagnostics (Basel). 2020;10:4. https://doi.org/10.3390/diagnostics10040210.

    Article  Google Scholar 

  43. Wende K, Schmidt A, Bekeschus S. Safety aspects of non-thermal plasmas. In: Metelmann H-R, von Woedtke T, Weltmann K-D, editors. Comprehensive clinical plasma medicine. Cham: Springer International Publishing; 2018. p. 83–109.

    Chapter  Google Scholar 

  44. Bekeschus S, Schmidt A, Weltmann K-D, von Woedtke T. The plasma jet kINPen – A powerful tool for wound healing. Clin Plasma Med. 2016;4(1):19–28. https://doi.org/10.1016/j.cpme.2016.01.001.

    Article  Google Scholar 

  45. Sinha RP, Hader DP. UV-induced DNA damage and repair: a review. Photochem Photobiol Sci. 2002;1(4):225–36.

    Article  CAS  Google Scholar 

  46. Proksch E, Brandner JM, Jensen JM. The skin: an indispensable barrier. Exp Dermatol. 2008;17(12):1063–72. https://doi.org/10.1111/j.1600-0625.2008.00786.x.

    Article  PubMed  Google Scholar 

  47. Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer. 2003;3(5):380–7. https://doi.org/10.1038/nrc1071.

    Article  CAS  PubMed  Google Scholar 

  48. Dos Santos AF, De Almeida DRQ, Terra LF, Baptista MS, Labriola L. Photodynamic therapy in cancer treatment - an update review. J Cancer Metastasis Treat. 2019;2019. https://doi.org/10.20517/2394-4722.2018.83.

  49. Weischer M, Blum A, Eberhard F, Rocken M, Berneburg M. No evidence for increased skin cancer risk in psoriasis patients treated with broadband or narrowband UVB phototherapy: a first retrospective study. Acta Derm Venereol. 2004;84(5):370–4. https://doi.org/10.1080/00015550410026948.

    Article  PubMed  Google Scholar 

  50. Schallreuter KU, Wood JM, Lemke KR, Levenig C. Treatment of vitiligo with a topical application of pseudocatalase and calcium in combination with short-term UVB exposure: a case study on 33 patients. Dermatology. 1995;190(3):223–9. https://doi.org/10.1159/000246690.

    Article  CAS  PubMed  Google Scholar 

  51. Scherschun L, Kim JJ, Lim HW. Narrow-band ultraviolet B is a useful and well-tolerated treatment for vitiligo. J Am Acad Dermatol. 2001;44(6):999–1003. https://doi.org/10.1067/mjd.2001.114752.

    Article  CAS  PubMed  Google Scholar 

  52. Bussiahn R, Lembke N, Gesche R, von Woedtke T, Weltmann K-D. Plasmaquellen für biomedizinische Applikationen. Hyg Med. 2013;38:212–6.

    Google Scholar 

  53. European Union. Directive 2006/25/EC on the minimum health and safety requirements regarding the exposure of workers to risks arising from physical agents (artificial optical radiation) (19th individual Directive within the meaning of Article 16(1) of Directive 89/391/EEC). 2006(L 114):0038–59.

    Google Scholar 

  54. Lehmann A, Pietag F, Arnold T. Human health risk evaluation of a microwave-driven atmospheric plasma jet as medical device. Clin Plasma Med. 2017;7-8:16–23. https://doi.org/10.1016/j.cpme.2017.06.001.

    Article  Google Scholar 

  55. Wende K, von Woedtke T, Weltmann KD, Bekeschus S. Chemistry and biochemistry of cold physical plasma derived reactive species in liquids. Biol Chem. 2018;400(1):19–38. https://doi.org/10.1515/hsz-2018-0242.

    Article  CAS  PubMed  Google Scholar 

  56. Winter J, Wende K, Masur K, Iseni S, Dunnbier M, Hammer MU, et al. Feed gas humidity: a vital parameter affecting a cold atmospheric-pressure plasma jet and plasma-treated human skin cells. J Phys D Appl Phys. 2013;46(29):295401. https://doi.org/10.1088/0022-3727/46/29/295401.

    Article  CAS  Google Scholar 

  57. Frenking G, Koch W, Reichel F, Cremer D. Light noble gas chemistry: structures, stabilities, and bonding of helium, neon, and argon compounds. J Am Chem Soc. 1990;112:4240–56.

    Article  CAS  Google Scholar 

  58. Ohorodnik SD, DeGendt S, Tong SL, Harrison WW. Consideration of the chemical reactivity of trace impurities glow discharge. J Anal At Spectrom. 1993;8:859–65.

    Article  CAS  Google Scholar 

  59. Schmidt-Bleker A, Winter J, Iseni S, Dunnbier M, Weltmann KD, Reuter S. Reactive species output of a plasma jet with a shielding gas device-combination of FTIR absorption spectroscopy and gas phase modelling. J Phys D Appl Phys. 2014;47(14):145201. https://doi.org/10.1088/0022-3727/47/14/145201.

    Article  CAS  Google Scholar 

  60. Kogoma M, Okazaki S. Raising of ozone formation efficiency in a homogeneous glow discharge plasma at atmospheric pressure. J Phys D Appl Phys. 1994;27(9):1985–7. https://doi.org/10.1088/0022-3727/27/9/026.

    Article  CAS  Google Scholar 

  61. Zhang S, van Gaens W, van Gessel B, Hofmann S, van Veldhuizen E, Bogaerts A, et al. Spatially resolved ozone densities and gas temperatures in a time modulated RF driven atmospheric pressure plasma jet: an analysis of the production and destruction mechanisms. J Phys D Appl Phys. 2013;46(20). https://doi.org/10.1088/0022-3727/46/20/205202.

  62. Kalghatgi S, Azizkhan-Clifford J. DNA damage in mammalian cells by atmospheric pressure microsecond-pulsed dielectric barrier discharge plasma is not mediated via lipid peroxidation. Plasma Med. 2011;1(2):167–77. https://doi.org/10.1615/PlasmaMed.2011003798.

    Article  Google Scholar 

  63. Victor VM, Rocha M, De la Fuente M. Immune cells: free radicals and antioxidants in sepsis. Int Immunopharmacol. 2004;4(3):327–47. https://doi.org/10.1016/j.intimp.2004.01.020.

    Article  CAS  PubMed  Google Scholar 

  64. van Gessel A, Alards K, Bruggeman P. NO production in an RF plasma jet at atmospheric pressure. J Phys D Appl Phys. 2013;46(26):265202.

    Article  Google Scholar 

  65. Hanschmann EM, Godoy JR, Berndt C, Hudemann C, Lillig CH. Thioredoxins, glutaredoxins, and peroxiredoxins--molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling. Antioxid Redox Signal. 2013;19(13):1539–605. https://doi.org/10.1089/ars.2012.4599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bielski BHJ, Cabelli DE, Arudi RL, Ross AB. Reactivity of HO2/O2 radicals in aqueous solution. J Phys Chem Ref Data. 1985;14(4):1041–100. https://doi.org/10.1063/1.555739.

    Article  CAS  Google Scholar 

  67. Schmidt-Bleker A, Bansemer R, Reuter S, Weltmann K-D. How to produce an NOx- instead of Ox-based chemistry with a cold atmospheric plasma jet. Plasma Process Polym. 2016;13(11):1120–7. https://doi.org/10.1002/ppap.201600062.

    Article  CAS  Google Scholar 

  68. Bekeschus S, Brautigam L, Wende K, Hanschmann EM. Oxidants and redox Signaling: perspectives in cancer therapy, inflammation, and plasma medicine. Oxidative Med Cell Longev. 2017;2017:4020253. https://doi.org/10.1155/2017/4020253.

    Article  Google Scholar 

  69. Winterbourn CC. Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol. 2008;4(5):278–86. https://doi.org/10.1038/nchembio.85.

    Article  CAS  PubMed  Google Scholar 

  70. Winter J, Brandenburg R, Weltmann KD. Atmospheric pressure plasma jets: an overview of devices and new directions. Plasma Sources Sci Technol. 2015;24(6):064001. https://doi.org/10.1088/0963-0252/24/6/064001.

    Article  CAS  Google Scholar 

  71. Daeschlein G, Napp M, von Podewils S, Lutze S, Emmert S, Lange A, et al. In vitro susceptibility of multidrug resistant skin and wound pathogens against low temperature atmospheric pressure plasma jet (APPJ) and dielectric barrier discharge plasma (DBD). Plasma Process Polym. 2014;11(2):175–83. https://doi.org/10.1002/ppap.201300070.

    Article  CAS  Google Scholar 

  72. Boehm D, Heslin C, Cullen PJ, Bourke P. Cytotoxic and mutagenic potential of solutions exposed to cold atmospheric plasma. Sci Rep. 2016;6:21464. https://doi.org/10.1038/srep21464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Boehm D, Bourke P. Safety implications of plasma-induced effects in living cells - a review of in vitro and in vivo findings. Biol Chem. 2018;400(1):3–17. https://doi.org/10.1515/hsz-2018-0222.

    Article  CAS  PubMed  Google Scholar 

  74. Fahy E, Cotter D, Sud M, Subramaniam S. Lipid classification, structures and tools. Biochim Biophys Acta. 2011;1811(11):637–47. https://doi.org/10.1016/j.bbalip.2011.06.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Maheux S, Frache G, Thomann JS, Clément F, Penny C, Belmonte T, et al. Small unilamellar liposomes as a membrane model for cell inactivation by cold atmospheric plasma treatment. J Phys D Appl Phys. 2016;49(34). https://doi.org/10.1088/0022-3727/49/34/344001.

  76. Choe E, Min DB. Chemistry and reactions of reactive oxygen species in foods. J Food Sci. 2006;70(9):R142–R59. https://doi.org/10.1111/j.1365-2621.2005.tb08329.x.

    Article  Google Scholar 

  77. Gueraud F, Atalay M, Bresgen N, Cipak A, Eckl PM, Huc L, et al. Chemistry and biochemistry of lipid peroxidation products. Free Radic Res. 2010;44(10):1098–124. https://doi.org/10.3109/10715762.2010.498477.

    Article  CAS  PubMed  Google Scholar 

  78. Schmidt A, Bekeschus S. Redox for repair: cold physical plasmas and Nrf2 Signaling promoting wound healing. Antioxidants (Basel). 2018;7(10):146. https://doi.org/10.3390/antiox7100146.

    Article  CAS  Google Scholar 

  79. Schmidt A, von Woedtke T, Vollmar B, Hasse S, Bekeschus S. Nrf2 signaling and inflammation are key events in physical plasma-spurred wound healing. Theranostics. 2019;9(4):1066–84. https://doi.org/10.7150/thno.29754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rolfs F, Huber M, Kuehne A, Kramer S, Haertel E, Muzumdar S, et al. Nrf2 activation promotes keratinocyte survival during early skin carcinogenesis via metabolic alterations. Cancer Res. 2015;75(22):4817–29. https://doi.org/10.1158/0008-5472.CAN-15-0614.

    Article  CAS  PubMed  Google Scholar 

  81. Hiebert P, Wietecha MS, Cangkrama M, Haertel E, Mavrogonatou E, Stumpe M, et al. Nrf2-mediated fibroblast reprogramming drives cellular senescence by targeting the matrisome. Dev Cell. 2018;46(2):145–61. e10. https://doi.org/10.1016/j.devcel.2018.06.012.

    Article  CAS  PubMed  Google Scholar 

  82. Shibata T, Kokubu A, Gotoh M, Ojima H, Ohta T, Yamamoto M, et al. Genetic alteration of Keap1 confers constitutive Nrf2 activation and resistance to chemotherapy in gallbladder cancer. Gastroenterology. 2008;135(4):1358–68, 68 e1-4. https://doi.org/10.1053/j.gastro.2008.06.082.

    Article  CAS  PubMed  Google Scholar 

  83. Schmidt A, von Woedtke T, Bekeschus S. Periodic exposure of keratinocytes to cold physical plasma: an in vitro model for redox-related diseases of the skin. Oxidative Med Cell Longev. 2016;2016(Harmful and Beneficial Role of ROS (HBR)):9816072. https://doi.org/10.1155/2016/9816072.

    Article  CAS  Google Scholar 

  84. Schmidt A, Dietrich S, Steuer A, Weltmann KD, von Woedtke T, Masur K, et al. Non-thermal plasma activates human keratinocytes by stimulation of antioxidant and phase II pathways. J Biol Chem. 2015;290(11):6731–50. https://doi.org/10.1074/jbc.M114.603555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tukaj S, Gruner D, Zillikens D, Kasperkiewicz M. Hsp90 blockade modulates bullous pemphigoid IgG-induced IL-8 production by keratinocytes. Cell Stress Chaperones. 2014;19(6):887–94. https://doi.org/10.1007/s12192-014-0513-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Voll EA, Ogden IM, Pavese JM, Huang X, Xu L, Jovanovic BD, et al. Heat shock protein 27 regulates human prostate cancer cell motility and metastatic progression. Oncotarget. 2014;5(9):2648–63. https://doi.org/10.18632/oncotarget.1917.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Poetsch AR. The genomics of oxidative DNA damage, repair, and resulting mutagenesis. Comput Struct Biotechnol J. 2020;18:207–19. https://doi.org/10.1016/j.csbj.2019.12.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Arjunan KP, Sharma VK, Ptasinska S. Effects of atmospheric pressure plasmas on isolated and cellular DNA-a review. Int J Mol Sci. 2015;16(2):2971–3016. https://doi.org/10.3390/ijms16022971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. García-Alcantara E, Lopez-Callejas R, Serment-Guerrero J, Peña-Eguiluz R, Muñoz-Castro A, Rodriguez-Mendez B, et al. Toxicity and Genotoxicity in HeLa and E. coli cells caused by a helium plasma needle. Appl Phys Res. 2013;5(5):21.

    Article  Google Scholar 

  90. Blackert S, Haertel B, Wende K, von Woedtke T, Lindequist U. Influence of non-thermal atmospheric pressure plasma on cellular structures and processes in human keratinocytes (HaCaT). J Dermatol Sci. 2013;70(3):173–81. https://doi.org/10.1016/j.jdermsci.2013.01.012.

    Article  CAS  PubMed  Google Scholar 

  91. Tiede R, Hirschberg J, Viöl W, Emmert S. A μs-pulsed dielectric barrier discharge source: physical characterization and biological effects on human skin fibroblasts. Plasma Process Polym. 2016;13(8):775–87. https://doi.org/10.1002/ppap.201500190.

    Article  CAS  Google Scholar 

  92. Schmidt A, Bekeschus S, Jarick K, Hasse S, von Woedtke T, Wende K. Cold physical plasma modulates p53 and mitogen-activated protein kinase signaling in keratinocytes. Oxidative Med Cell Longev. 2019;2019:1–16. https://doi.org/10.1155/2019/7017363.

    Article  CAS  Google Scholar 

  93. Murray D, Mirzayans R. Non-linearities in the cellular response to ionizing radiation and the role of p53 therein. Int J Radiat Biol. 2020:1–42. https://doi.org/10.1080/09553002.2020.1721602.

  94. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem. 1998;273(10):5858–68.

    Article  CAS  Google Scholar 

  95. Ward IM, Chen JJ. Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress. J Biol Chem. 2001;276(51):47759–62. https://doi.org/10.1074/bjc.C100569200.

    Article  CAS  PubMed  Google Scholar 

  96. Rosani U, Tarricone E, Venier P, Brun P, Deligianni V, Zuin M, et al. Atmospheric-pressure cold plasma induces transcriptional changes in ex vivo human corneas. PLoS One. 2015;10(7):e0133173. https://doi.org/10.1371/journal.pone.0133173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kim CH, Bahn JH, Lee SH, Kim GY, Jun SI, Lee K, et al. Induction of cell growth arrest by atmospheric non-thermal plasma in colorectal cancer cells. J Biotechnol. 2010;150(4):530–8. https://doi.org/10.1016/j.jbiotec.2010.10.003.

    Article  CAS  PubMed  Google Scholar 

  98. Judee F, Fongia C, Ducommun B, Yousfi M, Lobjois V, Merbahi N. Short and long time effects of low temperature plasma activated media on 3D multicellular tumor spheroids. Sci Rep. 2016;6:21421. https://doi.org/10.1038/srep21421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wu AS, Kalghatgi S, Dobrynin D, Sensenig R, Cerchar E, Podolsky E, et al. Porcine intact and wounded skin responses to atmospheric nonthermal plasma. J Surg Res. 2013;179(1):e1–e12. https://doi.org/10.1016/j.jss.2012.02.039.

    Article  PubMed  Google Scholar 

  100. Isbary G, Köritzer J, Mitra A, Li YF, Shimizu T, Schroeder J, et al. Ex vivo human skin experiments for the evaluation of safety of new cold atmospheric plasma devices. Clin Plasma Med. 2013;1(1):36–44. https://doi.org/10.1016/j.cpme.2012.10.001.

    Article  Google Scholar 

  101. Bekeschus S, Schütz CS, Niessner F, Wende K, Weltmann K-D, Gelbrich N, et al. Elevated H2AX phosphorylation observed with kINPen plasma treatment is not caused by ROS-mediated DNA damage but is the consequence of apoptosis. Oxidative Med Cell Longev. 2019;2019:8535163. https://doi.org/10.1155/2019/8535163.

    Article  CAS  Google Scholar 

  102. Wende K, Bekeschus S, Schmidt A, Jatsch L, Hasse S, Weltmann KD, et al. Risk assessment of a cold argon plasma jet in respect to its mutagenicity. Mutat Res Genet Toxicol Environ Mutagen. 2016;798-799:48–54. https://doi.org/10.1016/j.mrgentox.2016.02.003.

    Article  CAS  PubMed  Google Scholar 

  103. Bekeschus S, Schmidt A, Kramer A, Metelmann HR, Adler F, von Woedtke T, et al. High throughput image cytometry micronucleus assay to investigate the presence or absence of mutagenic effects of cold physical plasma. Environ Mol Mutagen. 2018;59(4):268–77. https://doi.org/10.1002/em.22172.

    Article  CAS  PubMed  Google Scholar 

  104. Kaushik NK, Uhm H, Choi EH. Micronucleus formation induced by dielectric barrier discharge plasma exposure in brain cancer cells. Appl Phys Lett. 2012;100(8):084102 Artn 08410210. https://doi.org/10.1063/1.3687172.

    Article  CAS  Google Scholar 

  105. Hong SH, Szili EJ, Fenech M, Gaur N, Short RD. Genotoxicity and cytotoxicity of the plasma jet-treated medium on lymphoblastoid WIL2-NS cell line using the cytokinesis block micronucleus cytome assay. Sci Rep. 2017;7(1):3854. https://doi.org/10.1038/s41598-017-03754-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhang JJ, Jo JO, Huynh DL, Ghosh M, Kim N, Lee SB, et al. Lethality of inappropriate plasma exposure on chicken embryonic development. Oncotarget. 2017;8(49):85642–54. https://doi.org/10.18632/oncotarget.21105.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Kluge S, Bekeschus S, Bender C, Benkhai H, Sckell A, Below H, et al. Investigating the mutagenicity of a cold argon-plasma jet in an HET-MN model. PLoS One. 2016;11(9):e0160667. https://doi.org/10.1371/journal.pone.0160667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bekeschus S, Freund E, Spadola C, Privat-Maldonado A, Hackbarth C, Bogaerts A, et al. Risk assessment of kINPen plasma treatment of four human pancreatic cancer cell lines with respect to metastasis. Cancers (Basel). 2019;11(9):1237. https://doi.org/10.3390/cancers11091237.

    Article  CAS  Google Scholar 

  109. Schlegel J, Köritzer J, Boxhammer V. Plasma in cancer treatment. Clin Plasma Med. 2013;1(2):2–7. https://doi.org/10.1016/j.cpme.2013.08.001.

    Article  Google Scholar 

  110. Gjika E, Pal-Ghosh S, Tang A, Kirschner M, Tadvalkar G, Canady J, et al. Adaptation of operational parameters of cold atmospheric plasma for in vitro treatment of cancer cells. ACS Appl Mater Interfaces. 2018;10(11):9269–79. https://doi.org/10.1021/acsami.7b18653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bauer G. Increasing the endogenous NO level causes catalase inactivation and reactivation of intercellular apoptosis signaling specifically in tumor cells. Redox Biol. 2015;6:353–71. https://doi.org/10.1016/j.redox.2015.07.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bauer G. The antitumor effect of singlet oxygen. Anticancer Res. 2016;36(11):5649–63. https://doi.org/10.21873/anticanres.11148.

    Article  CAS  PubMed  Google Scholar 

  113. Bauer G, Sersenova D, Graves DB, Machala Z. Dynamics of singlet oxygen-triggered, RONS-based apoptosis induction after treatment of tumor cells with cold atmospheric plasma or plasma-activated medium. Sci Rep. 2019;9(1):13931. https://doi.org/10.1038/s41598-019-50329-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Khlyustova A, Labay C, Machala Z, Ginebra MP, Canal C. Important parameters in plasma jets for the production of RONS in liquids for plasma medicine: a brief review. Front Chem Sci Eng. 2019;13(2):238–52. https://doi.org/10.1007/s11705-019-1801-8.

    Article  CAS  Google Scholar 

  115. Bekeschus S, Clemen R, Metelmann H-R. Potentiating anti-tumor immunity with physical plasma. Clin Plasma Med. 2018;12:17–22. https://doi.org/10.1016/j.cpme.2018.10.001.

    Article  Google Scholar 

  116. Bekeschus S, Mueller A, Miller V, Gaipl U, Weltmann K-D. Physical plasma elicits immunogenic cancer cell death and mitochondrial singlet oxygen. IEEE Trans Radiat Plasma Med Sci. 2018;2(2):138–46. https://doi.org/10.1109/trpms.2017.2766027.

    Article  Google Scholar 

  117. Bender C, Partecke LI, Kindel E, Doring F, Lademann J, Heidecke CD, et al. The modified HET-CAM as a model for the assessment of the inflammatory response to tissue tolerable plasma. Toxicol In Vitro. 2011;25(2):530–7. https://doi.org/10.1016/j.tiv.2010.11.012.

    Article  CAS  PubMed  Google Scholar 

  118. Partecke LI, Evert K, Haugk J, Doering F, Normann L, Diedrich S, et al. Tissue tolerable plasma (TTP) induces apoptosis in pancreatic cancer cells in vitro and in vivo. BMC Cancer. 2012;12(1):473. https://doi.org/10.1186/1471-2407-12-473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Liedtke KR, Bekeschus S, Kaeding A, Hackbarth C, Kuehn JP, Heidecke CD, et al. Non-thermal plasma-treated solution demonstrates antitumor activity against pancreatic cancer cells in vitro and in vivo. Sci Rep. 2017;7(1):8319. https://doi.org/10.1038/s41598-017-08560-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Boxhammer V, Li YF, Koritzer J, Shimizu T, Maisch T, Thomas HM, et al. Investigation of the mutagenic potential of cold atmospheric plasma at bactericidal dosages. Mutat Res. 2013;753(1):23–8. https://doi.org/10.1016/j.mrgentox.2012.12.015.

    Article  CAS  PubMed  Google Scholar 

  121. Maisch T, Bosserhoff AK, Unger P, Heider J, Shimizu T, Zimmermann JL, et al. Investigation of toxicity and mutagenicity of cold atmospheric argon plasma. Environ Mol Mutagen. 2017;58(3):172–7. https://doi.org/10.1002/em.22086.

    Article  CAS  PubMed  Google Scholar 

  122. van der Linde J, Liedtke KR, Matthes R, Kramer A, Heidecke C-D, Partecke LI. Repeated cold atmospheric plasma application to intact skin does not cause sensitization in a standardized murine model. Plasma Med. 2017;7(4):383–93. https://doi.org/10.1615/PlasmaMed.2017019167.

    Article  Google Scholar 

  123. Jablonowski L, Kocher T, Schindler A, Muller K, Dombrowski F, von Woedtke T, et al. Side effects by oral application of atmospheric pressure plasma on the mucosa in mice. PLoS One. 2019;14(4):e0215099. https://doi.org/10.1371/journal.pone.0215099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Arndt S, Schmidt A, Karrer S, von Woedtke T. Comparing two different plasma devices kINPen and Adtec SteriPlas regarding their molecular and cellular effects on wound healing. Clin Plasma Med. 2018;9:24–33. https://doi.org/10.1016/j.cpme.2018.01.002.

    Article  Google Scholar 

  125. Arndt S, Unger P, Berneburg M, Bosserhoff AK, Karrer S. Cold atmospheric plasma (CAP) activates angiogenesis-related molecules in skin keratinocytes, fibroblasts and endothelial cells and improves wound angiogenesis in an autocrine and paracrine mode. J Dermatol Sci. 2018;89(2):181–90. https://doi.org/10.1016/j.jdermsci.2017.11.008.

    Article  CAS  PubMed  Google Scholar 

  126. Arndt S, Unger P, Wacker E, Shimizu T, Heinlin J, Li YF, et al. Cold atmospheric plasma (CAP) changes gene expression of key molecules of the wound healing machinery and improves wound healing in vitro and in vivo. PLoS One. 2013;8(11):e79325. https://doi.org/10.1371/journal.pone.0079325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hung YW, Lee LT, Peng YC, Chang CT, Wong YK, Tung KC. Effect of a nonthermal-atmospheric pressure plasma jet on wound healing: an animal study. J Chin Med Assoc. 2016;79(6):320–8. https://doi.org/10.1016/j.jcma.2015.06.024.

    Article  PubMed  Google Scholar 

  128. Bender CH, N-O, Weltmann K-D, Scharf C, Kramer A. Plasma for bio- decontamination, medicine and food security. Dordrecht: Springer; 2012. p. 321–4.

    Book  Google Scholar 

  129. Kos S, Blagus T, Cemazar M, Filipic G, Sersa G, Cvelbar U. Safety aspects of atmospheric pressure helium plasma jet operation on skin: in vivo study on mouse skin. PLoS One. 2017;12(4):e0174966. https://doi.org/10.1371/journal.pone.0174966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Keddam M, Nóvoa XR, Vivier V. The concept of floating electrode for contact-less electrochemical measurements: application to reinforcing steel-bar corrosion in concrete. Corros Sci. 2009;51(8):1795–801. https://doi.org/10.1016/j.corsci.2009.05.006.

    Article  CAS  Google Scholar 

  131. Stoffels E, Flikweert AJ, Stoffels WW, Kroesen GMW. Plasma needle: a non-destructive atmospheric plasma source for fine surface treatment of (bio)materials. Plasma Sources Sci Technol. 2002;11(4):383–8. https://doi.org/10.1088/0963-0252/11/4/304.

    Article  CAS  Google Scholar 

  132. Shimizu T, Steffes B, Pompl R, Jamitzky F, Bunk W, Ramrath K, et al. Characterization of microwave plasma torch for decontamination. Plasma Process Polym. 2008;5(6):577–82. https://doi.org/10.1002/ppap.200800021.

    Article  CAS  Google Scholar 

  133. Hasse S, Hahn O, Kindler S, Woedtke TV, Metelmann H-R, Masur K. Atmospheric pressure plasma jet application on human oral mucosa modulates tissue regeneration. Plasma Med. 2014;4(1–4):117–29. https://doi.org/10.1615/PlasmaMed.2014011978.

    Article  Google Scholar 

  134. Daeschlein G, Napp M, Lutze S, Arnold A, von Podewils S, Guembel D, et al. Skin and wound decontamination of multidrug-resistant bacteria by cold atmospheric plasma coagulation. J German Soc Dermatol. 2015;13(2):143–50. https://doi.org/10.1111/ddg.12559.

    Article  Google Scholar 

  135. Daeschlein G, Scholz S, Ahmed R, von Woedtke T, Haase H, Niggemeier M, et al. Skin decontamination by low-temperature atmospheric pressure plasma jet and dielectric barrier discharge plasma. J Hosp Infect. 2012;81(3):177–83. https://doi.org/10.1016/j.jhin.2012.02.012.

    Article  CAS  PubMed  Google Scholar 

  136. Isbary G, Morfill G, Schmidt HU, Georgi M, Ramrath K, Heinlin J, et al. A first prospective randomized controlled trial to decrease bacterial load using cold atmospheric argon plasma on chronic wounds in patients. Br J Dermatol. 2010;163(1):78–82. https://doi.org/10.1111/j.1365-2133.2010.09744.x.

    Article  CAS  PubMed  Google Scholar 

  137. Emmert S, Brehmer F, Hänßle H, Helmke A, Mertens N, Ahmed R, et al. Atmospheric pressure plasma in dermatology: ulcus treatment and much more. Clin Plasma Med. 2013;1(1):24–9. https://doi.org/10.1016/j.cpme.2012.11.002.

    Article  Google Scholar 

  138. Emmert S, Brehmer F, Hanssle H, Helmke A, Mertens N, Ahmed R, et al. Treatment of chronic venous leg ulcers with a hand-held DBD plasma generator. Plasma Med. 2012;2(1–3):19–32. https://doi.org/10.1615/PlasmaMed.2013005914.

    Article  Google Scholar 

  139. Isbary G, Shimizu T, Zimmermann JL, Thomas HM, Morfill GE, Stolz W. Cold atmospheric plasma for local infection control and subsequent pain reduction in a patient with chronic post-operative ear infection. New Microbes New Infect. 2013;1(3):41–3. https://doi.org/10.1002/2052-2975.19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Isbary G, Stolz W, Shimizu T, Monetti R, Bunk W, Schmidt HU, et al. Cold atmospheric argon plasma treatment may accelerate wound healing in chronic wounds: results of an open retrospective randomized controlled study in vivo. Clin Plasma Med. 2013;1(2):25–30. https://doi.org/10.1016/j.cpme.2013.06.001.

    Article  Google Scholar 

  141. Ulrich C, Kluschke F, Patzelt A, Vandersee S, Czaika VA, Richter H, et al. Clinical use of cold atmospheric pressure argon plasma in chronic leg ulcers: a pilot study. J Wound Care. 2015;24(5):196, 8-200, 2-3. https://doi.org/10.12968/jowc.2015.24.5.196.

    Article  CAS  PubMed  Google Scholar 

  142. Stratmann B, Costea TC, Nolte C, Hiller J, Schmidt J, Reindel J, et al. Effect of cold atmospheric plasma therapy vs standard therapy placebo on wound healing in patients with diabetic foot ulcers: a randomized clinical trial. JAMA Netw Open. 2020;3(7):e2010411. https://doi.org/10.1001/jamanetworkopen.2020.10411.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Heinlin J, Zimmermann JL, Zeman F, Bunk W, Isbary G, Landthaler M, et al. Randomized placebo-controlled human pilot study of cold atmospheric argon plasma on skin graft donor sites. Wound Repair Regen. 2013;21(6):800–7. https://doi.org/10.1111/wrr.12078.

    Article  PubMed  Google Scholar 

  144. Heinlin J, Isbary G, Stolz W, Zeman F, Landthaler M, Morfill G, et al. A randomized two-sided placebo-controlled study on the efficacy and safety of atmospheric non-thermal argon plasma for pruritus. J Eur Acad Dermatol Venereol. 2013;27(3):324–31. https://doi.org/10.1111/j.1468-3083.2011.04395.x.

    Article  CAS  PubMed  Google Scholar 

  145. Li Y-F, Taylor D, Zimmermann J, Bunk W, Monetti R, Isbary G, et al. In vivo skin treatment using two portable plasma devices: comparison of a direct and an indirect cold atmospheric plasma treatment. Clin Plasma Med. 2013;1(2):35–9.

    Article  Google Scholar 

  146. Hartwig S, Doll C, Voss JO, Hertel M, Preissner S, Raguse JD. Treatment of wound healing disorders of radial forearm free flap donor sites using cold atmospheric plasma: a proof of concept. J Oral Maxillofac Surg. 2017;75(2):429–35. https://doi.org/10.1016/j.joms.2016.08.011.

    Article  PubMed  Google Scholar 

  147. Kisch T, Helmke A, Schleusser S, Song J, Liodaki E, Stang FH, et al. Improvement of cutaneous microcirculation by cold atmospheric plasma (CAP): results of a controlled, prospective cohort study. Microvasc Res. 2016;104:55–62. https://doi.org/10.1016/j.mvr.2015.12.002.

    Article  CAS  PubMed  Google Scholar 

  148. Kisch T, Schleusser S, Helmke A, Mauss KL, Wenzel ET, Hasemann B, et al. The repetitive use of non-thermal dielectric barrier discharge plasma boosts cutaneous microcirculatory effects. Microvasc Res. 2016;106:8–13. https://doi.org/10.1016/j.mvr.2016.02.008.

    Article  PubMed  Google Scholar 

  149. Chuangsuwanich A, Assadamongkol T, Boonyawan D. The healing effect of low-temperature atmospheric-pressure plasma in pressure ulcer: a randomized controlled trial. Int J Low Extrem Wounds. 2016;15(4):313–9. https://doi.org/10.1177/1534734616665046.

    Article  PubMed  Google Scholar 

  150. Assadian O, Ousey KJ, Daeschlein G, Kramer A, Parker C, Tanner J, et al. Effects and safety of atmospheric low-temperature plasma on bacterial reduction in chronic wounds and wound size reduction: a systematic review and meta-analysis. Int Wound J. 2019;16(1):103–11. https://doi.org/10.1111/iwj.12999.

    Article  PubMed  Google Scholar 

Suggested Reading

    Plasma Sources

    Plasma-Driven ROS Therapies

    Safety

    Standardization

    Download references

    Author information

    Authors and Affiliations

    Authors

    Corresponding author

    Correspondence to Anke Schmidt .

    Editor information

    Editors and Affiliations

    Rights and permissions

    Reprints and permissions

    Copyright information

    © 2022 Springer Nature Switzerland AG

    About this chapter

    Check for updates. Verify currency and authenticity via CrossMark

    Cite this chapter

    Schmidt, A., Bekeschus, S. (2022). How Safe is Plasma Treatment in Clinical Applications?. In: Metelmann, HR., von Woedtke, T., Weltmann, KD., Emmert, S. (eds) Textbook of Good Clinical Practice in Cold Plasma Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-87857-3_5

    Download citation

    • DOI: https://doi.org/10.1007/978-3-030-87857-3_5

    • Published:

    • Publisher Name: Springer, Cham

    • Print ISBN: 978-3-030-87856-6

    • Online ISBN: 978-3-030-87857-3

    • eBook Packages: MedicineMedicine (R0)

    Publish with us

    Policies and ethics