
Chapter 13
Capsule-Forensics Networks
for Deepfake Detection

Huy H. Nguyen, Junichi Yamagishi, and Isao Echizen

Abstract Several sophisticated convolutional neural network (CNN) architectures
have been devised that have achieved impressive results in various domains. One
downside of this success is the advent of attacks using deepfakes, a family of tools
that enable anyone to use a personal computer to easily create fake videos of someone
from a short video found online. Several detectors have been introduced to deal with
such attacks. To achieve state-of-the-art performance, CNN-based detectors have
usually been upgraded by increasing their depth and/or their width, adding more
internal connections, or fusing several features or predicted probabilities from mul-
tiple CNNs. As a result, CNN-based detectors have become bigger, consume more
memory and computation power, and require more training data. Moreover, there is
concern about their generalizability to deal with unseen manipulation methods. In
this chapter, we argue that our forensic-oriented capsule network overcomes these
limitations and is more suitable than conventional CNNs to detect deepfakes. The
superiority of our “Capsule-Forensics” network is due to the use of a pretrained
feature extractor, statistical pooling layers, and a dynamic routing algorithm. This
design enables the Capsule-Forensics network to outperform a CNN with a similar
design and to be from 5 to 11 times smaller than a CNN with similar performance.
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13.1 Introduction

Ever since the invention of photography, people have been interested in manipu-
lating photographs, mainly to correct problems in the photos or to enhance them.
Technology has advanced far beyond these basic manipulations and can now be used
to change the identities of the subjects or alter their emotions. The advent of deep
learning has enabled high-quality manipulated images and videos to be easily cre-
ated. Moreover, the popularity of social media has enabled massive amounts of data,
including personal information, news reports, images, and videos, to be created and
shared. The consequence is that people with malicious intent can easily make use
of these advanced technologies and data to create fake images and videos and then
publish them widely on social networks.

The requirements for manipulating or synthesizing videos were dramatically sim-
plified when it became possible to create forged videos from only a short video [22,
46] or even from a single ID photo [7] of the target subject. Suwajanakorn et al.’s
mapping method [42] has enhanced the ability of manipulators to learn the mapping
between speech and lip motion. State-of-the-art natural speech synthesizers can be
used with Suwajanakorn’s method to create a fake video of any person speaking
anything. Deepfakes [3] exemplify this threat—an attacker with a personal com-
puter and an appropriate tool can create videos of a person impersonating any other
person. Deepfake videos have been posted on YouTube with the challenge being
to spot them. In this chapter, we use the term “deepfake” to refer to this family of
manipulation techniques, not to a particular one. Several examples of high-quality
computer-generated images and deepfake ones are shown in Fig. 13.1.

Several countermeasures have been developed to detect fake images and videos.
Automatic feature extraction using convolutional neural networks (CNNs) has dra-

Fig. 13.1 Example computer-generated anddeepfake images. Images in top roware fully computer-
generated (from Digital Emily Project [6], from Dexter Studios [2], and was generated using Style-
GAN [21], respectively). Images in bottom row, left to right, were manipulated using deepfake [3],
Face2Face [46], and Neural Textures [45] methods, respectively
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matically improved detection performance [4, 36, 38]. Several methods are image-
based [4, 36, 54] while others work only on videos [5, 27, 38] or on video with
voice [24]. Although some video-based methods perform better than image-based
ones, they are only applicable to particular kinds of attacks. For example, some of
them [5, 27] may fail if the quality of the eye area is sufficiently good or the syn-
chronization between the video and audio parts is sufficiently natural [25]. In this
chapter, we limit our scope to image-based methods since our aim is to build a gen-
eral detector that can work with both generated/manipulated images and videos and
does not rely on any particular kind of attack.

Conventionally, the performance of a CNN can be improved by increasing its
depth [16], its width [52], and/or the number of inner connections [19]. Another
solution is to use multiple CNNs as is done in Zhou et al.’s two-stream network [54]
or to use feature aggregation (feature fusion) or output fusion (ensemble). The fusion
approach has been used in several competitions [13, 29]. This approach not only
improves network performance on seen data but also improves network performance
on unseen data. This has resulted in CNNs and groups of CNNs becoming bigger and
thus consuming more memory and computation power. Moreover, they may need
more training data, which are not always available when new attacks emerge. Rather
than making the network bigger, we took a different approach: redesign it to make it
more efficient in memory usage, detection accuracy, and generalization.

We previously reported “Capsule-Forensics” [32], a proof-of-concept capsule
network [39] designed especially for detectingmanipulated images andvideos. In this
work, we focused on explaining the theoretical aspect of Capsule-Forensics, which
was not fully discussed in our previous work [32]. We hypothesized that the special
design of the network makes it better able to detect deepfakes than a corresponding
CNN while keeping the network smaller. This special design includes:

• Afeature extractor,which is part of a pretrained image classificationCNN,prevents
the network fromoverfitting and improves its performance on both seen and unseen
attacks.

• A statistical pooling layer, which is used in each primary capsule of the network,
greatly reduces the number of parameters compared with the original capsule
network while improving performance on deepfake detection.

• A dynamic routing algorithm produces better fusion than the traditional feature
aggregation approach.

To sum up, our contribution is three-fold:

1. We provide a theoretical explanation of the Capsule-Forensics network on deep-
fake detection by verifying our hypothesis that its special design is the reason it
performs better than the corresponding CNN version.

2. We visualize the activation of each primary capsule as well as the routing weights
and thereby clarify which kind of information these capsules learn and how they
agreeon thefinal decisionof the entire network.This is a step toward explainability
of the Capsule-Forensics network.
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3. We introduce small deepfake detection benchmarks that focuses on detection
performance, number of parameters, and inference time for both seen and unseen
data.

The rest of this chapter is structured as follows. We first describe work related
to deepfakes, deepfake detection, and the challenges in deepfake detection. We also
give some background on capsule networks. Next, we describe theCapsule-Forensics
network. We also visualize the features the Capsule-Forensics network learns to
understand the differences between it and a conventional capsule network, which
learns the hierarchical relationships between object parts. Then, we describe several
experimentsweperformed to test our hypothesis that the special designof the network
makes it better able to detect deepfakes than a corresponding CNN while keeping
the network smaller. Finally, we conclude by discussing the meaning of our results
and mentioning future work.

13.2 Related Work

13.2.1 Deepfake Generation

Recent achievements demonstrate that deepfakes can reach a photo-realistic level.
Thies et al. demonstrated that expression transfer for facial reenactment can be per-
formed in real time [46]. Kim et al. demonstrated the transfer of a head pose along
with facial movements from an actor to another person [22]. Similarly, Tripathy et
al. devised a lightweight face reenactment method using a generative adversarial
network (GAN) [47]. Nirkin et al. presented a face swapping method that does not
require training on new faces [33], unlike the early deepfake methods [3]. Thies et al.
combined the traditional graphics pipeline with learnable components to deal with
imperfect 3D contents [45].

Work on deepfakes has gone beyond only the visual part. Suwajanakorn et al.
presented a method for learning the mapping between speech and lip movements
in which speech can also be synthesized, enabling creation of a full-function spoof
video [42]. Fried et al. demonstrated that speech can be easilymodified in any video in
accordancewith the intention of themanipulatorwhilemaintaining a seamless audio-
visual flow [15]. Averbuch-Elor et al. addressed a different problem—converting still
portraits into motion pictures expressing various emotions [7]. This work greatly
simplified the requirements for attackers: simply acquire a picture of the victim
(usually a profile picture on a social network or an ID photo). Zakharov et al. followed
up by improving the quality of videos generated using only a few input images [53].
Vougioukas et al. raised the bar by introducing a method for animating a facial image
from an audio track containing speech [48].
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13.2.2 Deepfake Detection

Thehandcrafted steganalysis-basedmethoddevelopedbyFridrich andKodovsky [14]
was used in early efforts to detect manipulated images. Noise residuals extracted
using handcrafted linear and nonlinear high-pass filters are fed into an ensemble
classifier. This approach was later implemented in a CNN by Cozzolino et al. [12].
Transfer learning is a common choice when a CNN pretrained on the ImageNet
dataset [37] is used [31, 36]. Nguyen et al. [31] used part of a pretrained VGG-19
network [41] as the feature extractor for their modular network while Rössler et al.
finetuned the XceptionNet network [11] on a deepfake dataset. Afchar et al. utilized
inception modules [43] to build a lightweight network [4] while Wang et al. utilized
a dilated residual network [49]. Bayar and Stamm presented a new convolutional
layer that helps a CNN adaptively learn manipulation detection features [10]. Zhou
et al. proposed using a two-stream network in which one stream takes RGB input
and the other takes steganalysis features and uses a triplet loss [54].

Videos provide more information than images for detection, especially when they
contain sound. Li et al. used eye blinking as a feature to detect deepfakes [27] while
Agarwal et al. used facial expressions andmovements [5]. Sabir et al. used a recurrent
neural network to additionally learn the temporal information [38]. Korshunov and
Marcel used several approaches for lip-syncing and dubbing detection to detect fake
videos [24].

In addition to binary classification, another major branch in digital media foren-
sics is locating manipulated regions in images. Besides “pure” segmentation-based
approaches [9, 30, 55], binary classification approaches are also applicable by using
a sliding window to locate manipulated regions [31, 36]. From a different viewpoint,
Li et al. introduced a method called face X-ray to detect the blending boundary
between real and fake regions [26]. They noted that blending methods have not
been advancing as rapidly as manipulation methods; therefore, focusing on blending
methods makes the detector more robust against unseen manipulations.

Several standardized datasets have been constructed to support deepfake detec-
tion, including the FaceForensics++ dataset [36], the Google Deepfake Detection
(DFD) dataset [1], the DeepFakeTIMIT dataset [25], the Celeb-DF dataset [28], the
Deepfake Detection Challenge dataset [13], and the DeeperForensics dataset [20].
We focused on the FaceForensics++ and Google DFD datasets as they cover several
well-known attacks, including Face2Face [46], FaceSwap [36], deepfake [3], and
Neural Textures [45] attacks (examples are shown in Fig. 13.1). We focused on the
image domain and treated videos as a set of separable frames.

13.2.3 Challenges in Deepfake Detection

There are several challenges in deepfake detection. Since deepfakes have altered
faces, most deepfake detection methods need to first detect and crop the face. The
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success of this step depends on the performance of the face detection method. Most
state-of-the-art deepfake datasets have annotated face regions, so researchers may
assume that cropped faces are available without considering the face detector’s per-
formance. Another challenge is the generalizability of the detector when an advanced
deepfake technique is introduced. Moreover, a large amount of appropriate training
data may not be available when a new attack appears, so detectors using large net-
works may be difficult to train. Another challenge is gaining user trust by convincing
them to accept the detection results. This requires visualizing the learned features
and/or focused regions of the detectors.

The performance of general CNNs can usually be improved by increasing their
depth, their width, and/or the number of inner connections. Multiple CNNs are com-
monly used for deepfake detection, especially in competitions [13, 29]. Fusion is
often used in the multiple-CNN approach, including feature aggregation (feature
fusion) and output fusion (ensemble). Consequently, these networks get bigger with
more parameters, consuming more memory and computation power. Since a larger
number of parameters usually requires more training data, dealing with new attacks
is difficult. Our Capsule-Forensics network was designed to overcome these limita-
tions.

13.2.4 Capsule Networks

“Capsule network” is not a new term as it was first introduced in 2011 by Hinton
et al. [17]. They argued that CNNs have limited ability to learn the hierarchical
relationships between object parts and introduced a more robust architecture com-
prising several “capsules.” However, they initially faced the same problem affecting
CNNs—limited hardware performance—and the lack of effective algorithms, which
prevented practical application of capsule networks. CNNs thus remained dominant
in this research field.

These problems were overcome when the dynamic routing algorithm [39] and its
variant—the expectation-maximization routing algorithm [18]—were introduced.
These breakthroughs enabled capsule networks to achieve better performance and
outperform CNNs on object classification tasks [8, 18, 39, 50, 51]. The agreements
between low- and high-level capsules, which encode the hierarchical relationships
between objects and their parts with pose information, enable a capsule network to
preserve more information than a CNN while using only a fraction of the data used
by a CNN.
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13.3 Capsule-Forensics

13.3.1 Why Capsule-Forensics?

To overcome the weakness of conventional CNNs, we adapted the capsule network
concept [39],whichwas originally designed for computer vision tasks, tomake itwell
suited for deepfake detection. We named our adapted network “Capsule-Forensics.”
Its design takes advantage of transfer learning by using part of a pretrained CNN
(trained on the ImageNet dataset [37]) as the feature extractor. This helps the network
achieve high performance and have better generalizability. The feature aggregation
used in conventional CNNs was replaced with a modified version of the dynamic
routing algorithm. The use of a statistical pooling layer in each primary capsule
reduces the number of parameters while improving performance. The next two sec-
tions describe the processing flow and architecture. We performed several experi-
ments to verify the novelty of this design. The results are presented and discussed in
the Evaluation section.

13.3.2 Overview

The Capsule-Forensics based method comprises three processing units, as illustrated
in Fig. 13.2. The task performed in the pre-processing unit depends on the input. If
the input is video, the first step is to separate the frames. A face detection algorithm is
used to crop the facial area(s). The cropped face(s) are sent to the Capsule-Forensics
unit for classification. The detection result(s) are sent to the post-processing unit,
which works in accordance with the pre-processing one. If the input is an image,
nothing is done here. If the input is video, the scores of all frames are averaged. This
average score is the final output.

13.3.3 Architecture

The Capsule-Forensics network includes a feature extractor, several primary cap-
sules, and two output capsules (“real” and “fake”), as illustrated in Fig. 13.3. For

Pre-
processing processing

Post-Capsule-
Forensics

Fig. 13.2 Capsule-Forensics unit processing
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Fig. 13.3 Capsule-Forensics architecture. Blocks A, B, and C contain tunable hyperparameters

simplification, we use the same architecture for all primary capsules. Since we use
random weight initialization, their behaviors are not the same after training. The
number of primary capsules is a hyperparameter.

Each primary capsule has three parts: a 2D convolutional part, a statistical pooling
layer, and a 1D convolutional part. The statistical pooling layer has been proven to be
effective in detecting computer-generated images [31, 35] by learning the statistical
differences between the real and computer-generated images. For deepfakes, when a
part of a face image is swapped, the swapped face region may have different textures
and color patterns. The blending region between the swapped face region and the
remaining original face region may also contain artifacts. Thus, the statistics such
as mean and variance of each filter are useful for differentiating the swapped region
from the original one. Moreover, they help reduce the number of parameters by
omitting features that are not useful for deepfake detection.

The mean and variance of each filter are calculated in the statistical pooling layer.

• Mean:

μk = 1

H × W

H∑

i=1

W∑

j=1

Iki j

• Variance:

σ 2
k = 1

H × W − 1

H∑

i=1

W∑

j=1

(Iki j − μk)
2,

where k is the layer index, H and W are, respectively, the height and width of the
filter, and I is a two-dimensional filter array.
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The output of the statistical layer goes through the following 1D convolutional
part. Then it is dynamically routed to the output capsules. The final result is calculated
on the basis of the activation of the output capsules. The algorithm is discussed in
detail in the next section. For binary classification, there are two output capsules,
as shown in Fig. 13.3. Multi-class classification could be performed by adding more
output capsules, as discussed in Sect. 13.4.3.

The Capsule-Forensics source code has been published at https://github.com/nii-
yamagishilab/Capsule-Forensics-v2.

13.3.4 Dynamic Routing Algorithm

Different manipulation methods use different face regions, generating models, and
blending algorithms. Therefore, each primary capsule extracts different features
depending on the manipulation method, and they may work better on a particular
manipulation than on others. Furthermore, since the weights of the primary capsules
are initialized differently in training, the capsules learn different features for the same
input. These features need to be fused correctly to predict whether the input is real or
fake. For a capsule network, this fusion is done dynamically using a dynamic routing
algorithm. The “agreement” between all primary capsules is calculated and routed
to the appropriate output capsule (real or fake for binary classification). An example
of the routing weight vectors is visualized in Fig. 13.4. Since the primary capsules
may make different judgments and some of them may be wrong, this algorithm is
designed to find a consensus. The output probabilities are determined on the basis
of the activations of the output capsules.

Let us call the output vector of each primary capsule u(i) ∈ R
k and each output

vector capsule v( j) ∈ R
l . There arem primary capsules and n output capsules.W(i) ∈

R
l×k is thematrix used to route anu(i) to all v( j), and r is the number of iterations. The

dynamic routing algorithm is shown in Algorithm 1. A simple example is presented
in the Appendix.

Fig. 13.4 Visualization of the routing matrix C(2)ᵀ used to route the outputs of three primary
capsules to fake output capsule. Face2Face and FaceSwap methods are graphical based, so their
routing weights are similar. Deepfake method is deep learning based, so its routing weights are
different from the two graphical-based manipulation methods

https://github.com/nii-yamagishilab/Capsule-Forensics-v2
https://github.com/nii-yamagishilab/Capsule-Forensics-v2
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Algorithm 1 Dynamic routing between capsules.

procedure Routing(u(i),W(i), r )
Ŵ(i) ← W(i) + rand(size(W(i)))

û(i) ← Ŵ(i)squash(u(i)) � û(i) ∈ R
l

û(i) ← dropout(̂u(i))

for all output capsules j do
B( j) ← 0 � B( j) ∈ R

l×m

for r iterations do
for all output capsules j and all vector elements do

(c( j)
_,1, c

( j)
_,2, . . . , c

( j)
_,m) ← softmax(b( j)

_,1, b
( j)
_,2, . . . , b

( j)
_,m)

for all output capsules j do s( j) ← ∑m
i c( j)

:,i � û(i)

for all output capsules j do v( j) ← squash(s( j))
for all input capsules i and output capsules j do

B( j) ← B( j) + [
û(1) û(2) . . . û(m)

] � v( j)

return v( j)

We slightly improved the algorithm of Sabour et al. [39] by introducing two
regularizations: adding random noise to the routing matrix and adding a dropout
operation. They are used only during training to reduce overfitting. Their effective-
ness is discussed in the Evaluation section. Furthermore, a squash function (Eq. 13.1)
is applied to u(i) before routing to normalize it, which helps stabilize the training
process. The squash function is used to scale the vector magnitude to unit length.

squash(u) = ‖u‖22
1 + ‖u‖22

u
‖u‖2 (13.1)

In practice, to stabilize the training process, the random noise should be sampled
from a normal distribution (N (0, 0.01)), the dropout ratio should not be greater than
0.05 (we used 0.05 in all experiments), and two iterations (r = 2) should be used in
the dynamic routing algorithm. The two regularizations are used along with random
weight initialization to increase the level of randomness, which helps the primary
capsules learn with different parameters.

To calculate predicted label ŷ, we apply the softmax function to each dimension of
the output capsule vectors to achieve stronger polarization rather than simply using
the length of the output capsules [39]. The final results are the means of all softmax
outputs:

ŷ = 1

l

l∑

i

softmax(v(1)
i , v(2)

i , . . . , v(n)
i ), (13.2)

where ŷ is the predicted probabilities vector. Since there is no reconstruction in the
Capsule-Forensics method, we simply use the cross-entropy loss function and the
Adam optimizer [23] to optimize the network.
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13.3.5 Visualization

To illustrate how Capsule-Forensics works, we used a Capsule-Forensics network
with three primary capsules trained on the FaceForensics++ database [36]. For visu-
alization, we applied andmodified an open-source tool [34] implementing the guided
back propagation algorithm [40]. To visualize each primary capsule in this way, we
chose the latent features extracted before the statistical pooling layers since they still
had the 2D structure.

The activations of each capsule and of the whole network are illustrated in
Fig. 13.5. The differences in activation among capsules and between each capsule
and the whole network are also shown. The regions of interest mainly include the
eyes, nose, mouth region, and facial contours. Some capsules missed some of these
regions, and some failed to detect the manipulated input (i.e., the third capsule in
Fig. 13.6). Nevertheless, the final results mostly focused on the important regions
detected by all capsules due to agreement driven by the dynamic routing algorithm
between the other two capsules. A CNN using only the third primary capsule would
fail to detect the manipulated input.

The behavior of the Capsule-Forensics network for the deepfake detection prob-
lem differs from that of the original capsule network for the inverse graphics prob-
lem, in which the focus is on the spatial hierarchies between simple and complex
objects [17, 18, 39]. In the deepfake detection problem, abnormal appearances are
the key features, so each primary capsule is designed to capture them and communi-
cate its findings to the other capsules. This behavior is similar to that of jurors during
a trial, and the consensus judgment is the final detection result.

13.4 Evaluation

We conducted several experiments to test the detection performance of the Capsule-
Forensics network. After describing the datasets and metrics we used (Sect. 13.4.1
and 13.4.2), we discuss the effectiveness of the improvements introduced in this
chapter in comparison with our previous work [32]: larger input size, more primary
capsules, and dropout in the dynamic routing algorithm (Sect. 13.4.3). We then com-
pare several candidate feature extractors (Sect. 13.4.4) and evaluate the effectiveness
of the statistical pooling layer used in each primary capsule (Sect. 13.4.5). Finally,
we compare the detection performance of the improved Capsule-Forensics network
with that of a CNN on both seen and unseen attacks (Sect. 13.4.6 and 13.4.7, respec-
tively). For the CNNs, we used the corresponding version of the Capsule-Forensics
network using feature aggregation instead of the dynamic routing algorithm, the
multi-task learning network [30], the XceptionNet version used in FaceForensics++
work [36], and the EfficientNet network [44]. Among them, the multi-task learning
network is a generative classifier while the rest are discriminative classifiers. For the
multi-task learning network, in addition to ground-truth labels, segmentation masks
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Fig. 13.5 Activation of three capsules and entireCapsule-Forensics network (columns 2, 3, 4, and 5,
respectively) on images created using deepfake [3] (row 1), Face2Face [46] (row 3), FaceSwap [36]
(row 5), and Neural Textures [45] (row 7) methods and on a real image. Column 6 shows the
manipulated regions corresponding to the manipulated images in column 1. The first three columns
of rows 2, 4, 6, 8, and 10 show the differences between the activations of capsules 1 and 2, 1 and 3,
and 2 and 3 on the corresponding row above, respectively. The three last columns in order show the
differences between the activations of capsules 1, 2, and 3 and the activation of the whole network
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Fig. 13.6 Example case in which one capsule did not work correctly. First row shows activation
of whole network and of three capsules. Second row from left to right shows input image and
differences between activation of each capsule and of whole network. Although capsule 3 failed to
detect manipulated image, final result was correct due to agreement between other two capsules

of the manipulated regions are needed for training. When testing, since segmenting
manipulated regions is beyond the scope of this work, we used only its encoder part
to perform binary classification. For XceptionNet, we modified its fully connected
layer and trained it in two phases. For EfficientNet [44], which recently received a
high score in the Deepfake Detection Challenge, we used the B4 version (denoted
as EfficientNet-B4) which requires an input size of 380 × 380 pixels. The larger
versions (B5, B6, and B7) require larger inputs and have more parameters, making
it impossible to train them on a single-GPU machine.

For simplicity, we used only multi-class classification to compare the original
setting in our previous work [32] with the new setting in this work. For the remaining
experiments, we tested only binary classification. Except for the one discussed in
Sect. 13.4.7, all the evaluations were for performance on seen attacks.

13.4.1 Datasets

We used videos from the FaceForensics++ dataset [36], supplemented with the
Google DFD dataset [1]. We used all three levels of compression (none, moder-
ate, and high) and mixed them together to make multiple compression datasets for
our experiments. For training, we used version 1 of the FaceForensics++ dataset
including original videos and three corresponding manipulated videos created by
deepfake [3], Face2Face [46], and FaceSwap [36] methods. For testing, two sce-
narios were used: seen attacks and unseen attacks. For seen attacks, we used a test
set from version 1 of the FaceForensics++ dataset. For unseen attacks, we used test
videos created using Neural Textures [45] (unseen method), which was added in
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Table 13.1 Configuration of training, validation, and test sets fromFaceForensics++dataset version
1 (for seen attacks) [36]

Type Training set Validation set Test set

Real 720 × 3 vids
72, 000 × 3 imgs

140 × 3 vids
1, 400 × 3 imgs

140 × 3 vids
1, 400 × 3 imgs

Deepfake 720 × 3 vids
72, 000 × 3 imgs

140 × 3 vids
1, 400 × 3 imgs

140 × 3 vids
1, 400 × 3 imgs

Face2Face 720 × 3 vids
72, 000 × 3 imgs

140 × 3 vids
1, 400 × 3 imgs

140 × 3 vids
1, 400 × 3 imgs

FaceSwap 720 × 3 vids
72, 000 × 3 imgs

140 × 3 vids
1, 400 × 3 imgs

140 × 3 vids
1, 400 × 3 imgs

Table 13.2 Configuration of test sets for unseen attacks created using Neural Textures method [45]
and Google DFD dataset [1]

Type Neural textures (unseen method) Google DFD dataset (unseen data)

Real 0 vids 0 imgs 140 × 3 vids 1, 400 × 3 imgs

Fakes 358 × 3 vids 3, 580 × 3 imgs 3, 065 × 3 vids 30, 650 × 3 imgs

version 2 of the FaceForensics++ dataset, and the entire Google DFD dataset [1]
(unseen data).

We took the first 100 frames of the input video for the training set and the first 10
frames for the validation and test sets. FaceForensics++ dataset version 1 (for seen
attacks) was divided into a training set, a validation set, and a test set, as shown in
Table13.1. The test sets for unseen attacks are shown in Table13.2.

13.4.2 Metrics

We used four metrics in our evaluation:

• Classification accuracy = T P+TN
TP+TN+FP+FN , where TP, TN, FP, and FN are true posi-

tive, true negative, false positive, and false negative, respectively.
• Equal error rate (EER): common value when false positive rate (FPR) equals false
negative rate (FNR). FPR = FP

N (number of false positives divided by number of
negatives). FNR = FN

P (number of false negatives divided by number of positives).
• Half total error rate (HTER): HTER = FPR+FNR

2 .
• Attack presentation classification error rate (APCER): “proportion of attack pre-
sentations using the same PAI species incorrectly classified as bona fide presenta-
tions in a specific scenario.”1

1 ISO/IEC 30107-3 definition. Accessed at https://www.iso.org/obp/ui/#iso:std:iso-iec:19989:-1:
ed-1:v1:en:term:3.1.

https://www.iso.org/obp/ui/#iso:std:iso-iec:19989:-1:ed-1:v1:en:term:3.1
https://www.iso.org/obp/ui/#iso:std:iso-iec:19989:-1:ed-1:v1:en:term:3.1
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The thresholds used to determine whether the classification outputs were real or
fake were selected on the basis of the EERs calculated for the development sets.

13.4.3 Effect of Improvements

In thefirst experiment,wemeasured the effectiveness of the improvements introduced
here: larger input size, more primary capsules, and dropout in the dynamic routing
algorithm. Since Capsule-Forensics is not limited to binary classification, we also
evaluated its multi-class classification ability by changing the number of output
capsules, from “Real” and “Fake” capsules to “Real,” “Deepfake,” “Face2Face,” and
“FaceSwap” capsules. This modification is obvious and did not require substantial
changes to the network architecture.

As shown in Table13.3, using larger images improved performance substantially
as expected. The effect of random noise was limited. In our previous work [32], most
of the training sets were small, so random noise made a substantial contribution. In
this work, we used the first 100 frames instead of the first 10 for the training set, so
the set was ten times larger. Although the random noise did not result in improvement
in all cases, it still played an important role in reducing the HTER when combined
with dropout and increased the accuracy of multi-class classification. Increasing the
number of primary capsules also helped improve performance. The combination of
all three improvements achieved the best performance for both binary and multi-
class classification. We refer to this combination as “new setting” in Table13.3 to
distinguish it from the “original setting” (the setting used in our previous work [32]).

13.4.4 Feature Extractor Comparison

The feature extractor is an important part of the Capsule-Forensics network (block
A in Fig. 13.3). Rather than training a simple CNN from scratch along with the other
parts of the network, as is done in the traditional capsule network approach [39], we
used part of a pretrained CNN (trained on the ImageNet dataset [37]). We selected
three commonly used extractors as candidates:

• VGG-19 [41]: used from the beginning until the third max pooling layer.
• ResNet-50 [16]: used from the beginning until the end of the “conv3_x” layer.
• XceptionNet [11]: used from the beginning until the end of the first block of its
“middle flow.”

In addition to evaluating these candidates, we evaluated a simple CNN with three
convolutional layers as the feature extractor, like the ones used in conventional cap-
sule networks. The CNN was trained along with the other parts of the Capsule-
Forensics network. In addition, we also fine tuned the pretrained feature extractors
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Table 13.3 Performance of Capsule-Forensics with original [32] and new settings introduced here

Input size No. of
capsules

Random
noise

Dropout Binary clas-
sification
accuracy
(%)

Binary clas-
sification
HTER (%)

Multi-class
classifica-
tion
accuracy
(%)

Original setting [32]:

128 × 128 3 No No 87.45 15.41 85.89

128 × 128 3 Yes No 88.57 15.35 87.12

New setting:

300 × 300 3 No No 89.88 11.28 87.51

300 × 300 3 Yes No 90.86 11.29 87.54

300 × 300 10 No No 91.61 11.52 88.51

300 × 300 10 Yes No 91.32 12.07 89.98

300 × 300 3 No Yes 91.33 12.37 89.19

300 × 300 3 Yes Yes 91.19 11.93 88.44

300 × 300 10 No Yes 92.17 10.70 90.51

300 × 300 10 Yes Yes 92.00 10.64 91.22

(indicated by “FT” after their names) to check whether fine-tuning helps improve
overall performance. We tested the extractors on both the original and new settings
except for the simple CNN. It was tested on only the original setting since training
it on the new setting would consume a much greater amount of memory and take
much longer. The results are shown in Table13.4.

All the extractors performed better using the new setting. Fine-tuning did not help
much when using the new setting. Besides reducing memory usage and shortening
training time, using pretrained feature extractors resulted in better performance than
using a CNN extractor trained from scratch. These results support our hypothesis
that using a pretrained feature extractor contributes to the superiority of our Capsule-
Forensics network.

The ResNet-50 based feature extractor has the smallest number of parameters,
making it about ten times smaller than theVGG-19 andXceptionNet ones. TheVGG-
19 extractor with the new setting achieved the highest classification accuracy and
had the lowest HTER. For dealing with seen manipulations, if performance is more
important than the number of parameters, VGG-19 is the best choice. Otherwise,
ResNet-50 is more suitable.
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Table 13.4 Performance (in %) of feature extractors with and without fine-tuning (FT) with both
original and new settings

Feature extractor Training accuracy Test accuracy Test HTER No. of parameters

Original setting [32]:

Simple CNN 98.97 83.36 25.42 371,712

VGG-19 99.81 88.57 15.35 2,325,568

VGG-19 FT 99.54 90.08 12.49 2,325,568

ResNet-50 99.60 88.21 16.09 225,344

ResNet-50 FT 99.69 87.45 13.60 225,344

XceptionNet 99.58 85.52 19.10 2,720,736

XceptionNet FT 99.45 85.41 18.91 2,720,736

New setting:

VGG-19 99.83 92.00 10.64 2,325,568

VGG-19 FT 99.63 90.98 13.40 2,325,568

ResNet-50 99.17 90.59 14.60 225,344

ResNet-50 FT 99.69 90.14 14.94 225,344

XceptionNet 99.79 90.42 13.35 2,720,736

XceptionNet FT 99.84 91.39 10.85 2,720,736

13.4.5 Effect of Statistical Pooling Layers

In another experiment, we compared the performance and size of two versions of the
Capsule-Forensics network: one using and one not using a statistical pooling layer for
each primary capsule (block B in Fig. 13.3). Previous work [31, 35] suggested that
using a statistical pooling layer is effective for detecting computer-generated images.
For the version without statistical pooling layers, we replaced the 1D convolutional
layers with 2D ones and added an adaptive average pooling layer at the end of each
primary capsule. We hypothesized that the statistical pooling layer helps filter out
unnecessary information, i.e., information that is not relevant to deepfake detection.
Therefore, using a statistical pooling layer in each primary capsule helps reduce
feature size and improve performance. Moreover, reducing the feature size results in
a smaller routing matrix, which uses less memory and computation power. We used
the VGG-19 feature extractor in this experiment. The results are shown in Table13.5.

With both the original and new settings, using statistical pooling layers greatly
improved classification accuracy and reduced the HTER for the seen test set. More-
over, using them reduced the number of parameters by 400%. These results support
our hypothesis that using statistical pooling layers contributes to the superiority of
our Capsule-Forensics network. An interesting observation from the results is that
the number of parameters was independent of the input size (128 × 128 in the origi-
nal setting and 300 × 300 in the new setting). This is because both the statistical and
adaptive average pooling layers were designed to deal with variations in input size.
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Table 13.5 Performance (in %) with and without statistical pooling (SP) layer in primary capsules
for both original and new settings with VGG-19 feature extractor. (Number of parameters does not
include number for feature extractor.)

Settings Test accuracy Test HTER No. of parameters

Original setting [32]:

With SP layer 88.57 15.35 1,571,070

Without SP layer 83.51 15.78 6,689,280

New setting:

With SP layer 92.00 10.64 1,571,070

Without SP layer 87.70 11.65 6,689,280

13.4.6 Capsule-Forensics Network Versus CNNs: Seen
Attacks

In a third experiment,we compared the performanceof the dynamic routing algorithm
used in the Capsule-Forensics network with that of traditional feature aggregation
(block C in Fig. 13.3). The VGG-19 feature extractor was used in both cases.We also
evaluated the performance of the multi-task learning network [30], the XceptionNet
network, and theEfficientNet-B4 network [44]. It is important to note that this version
ofXceptionNet differs from the one used in our feature extractor (Sect. 13.4.4), which
was pretrained on the ImageNet dataset [37], with only part of it used. Since the
training dataset was imbalanced (the number of fake samples was three time the
number of real samples), we additionally evaluated the effect of using a weighted
softmax function during training. The experiment results are shown in Table13.6.

The effect of using a weighted softmax function is not clear. Since the dataset was
not heavily imbalanced, this result is reasonable. Although having the smallest num-
ber of parameters, the multi-task learning network had the worst performance. The
dynamic routing algorithm helped the Capsule-Forensics network achieve higher
performance, especially with the new setting. The numbers of parameters for the
Capsule-Forensics network and the corresponding CNN using feature aggregation
were almost the same, whereas the numbers for the EfficientNet-B4 and the Xcep-
tionNet networks were about 4.5 to 5.3 times larger. Moreover, the test accuracy of
the Capsule-Forensics network and the Efficient-B4 network was almost the same.
The large input size of the EfficientNet-B4 network (380 × 380 vs 300 × 300) might
be the reason for its lower HTER.

In addition to the results on themixed compression test set shown in Table13.6, we
also broke it down into three compression levels, as shown in Table13.7. There were
no substantial differences between the performances ofCapsule-Forensics,Xception-
Net, andEfficientNet-B4. Their performanceswere degraded fromno compression to
moderate compression to high compression. With their average accuracy about 84%,
detecting highly compressed deepfake videos was still challenging when most of the
deepfake artifacts were erased by the compression algorithm. Capsule-Forensics and
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Table 13.6 Performance (in %) of Capsule-Forensics using dynamic routing algorithm, its corre-
sponding CNN using the traditional feature aggregation approach, and the other baselines on seen
attacks. Number of parameters is for entire network, including feature extractor

Settings Test accuracy Test HTER No. of parameters

Original setting [32]:

Dynamic routing 88.57 15.35 2,796,889

Feature aggregation 86.26 15.15 2,798,059

New setting:

Dynamic routing 92.00 10.64 3,896,638

Feature aggregation 91.82 11.51 3,903,328

Multi-task
learning [30]

73.08 26.30 148,200

XceptionNet [36] 90.73 9.91 20,811,050

EfficientNet-B4 [44] 92.82 8.67 17,552,202

Using weighted softmax:

Dynamic routing 92.21 10.91 3,896,638

Feature aggregation 91.75 10.68 3,903,328

XceptionNet [36] 91.83 10.14 20,811,050

EfficientNet-B4 [44] 91.49 8.64 17,552,202

Table 13.7 Performance (in %) of Capsule-Forensics and other classifiers at three levels of com-
pression on the FaceForensics++ dataset.

Detector No compression Moderate compression High Compression

Accuracy HTER Accuracy HTER Accuracy HTER

Capsule-Forensics 97.27 3.87 94.62 6.42 84.11 21.64

Multi-task
learning [30]

81.12 17.80 69.23 25.94 68.86 35.19

XceptionNet [36] 96.12 4.80 92.82 7.60 83.25 17.33

EfficientNet-B4 [44] 98.37 2.50 95.50 4.88 84.96 18.62

EfficientNet handled the moderately compressed deepfake videos quite well, with
only about 3% degradation in accuracy compared with the uncompressed ones.

Using the Capsule-Forensics network can save a large amount of memory and
computation power compared with the amounts used by CNNs while maintaining
high performance even for compressed videos. This is important for applications
integrating a presentation attack detector into an Internet of things or a handheld
device that does not have powerful hardware to prevent unauthorized facial authen-
tication. The Capsule-Forensics network demonstrated it effectiveness against this
kind of attack [32].
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Table 13.8 Performance (in %) of three versions of Capsule-Forensics network, two versions of
the corresponding CNN, and other baselines on unseen attacks. Number of parameters is for entire
network, including feature extractor

Detectors Neural Textures Google DFD dataset No. of
parameters

Accuracy APCER Accuracy HTER

Capsule-Forensics
(VGG-19)

24.33 75.67 44.51 40.29 3,896,638

Capsule-Forensics
(ResNet-50)

37.93 62.07 64.98 40.89 1,796,414

Capsule-Forensics
(XceptionNet FT)

31.38 68.62 55.73 38.30 4,007,673

Feature aggregation
(VGG-19)

28.81 71.19 58.09 38.70 3,903,328

Feature aggregation
(ResNet-50)

24.00 76.00 62.48 37.70 1,803,104

Multi-task
learning [30]

44.69 55.31 78.74 42.21 148,200

XceptionNet [36] 26.79 73.21 47.29 40.37 20,811,050

EfficientNet-B4 [44] 31.55 68.45 58.63 34.23 17,552,202

13.4.7 Capsule-Forensics Network Versus CNNs: Unseen
Attacks

Detecting unseen attacks is a difficult problem in deepfake detection, especially for
machine-learning-based detectors. When the data distribution changes, the learned
features, and decision boundaries are usually no longer correct. Furthermore, large
networks with a large number of parameters tend to memorize the training data,
especially when the data amount is small. We expected that the Capsule-Forensics
network can be better generalized than large networks thanks to the statistical pooling
operation and dynamic routings of the primary capsules. To test this, we performed
one last experiment inwhichwe tested the detectors on a challenging unseenmanipu-
lation method, Neural Textures [45]. It is unlike any of the methods normally used to
create seen datasets.We also tested the detectors on a different large deepfake dataset,
the Google DFD dataset. We evaluated three new versions of the Capsule-Forensics
networkwith different feature extractors (VGG-19,ResNet-50 (lightweight) andfine-
tuned XceptionNet) and with two versions of a CNN using feature aggregation (with
VGG-19 and ResNet-50 feature extractors), the multi-task learning network [30],
the XceptionNet network [36], and the EfficientNet-B4 network [44].

As shown in Table13.8, all the detectors performed poorly on the Neural Textures
method, with APCERs greater than 50%. The three best detectors on seen attacks
(Capsule-Forensics using VGG-19, XceptionNet, and EfficientNet-B4—which are
discriminative classifiers) had theworst performances on thismethod. Themulti-task
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Fig. 13.7 Comparison between several versions of Capsule-Forensics network and CNNs for clas-
sification accuracy, inference time, and model size on Google DFD dataset [1]

learning network (which is a generative classifier) achieved the best results, followed
by the lightweight Capsule-Forensics network using the ResNet-50 feature extractor.
Theperformances of all detectorswere slightly better on theGoogleDFDdataset. The
Capsule-Forensics network using ResNet-50 again had the second highest accuracy,
below the multi-task learning network. Since the multi-task learning network was
specially designed to deal with unseen attacks, it was able to beat all the other
detectors. However, its drawback is poor performance on seen attacks, as seen in the
previous section.

Figure13.7 shows a comparison on the classification accuracy, inference time
(for one image), and model size of all detectors on the Google DFD dataset [1]. All
tests were done using a NVIDIA DGX Station machine. The Capsule-Forensics net-
work using the ResNet-50 feature extractor and its corresponding CNN using feature
aggregation had the second smallest sizes andwere the second fastest detectors. They
were a bit slower than the Capsule-Forensics network using the XceptionNet feature
extractor. Due to the design of the VGG-19 network, detectors using it as the fea-
ture extractor have the longest inference times (about twice the shortest times). The
XceptionNet-based detector had the largest size but had limited detection accuracy.
The EfficientNet-B4-based detector and the multi-task learning detector were the
two slowest ones. It is important to note that we measured only the inference time of
the encoder part of the multi-task learning detector for the binary classification task.
Although it has fewer parameters than the other detectors, some memory-related
operations slowed it down.

Although having limited performance on unseen attacks, this experiment demon-
strated that the Capsule-Forensics network is better able to detect deepfakes than
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CNNs. Between the two versions of the Capsule-Forensics network, if performance
on seen attacks is more important, using VGG-19 as the feature extractor is the better
choice. If performance on unseen attacks is more important, or a lightweight and fast
network is needed, using ResNet-50 as the feature extractor is the better choice.

13.5 Conclusion and Future Work

Our experiments demonstrated that the Capsule-Forensics network is better able to
detect deepfakes than conventional CNNs. Its use of a pretrained feature extractor,
statistical pooling layers, and a dynamic routing algorithm enables it to achieve better
performance with fewer parameters than corresponding CNNs. Furthermore, it has
better performance than other discriminative classifiers on unseen manipulations,
although further improvement is needed. Visualization of the activation of each cap-
sule enables the learned features to be analyzed. These promising results and the
understanding gained from the analysis should lead to further research on and devel-
opment of capsule networks, not only for digital forensics but also for many other
applications.

Future work includes enabling the Capsule-Forensics network to use temporal
information to detect fake videos and improving its generalizability (in other words,
reducing the gap between discriminative classifiers and generative classifiers).More-
over, deepfake datasets mostly contain images and videos containing only one or two
people. In reality, deepfake methods can be applied to a crowd; therefore, deepfake
detection in the wild is also an important research direction.
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13.6 Appendix

This appendix presents a simple example of the dynamic routing algorithm shown in
Algorithm1with three (m = 3) primary capsulesu(i) ∈ R

k, i = 1..3 and two (n = 2)
output capsules v(j) ∈ R

l , j = 1..2. All equations are written out in full.
There are three routingmatrices corresponding to the three primary capsules, each

represented by
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Ŵ(i) = W(i) + N ∀i
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⎢⎢⎢⎢⎣
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with Ŵ(i) ∈ R
l×k,W(i) ∈ R

l×k,N(i) ∈ R
l×k,N(i)

∼ N (0, 0.01).

The next steps are to process u(i) to form û(i):

û(i) =

⎡
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û(i)
1

û(i)
2
...

û(i)
l

⎤
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2
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k

⎤

⎥⎥⎥⎦

⎞

⎟⎟⎟⎠ ,

with u(i) ∈ R
k, û(i) ∈ R

l .

û(i) ← dropout(̂u(i)).

Then, two matrices B(1),B(2) ∈ R
l×3 corresponding to the two output capsules

are initialized:

B( j) =
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For r iterations do:
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,C( j) ∈ R

l×3.
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(� represents element-wise multiplication).
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Finally, return v( j).
Figure13.4 is a visualization of C(2), where l = 4.
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