Skip to main content

High-Speed Dimensional Processing of Metallic Materials with an Environmentally Friendly Jet Electrolyte-Plasma Method

  • Conference paper
  • First Online:
Proceedings of I4SDG Workshop 2021 (I4SDG 2021)

Abstract

This article presents the results of a study of an environmentally friendly method of surface treatment with an electric discharge formed by an electrolyte jet and a workpiece. The study of the effect of electrolytic plasma on the surface of the samples was carried out in various technological modes to obtain the maximum rate of removal from the surface of the material. As a representative material, corrosion-resistant heat-resistant steel 20X13 and stainless steel AISI 304 were used. Computer modeling of the volume and mass of the defect layer appearing on the surface of parts after various types of mechanical processing requiring removal to obtain a surface with a low roughness parameter was performed. An analysis of the surface morphology was carried out, showing the effect of electrolyte plasma on the surface of the product. A technological device has been developed that allows high-speed dimensional surface treatment with a high initial level of surface roughness inherent in blanking operations. In this case, the treated surface after the electrolytic-plasma treatment has a low surface roughness corresponding to the operations of grinding and polishing. It is shown that at small distances, high concentrations of electrolyte, the process of electrolytic-plasma treatment proceeds at a very high speed and can be used in industry to replace manual grinding and polishing operations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

1. References

  1. Popova, A.I.: Osnovnye faktory innovacionnotekhnologicheskogo razvitiya (The main factors of innovative and technological development) V sbornike: Integraciya ekonomiki v sistemu mirohozyajstvennyh svyazej. Sbornik nauchnyh trudov XVII Mezhdunarodnoj nauchno-prakticheskoj konferencii, pp. 123–125 (2012). (in Russian)

    Google Scholar 

  2. Popova, A.I.: Voprosy integracii rossii v mirovoe hozyajstvo (Issues of Russia’s integration into the world economy) V sbornike: Integraciya ekonomiki v sistemu mirohozyajstvennyh svyazej. Sbornik nauchnyh trudov XVII Mezhdunarodnoj nauchno-prakticheskoj konferencii, pp. 24–26 (2012). (in Russian)

    Google Scholar 

  3. Ushomirskaya, L.A., Veselovskiy, A.P.: Intensifikatsiya tekhnologicheskikh protsessov izgotovleniya detaley mashin pri ispolzovanii razlichnykh vidov energii. Metalloobrabotka 2(56), 46 (2010). (in Russian)

    Google Scholar 

  4. Kulikov, I.S.: Elektrolitno-plazmennaya obrabotka materialov. In: Kulikov, I.S., Vashchenko, S.V., Kamenev, A.Ya. (eds.) NAN Belarusi, Obyedinennyy in-t energeticheskikh issledovaniy - Sosny. Belaruskaya navuka, Minsk (2010). 232s. ISBN 978-985-08-1215. (in Russian)

    Google Scholar 

  5. Nestler, K., Böttger-Hiller, F., Adamitzki, W., Glowa, G., Zeidler, H., Schubert, A.: Plasma electrolytic polishing - an overview of applied technologies and current challenges to extend the polishable material range. Procedia CIRP 42, 503–507 (2016)

    Google Scholar 

  6. Alekseyev, Yu.G., Korolev, A.Yu., Parshuto, A.E., Niss, V.S.: Elektrolitno-plazmennaya obrabotka pri nestatsionarnykh rezhimakh v usloviyakh vysokogradiyentnogo elektricheskogo polya. Nauka i tekhnika 16(5), 391 (2017). (in Russian)

    Google Scholar 

  7. Danilov, I., Hackert-Oschätzchen, M., Zinecker, M., Meichsner, G., Edelmann, J., Schubert, A.: Process understanding of plasma electrolytic polishing through multiphysics simulation and inline metrology. Micromachines 10, 214 (2019). https://doi.org/10.3390/mi10030214

    Article  Google Scholar 

  8. Zakharov, S.V., Korotkikh, M.T.: Electrolyte-Plasma Polishing Ionization Model. Lecture Notes in Mechanical Engineering, pp. 193–208 (2020)

    Google Scholar 

  9. Danilov, I., Paul, R., Hackert-Oschätzchen, M., Zinecker, M., Quitzke, S., Schubert, A.: Random sequential simulation of the resulting surface roughness in plasma electrolytic polishing of stainless steel. Procedia CIRP 95, 981–986 (2020). 20th CIRP Conference on Electro Physical and Chemical Machining, ISEM 2020; Zurich, Online; Switzerland; 19 January 2021 дo 21 January 2021

    Google Scholar 

  10. Gaysin, F.M., Son, E.Ye.: Elektricheskiye razryady v parogazovoy srede s netraditsionnymi elektrodami. Entsiklopediya nizkotemperaturnoy plazmy. Pod red. Fortova V.Ye. M.: Nauka, p. 241 (2000). (in Russian)

    Google Scholar 

  11. Witzke, M., Rumbach, P., Go, D.B., Sankaran, R.M.: Evidence for the electrolysis of water by atmospheric-pressure plasmas formed at the surface of aqueous solutions. J. Phys. D Appl. Phys. 45, 5 (2012)

    Google Scholar 

  12. Krevsun, E.P., Kulikov, I.S.: Ustroystvo dlya elektrolitno-plazmennoy obrabotki tokoprovodyashchego izdeliya Patent na izobreteniye. Respubliki Belarus â„–16101 Kl. MPK: B 23H3/00, 30 August 2012. (in Russian)

    Google Scholar 

  13. Slovetskiy, D.I., Terentyev, S.D., Plekhanov, V.G.: Mekhanizm plazmenno-elektrolitnogo nagreva metallov. TVT. 24(2), 353 (1986). (in Russian)

    Google Scholar 

  14. Grigoryev, A.I.: O perenose energii i formirovanii elektricheskogo toka v o krestnosti opushchennogo v elektrolit, silno nagretogo protekayushchim tokom elektroda. Zhurnal tekhnicheskoy fiziki, tom 74, vyp.5- S. 38–43 (2004). (in Russian)

    Google Scholar 

  15. Popov. A.I., Popova, A.I., Popova, D.A.: Process aspects of jet electrolytic plasma processing. St. Petersburg Polytech. Univ. J. Eng. Sci. Technol. 25 (2019)

    Google Scholar 

  16. Ablyaz, T.R., Muratov, K.R., Ushomirskaya, L.A., Zarubin, D.A., Sidhu, S.S.: Electrolytic plasma polishing technique for improved surface finish of Ed machined components. Eng. Solid Mech. 7(2), 131–136 (2019)

    Google Scholar 

  17. Gaisin, A.F., Son, E.E.: Vapor-air discharges between electrolytic cathode and metal anode at atmospheric pressure. High Temp. 43, 1–7 (2005). https://doi.org/10.1007/s10740-005-0040-5

    Article  Google Scholar 

  18. Bagautdinova, L.N., Gaisin, F.M.: A multichannel discharge in conducting liquid at atmospheric pressure. High Temp. 48, 126–128 (2010). https://doi.org/10.1134/S0018151X10010153

    Article  Google Scholar 

  19. Popov, A.I., Novikov, V.I., Radkevich, M.M.: Characteristics of the development of electric discharge between the jet electrolyte cathode and the metal anode at atmospheric pressure. High Temp. 57, 447–457 (2019). https://doi.org/10.1134/S0018151X19030118

    Article  Google Scholar 

  20. Popov, A.I., Radkevich, M.M., Teplukhin, V.G.: Thinnest finishing treatment with a focused jet of electrolytic plasma. Lecture Notes in Mechanical Engineering (cм. в книгax), pp. 139–149 (2020)

    Google Scholar 

  21. Popov, A.I., Radkevich, M.M., Kudryavtsev, V.N., Zakharov, S.V., Kuzmichev, I.S.: Ustanovka dlya elektrolitno-plazmennoy obrabotki turbinnykh lopatok. Patent na izobreteniye RF â„– 2623555. Kl. MPK: C25F7/00, 27 June 2017. (in Russian)

    Google Scholar 

  22. Popov, A.I., Radkevich, M.M., Medko, V.S., Novoselov, M.V.: Ustrojstvo dlya elektrolitno-plazmennoj obrabotki metallicheskih izdelij. Patent na izobretenie RF (Device for electrolytic-plasma processing of metal products. Patent for invention of the Russian Federation ) No. 2681239. Cl. IPC: C25F7 / 00, 13 June 2018. (in Russian)

    Google Scholar 

Download references

Acknowledgment

The authors would like to thank graphic designer Diana Popova for preparing illustrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Popov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Popov, A., Popova, A., Fumin, A., Novoselov, M., Zakharov, S., Radkevich, M. (2022). High-Speed Dimensional Processing of Metallic Materials with an Environmentally Friendly Jet Electrolyte-Plasma Method. In: Quaglia, G., Gasparetto, A., Petuya, V., Carbone, G. (eds) Proceedings of I4SDG Workshop 2021. I4SDG 2021. Mechanisms and Machine Science, vol 108. Springer, Cham. https://doi.org/10.1007/978-3-030-87383-7_52

Download citation

Publish with us

Policies and ethics