Skip to main content

The Challenges of Oil Free Bearings in Micro-turbomachinery

  • Conference paper
  • First Online:

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 108))

Abstract

Among all types of bearings, gas bearings are the most environmental friendly supports as they do not need to be lubricated with mineral oil. The air or the gaseous working fluid used in micro-turbomachinery are used to lubricate the bearings and realize the supporting task. Due to their characteristics, they cannot replace the other bearings in all applications; however, the research is always working in order to broaden the boundaries of gas bearings. This paper is aimed at describing the most promising application domains in which gas bearings are challenging and gives a survey on all types of gas bearings, discussing their pros and cons.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Heshmat, H., Hryniewicz, P., Walton, J.F., Willis, J.P., Jahanmir, S., DellaCorte, C.: Low-friction wear-resistant coatings for high-temperature foil bearings. Tribol. Int. 38, 1059–1075 (2005). https://doi.org/10.1016/j.triboint.2005.07.036

    Article  Google Scholar 

  2. Lecompte, S., Huisseune, H., Van Den Broek, M., Vanslambrouck, B., De Paepe, M.: Review of organic Rankine cycle (ORC) architectures for waste heat recovery. Renew. Sustain. Energy Rev. 47, 448–461 (2015). https://doi.org/10.1016/j.rser.2015.03.089

    Article  Google Scholar 

  3. Arpagaus, C., Bless, F., Schiffmann, J., Bertsch, S.S.: Pompes à chaleur à multiples températures: Une synthèse de la littérature. Int. J. Refrig. 69, 437–465 (2016). https://doi.org/10.1016/j.ijrefrig.2016.05.014

    Article  Google Scholar 

  4. Jain, A., Jadhav, M.M., Karimulla, S., Chakravarty, A.: Parametric studies on floating pad journal bearing for high speed cryogenic turboexpanders. IOP Conf. Ser. Mater. Sci. Eng. 278 (2017). https://doi.org/10.1088/1757-899X/278/1/012026

  5. Lee, Y.B., Kwon, S.B., Kim, T.H., Sim, K.: Feasibility study of an oil-free turbocharger supported on gas foil bearings via on-road tests of a two-liter class diesel vehicle. J. Eng. Gas Turbines Power. 135, 1 (2013). https://doi.org/10.1115/1.4007883

    Article  Google Scholar 

  6. Eber, N., Quack, H., Schmid, C.: Gas bearing turbines with dynamic gas bearings and their application in helium refrigerators. Cryogenics 18(11), 585–588 (1978)

    Article  Google Scholar 

  7. Ohlig, K., Bischoff, S.: Dynamic gas bearing turbine technology in hydrogen plants. AIP Conf. Proc. 1434, 814–819 (2012). https://doi.org/10.1063/1.4706994

    Article  Google Scholar 

  8. Kim, T.H., Lee, Y.B., Kim, T.Y., Jeong, K.H.: Rotordynamic performance of an oil-free turbo blower focusing on load capacity of gas foil thrust bearings. J. Eng. Gas Turbines Power. 134, 1–7 (2012). https://doi.org/10.1115/1.4004143

    Article  Google Scholar 

  9. Lee, Y.B., Park, D.J., Kim, T.H., Sim, K.: Development and performance measurement of oil-free turbocharger supported on gas foil bearings. J. Eng. Gas Turbines Power. 134, 32506–1–32506–11 (2012). https://doi.org/10.1115/1.4004719

  10. Gu, L., Guenat, E., Schiffmann, J.: A review of grooved dynamic gas bearings. Appl. Mech. Rev. 72 (2020). https://doi.org/10.1115/1.4044191

  11. Rimpel, A.M., Vannini, G., Kim, J.: A rotordynamic, thermal, and thrust load performance gas bearing test rig and test results for tilting pad . J. Bearings Spiral Groove Thrust Bearings J. Eng. Gas Turbines Power. 139, 1–11 (2017). https://doi.org/10.1115/1.4037315

    Article  Google Scholar 

  12. Waumans, T., Peirs, J., Al-Bender, F., Reynaerts, D.: Aerodynamic journal bearing with a flexible, damped support operating at 7.2 million DN. J. Micromech. Microeng. 21 (2011). https://doi.org/10.1088/0960-1317/21/10/104014

  13. Belforte, G., Colombo, F., Raparelli, T., Viktorov, V.: High-speed rotor with air bearings mounted on flexible supports: test bench and experimental results. J. Tribol. 130, (2008). https://doi.org/10.1115/1.2908905

  14. Battig, P., Schiffmann, J.: Data-driven model for the dynamic characteristics of o-rings for gas bearing supported rotors. J. Appl. Mech. Trans. ASME. 86, (2019). https://doi.org/10.1115/1.4043473

  15. Al-Bender, F., Colombo, F., Reynaerts, D., Villavicencio, R., Waumans, T.: Dynamic characterization of rubber o-rings: squeeze and size effects. Adv. Tribol. (2017). https://doi.org/10.1155/2017/2509879

  16. San Andrés, L.: Hybrid Tilting Pad Gas Bearings: Analysis and Experimental Validation. TRC-B&C-1-05, Turbomachinery Laboratory, Texas A&M University College Station, TX (2005)

    Google Scholar 

  17. Lihua, Y., Huiguang, L., Lie, Y.: Dynamic stiffness and damping coefficients of aerodynamic tilting-pad journal bearings. Tribol. Int. 40, 1399–1410 (2007). https://doi.org/10.1016/j.triboint.2007.03.007

    Article  Google Scholar 

  18. Agrawal, G.L.: Foil air/gas bearing technology — an overview (1997). https://doi.org/10.1115/97-GT-347

  19. Park, D.J., Kim, C.H., Jang, G.H., Lee, Y.B.: Theoretical considerations of static and dynamic characteristics of air foil thrust bearing with tilt and slip flow. Tribol. Int. 41, 282–295 (2008). https://doi.org/10.1016/j.triboint.2007.08.001

    Article  Google Scholar 

  20. Yong-Bok, L., Tae, Y.K., Chang, H.K., Tae, H.K.: Thrust bump air foil bearings with variable axial load: theoretical predictions and experiments. Tribol. Trans. 54, 902–910 (2011). https://doi.org/10.1080/10402004.2011.606957

    Article  Google Scholar 

  21. Walton, J.F., Heshmat, H.: Application of foil bearings to turbomachinery including vertical operation. In: Turbo Expo: Power for Land, Sea, and Air, vol. 78583, p. V001T04A004. American Society of Mechanical Engineers (1999)

    Google Scholar 

  22. Bruckner, R.J.: Windage power loss in gas foil bearings and the rotor-stator clearance of high speed generators operating in high pressure environments. Proc. ASME Turbo Expo. 5, 263–270 (2009). https://doi.org/10.1115/GT2009-60118

    Article  Google Scholar 

  23. Walton, J.F., Heshmat, H., Tomaszewski, M.J.: Testing of a small turbocharger/turbojet sized simulator rotor supported on foil bearings. J. Eng. Gas Turbines Power. 130 (2008). https://doi.org/10.1115/1.2830855

  24. Bruckner, R.J.: An assessment of gas foil bearing scalability and the potential benefits to civilian turbofan engines. Proc. ASME Turbo Expo. 1, 29–35 (2010). https://doi.org/10.1115/GT2010-22118

    Article  Google Scholar 

  25. Yoshimoto, S.: Floating characteristics of squeeze-film gas bearings with vibration absorber for linear motion guide. J. Tribol. 119, 531–536 (1997). https://doi.org/10.1115/1.2833533

    Article  Google Scholar 

  26. Al-Bender, F.: Air Bearings. Theory, Design and Appications. Wiley (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Colombo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Colombo, F., Lentini, L., Raparelli, T., Trivella, A. (2022). The Challenges of Oil Free Bearings in Micro-turbomachinery. In: Quaglia, G., Gasparetto, A., Petuya, V., Carbone, G. (eds) Proceedings of I4SDG Workshop 2021. I4SDG 2021. Mechanisms and Machine Science, vol 108. Springer, Cham. https://doi.org/10.1007/978-3-030-87383-7_44

Download citation

Publish with us

Policies and ethics