Skip to main content

Applications of Intermittent Pneumatic Compression for Diagnostic and Therapeutic Purposes

  • Conference paper
  • First Online:
Proceedings of I4SDG Workshop 2021 (I4SDG 2021)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 108))

Included in the following conference series:

  • 1113 Accesses

Abstract

Intermittent Pneumatic Compression (IPC) technique is prescribed for several treatments, as the management of venous leg ulcers or the prevention of deep vein thrombosis. Commercial devices do not enable the full customization of the compressive patterns due to design specifications and low dynamics. However, IPC can be implemented in a wide scenario of clinical protocols, and not only as a therapeutic tool. In this paper, the results of the research on IPC devices conducted at the Politecnico di Torino (Turin, Italy) are presented. In particular, applications regarding the treatment of the end-diastolic volume (EDV) reduction, the investigation of vascular phenomena as hyperemia, and the assessment of venous pulse wave velocity (vPWV) are discussed. The outcomes of the research demonstrate that IPC technology can lead to the creation of widely used diagnostic, therapeutic and rehabilitative devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Johansson, K., Lie, E., Ekdahl, C., Lindfeldt, J.: A randomized study comparing manual lymph drainage with sequential pneumatic compression for treatment of postoperative arm lymphedema. Lymphology 31, 56ā€“64 (1998)

    Google ScholarĀ 

  2. Zaleska, M., Olszewski, W.L., Durlik, M.: The effectiveness of intermittent pneumatic compression in long-term therapy of lymphedema of lower limbs. Lymphat Res. Biol. 12(2), 103ā€“109 (2014)

    ArticleĀ  Google ScholarĀ 

  3. Comerota, A.J.: Intermittent pneumatic compression: physiologic and clinical basis to improve management of venous leg ulcers. J. Vasc. Surg. 53, 1121ā€“1129 (2011)

    ArticleĀ  Google ScholarĀ 

  4. Nelson, E.A., Mani, R., Thomas, K., Vowden, K.: Intermittent pneumatic compression for treating venous leg ulcers. Cochrane Database Syst. Rev. 16(2), CD001899 (2011)

    Google ScholarĀ 

  5. Sparks-DeFriese, B.J.: Vascular Ulcers. In: Physical Rehabilitation, pp. 777ā€“802, W.B. Saunders (2007)

    Google ScholarĀ 

  6. Flam, E., Berry, S., Coyle, A., Dardik, H., Raab, L.: Blood-flow augmentation of intermittent pneumatic compression systems used for the prevention of deep vein thrombosis prior to surgery. Am. J. Surg. 171, 312ā€“315 (1996)

    ArticleĀ  Google ScholarĀ 

  7. Zhang, D., Li, F., Li, X., Du, G.: Effect of Intermittent pneumatic compression on preventing deep vein thrombosis among stroke patients: a systematic review and meta-analysis. Worldviews Evid. Based Nurs. 15(3), 189ā€“196 (2018)

    ArticleĀ  Google ScholarĀ 

  8. Ferraresi, C., Maffiodo, D., Hajimirzaalian, H.: A model-based method for the design of intermittent pneumatic compression systems acting on humans. Proc. Inst. Mech. Eng. PART H 228(2), 118ā€“126 (2014)

    ArticleĀ  Google ScholarĀ 

  9. Manuello Bertetto, A., Meili, S., Ferraresi, C., Maffiodo, D., Crisafulli, A., Concu, A.: A mechatronic pneumatic device to improve diastolic function by intermittent action on lower Limbs. Int. J. Autom. Technol. 11(3), 501ā€“508 (2017)

    ArticleĀ  Google ScholarĀ 

  10. Maffiodo, D., De Nisco, G., Gallo, D., Audenino, A., Morbiducci, U., Ferraresi, C.: A reduced-order model-based study on the effect of intermittent pneumatic compression of Limbs on the cardiovascular system. Proc. Inst. Mech. Eng. Part H 230(4), 279ā€“287 (2016)

    ArticleĀ  Google ScholarĀ 

  11. Ferraresi, C., et al.: Design and simulation of a novel pneumotronic system aimed to the investigation of vascular phenomena induced by Limb compression. J. Bionic. Eng. 16, 550ā€“562 (2019)

    ArticleĀ  Google ScholarĀ 

  12. Messere, A., et al.: Delivery of customizable compressive patterns to human limbs to investigate vascular reactivity. Biomed. Phys. Eng. Express 4(6), 067003 (2018)

    ArticleĀ  Google ScholarĀ 

  13. Messere, A., et al.: Hyper-oxygenation attenuates the rapid vasodilatory response to muscle contraction and compression. Front. Physiol. 9, 1078 (2018)

    ArticleĀ  Google ScholarĀ 

  14. Ermini, L., Ferraresi, C., De Benedictis, C., Roatta, S.: Objective assessment of venous pulse wave velocity in healthy humans. Ultrasound Med. Biol. 46(3), 849ā€“854 (2019)

    ArticleĀ  Google ScholarĀ 

  15. Ermini, L., Chiarello, N., De Benedictis, C., Ferraresi, C., Roatta, S.: Venous Pulse Wave Velocity variation in response to a simulated fluid challenge in healthy subjects. Biomed. Signal Process. Control 63, 102177 (2021). https://doi.org/10.1016/j.bspc.2020.102177

    ArticleĀ  Google ScholarĀ 

  16. Boutouyrie, P., Briet, M., Vermeersch, S., Pannier, B.: Assessment of pulse wave velocity. Artery Res. 3, 3ā€“8 (2009)

    ArticleĀ  Google ScholarĀ 

  17. Safar, M.E.: Arterial stiffness as a risk factor for clinical hypertension. Nat. Rev. Cardiol. 15, 97ā€“105 (2018)

    ArticleĀ  Google ScholarĀ 

  18. Lin Wang, Y.Y.: Did you know developing quantitative pulse diagnosis with realistic haemodynamic theory can pave a way for future personalized health care. Acta Physiol. 227(3), e13260 (2019). https://doi.org/10.1111/apha.13260

    ArticleĀ  Google ScholarĀ 

  19. Mohrman, D.E., Sparks, H.V.: Myogenic hyperemia following brief tetanus of canine skeletal muscle. Am. J. Physiol. 227, 531ā€“535 (1974)

    ArticleĀ  Google ScholarĀ 

  20. Tschakovsky, M.E., Sheriff, D.D.: Immediate exercise hyperemia: contributions of the muscle pump versus rapid vasodilation. J. Appl. Physiol. 97, 739ā€“747 (2004)

    ArticleĀ  Google ScholarĀ 

  21. Clifford, P.S., Tschakovsky, M.E.: Rapid vascular responses to muscle contraction. Exerc. Sport Sci. Rev. 36, 25ā€“29 (2008)

    ArticleĀ  Google ScholarĀ 

  22. Turturici, M., Mohammed, M., Roatta, S.: Evidence that the contraction-induced rapid hyperemia in rabbit masseter muscle is based on a mechanosensitive mechanism, not shared by cutaneous vascular beds. J. Appl. Physiol. 113, 524ā€“531 (2012)

    ArticleĀ  Google ScholarĀ 

  23. Turturici, M., Roatta, S.: Inactivation of mechano-sensitive dilatation upon repetitive mechanical stimulation of the musculo-vascular network in the rabbit. J. Physiol. Pharmacol. 64, 299ā€“308 (2013)

    Google ScholarĀ 

  24. Jasperse, J.L., Shoemaker, J.K., Gray, E.J., Clifford, P.S.: Positional differences in reactive hyperemia provide insight into initial phase of exercise hyperemia. J. Appl. Physiol. 1985(119), 569ā€“575 (2015)

    ArticleĀ  Google ScholarĀ 

  25. Mackay, I., Van Loon, P., Campos, J., de Jesus, N.: A tecnique for the indirect measurement of the velocity of induced venous pulsation. Am. Heart J. 73, 17ā€“23 (1967)

    ArticleĀ  Google ScholarĀ 

  26. Anliker, M., Wells, M.K., Ogden, E.: The transmission characteristics of large and small pressure waves in the abdominal vena cava. IEEE Trans. Biomed. Eng. 16, 262ā€“273 (1969)

    ArticleĀ  Google ScholarĀ 

  27. Minten, J., Van De Werf, F., Auber, A., Kasteloot, H., De Geest, H.: Apparent pulse wave velocity in canine superior vena cava. Cardiovasc Res. 17, 627ā€“632 (1983)

    ArticleĀ  Google ScholarĀ 

  28. Nippa, J., Alexander, R., Folse, R.: Pulse wave velocity in human veins. J. Appl. Physiol. 30, 558ā€“563 (1971)

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo De Benedictis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ferraresi, C. et al. (2022). Applications of Intermittent Pneumatic Compression for Diagnostic and Therapeutic Purposes. In: Quaglia, G., Gasparetto, A., Petuya, V., Carbone, G. (eds) Proceedings of I4SDG Workshop 2021. I4SDG 2021. Mechanisms and Machine Science, vol 108. Springer, Cham. https://doi.org/10.1007/978-3-030-87383-7_23

Download citation

Publish with us

Policies and ethics