Skip to main content

New Sustainable Biped-Wheeled Exoskeleton Prototypes

  • Conference paper
  • First Online:
Proceedings of I4SDG Workshop 2021 (I4SDG 2021)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 108))

Included in the following conference series:

Abstract

This paper presents two versions of a new biped-wheeled prototype developed in a reduced scale using a 3D printer. The results of this paper allow to confirm the hypothesis of feasibility of a biped exoskeleton with wheeled feet. Recent works underlined the convenience to use wheels on feet for simplifying the control of biped locomotion. The new research field of including wheels in exoskeletons has been proposed in recent works and this paper confirms the feasibility of using wheels at feet for wearable human’s supports. These results open new perspectives for the development of a real biped-wheeled platform for people without motion capabilities or with reduced mobility, increasing the sustainability in locomotion systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Castano, A., Behar, A., Will, P.M.: The Conro modules for reconfigurable robots. IEEE/ASME Trans. Mechatron. 7(4), 403–409 (2002)

    Article  Google Scholar 

  2. Nelson, G., Saunders, A., Playter, R.: The PETMAN and atlas robots at Boston dynamics. Humanoid Robot. 169, 186 (2019).

    Google Scholar 

  3. Walsh, C.J., Paluska, D., Pasch, K., Grand, W., Valiente, A., Herr, H.: Development of a lightweight, underactuated exoskeleton for load-carrying augmentation. In: Proceedings of the IEEE ICRA 2006, pp. 3485–3491 (2006).

    Google Scholar 

  4. Panero, E., Muscolo, G.G., Pastorelli, S., Gastaldi, L.: Influence of hinge positioning on human joint torque in industrial trunk exoskeleton. Mechan. Mach. Sci. 73, 133–142 (2019)

    Article  Google Scholar 

  5. Panero, E., Muscolo, G.G., Gastaldi, L., Pastorelli, S.: Multibody analysis of a 3D human model with trunk exoskeleton for industrial applications. Comput. Method Appl. Sci. 53, 43–51 (2020)

    Article  Google Scholar 

  6. Magnetti Gisolo, S., Muscolo, G.G., Paterna, M., De Benedictis, C., Ferraresi, C.: Feasibility study of a passive pneumatic exoskeleton for upper limbs based on a mckibben artificial muscle. In: Zeghloul, S., Laribi, M.A., Sandoval, J. (eds.) RAAD 2021. MMS, vol. 102, pp. 208–217. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75259-0_23

    Chapter  Google Scholar 

  7. Fontana, M., Vertechy, R., Marcheschi, S., Salsedo, F., Bergamasco, M.: The body extender: a full-body exoskeleton for the transport and handling of heavy loads. IEEE Robot. Autom. Mag. 21(4), 34–44 (2014)

    Article  Google Scholar 

  8. Kazerooni, H., Steger, R., Huang, L.: Hybrid control of the berkeley lower extremity exoskeleton (BLEEX). Int. J. Robot. Res. 25(5-6), 561–573 (2006)

    Google Scholar 

  9. Kazerooni, H., Racine, J.L., Huang, L., Steger, R.: On the control of the berkeley lower extremity exoskeleton (BLEEX). In: IEEE International Conference on Robotics and Automation, pp. 4353–4360 (2005).

    Google Scholar 

  10. Zoss, A.B., Kazerooni, H., Chu, A.: Biomechanical design of the berkeley lower extremity exoskeleton (BLEEX). IEEE/ASME Trans. Mechatron. 11(2), 128–138 (2006). https://doi.org/10.1109/TMECH.2006.871087

    Article  Google Scholar 

  11. Banala, S.K., Kim, S.H., Agrawal, S.K., Scholz, J.P.: Robot assisted gait training with active leg exoskeleton (ALEX). In: IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 653–658 (2008).

    Google Scholar 

  12. Perry, J.C., Rosen, J., Burns, S.: Upper-limb powered exoskeleton design. IEEE/ASME Trans. Mechatron. 12(4), 408–417 (2007). https://doi.org/10.1109/TMECH.2007.901934

    Article  Google Scholar 

  13. Park, I.W., Kim, J.Y., Lee, J., Oh, J.H.: Mechanical design of humanoid robot platform KHR-3. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 530–535 (2013).

    Google Scholar 

  14. Kaneko, K., Harada, K., Kanehiro, F., Miyamori, G., Akachi, K.: Humanoid Robot HRP-3. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2471–2478 (2008).

    Google Scholar 

  15. Michaud, F., et al.: Multi-modal locomotion robotic platform using leg-track-wheel articulations. Autonomous Robot. 18(2), 137–156 (2005). https://doi.org/10.1007/s10514-005-0722-1

  16. Kamen, D.L., Dastous, S.D., Duggan, R., Guay, G.M.: Fault tolerant architecture for a personal vehicle. In: US Patent Document. 6,223,104. pp. 1–3 (2001).

    Google Scholar 

  17. Muscolo, G.G., Recchiuto, C.T.: Flexible structure and wheeled feet to simplify biped locomotion of humanoid robots. Int. J. Humanoid Rob. 14(1), 1–26 (2017)

    Google Scholar 

  18. Muscolo, G.G., Recchiuto, C.T.: T.P.T. a novel Taekwondo personal trainer robot. Robot. Autonom. Syst. 83, 150–157 (2016).

    Google Scholar 

  19. Lisitano, D., Bonisoli, E., Recchiuto, C.T., Muscolo, G.G.: Dynamic balance of the head in a flexible legged robot for efficient biped locomotion. Appl. Sci. 11, 2945 (2021). https://doi.org/10.3390/app11072945

    Article  Google Scholar 

  20. Zoccali, A., Muscolo, G.G.: Comfort perception analysis of human models interfacing with novel biped-wheeled-exoskeletons. In: Rauter, G., Cattin, P.C., Zam, A., Riener, R., Carbone, G., Pisla, D. (eds.) MESROB 2020. MMS, vol. 93, pp. 21–28. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-58104-6_3

    Chapter  Google Scholar 

  21. Trono, G., Nicolì, A., Muscolo, G.G.: Sustainable compliant physical interaction in a biped-wheeled wearable machine. Front. Mech. Eng. 6, 581626 (2020). https://doi.org/10.3389/fmech.2020.581626

    Article  Google Scholar 

  22. Muscolo, G.G.: HANDSHAKE: handling system for human autonomous keeping. Int. J. Humanoid Rob. 18(01), 2150003 (2021). https://doi.org/10.1142/S0219843621500031

    Article  Google Scholar 

  23. Akbar, M.A.: Simulation of fuzzy logic control for dc servo motor using arduino based on Matlab/Simulink. In: International Conference on Intelligent Autonomous Agents, Networks and Systems, pp. 42–46 (2014).

    Google Scholar 

  24. Juang, H.S., Lum, K.Y.: Design and control of a two-wheel self balancing robot using the arduino microcontroller board. In: 10th IEEE International Conference on Control and Automation (ICCA), pp. 634–639 (2013).

    Google Scholar 

  25. Al-Busaidi, A.M.: Development of an educational environment for online control of a biped robot using MATLAB and arduino. In: 9th France-Japan and 7th Europe-Asia Congress on Mechatronics (MECATRONICS) / 13th Int’l Workshop on Research and Education in Mechatronics (REM), pp. 337–344 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Gerardo Muscolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Loschi, A., Smerchinich, A., Muscolo, G.G. (2022). New Sustainable Biped-Wheeled Exoskeleton Prototypes. In: Quaglia, G., Gasparetto, A., Petuya, V., Carbone, G. (eds) Proceedings of I4SDG Workshop 2021. I4SDG 2021. Mechanisms and Machine Science, vol 108. Springer, Cham. https://doi.org/10.1007/978-3-030-87383-7_17

Download citation

Publish with us

Policies and ethics