Skip to main content

Generalised Super Resolution for Quantitative MRI Using Self-supervised Mixture of Experts

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12906))

Abstract

Multi-modal and multi-contrast imaging datasets have diverse voxel-wise intensities. For example, quantitative MRI acquisition protocols are designed specifically to yield multiple images with widely-varying contrast that inform models relating MR signals to tissue characteristics. The large variance across images in such data prevents the use of standard normalisation techniques, making super resolution highly challenging. We propose a novel self-supervised mixture-of-experts (SS-MoE) paradigm for deep neural networks, and hence present a method enabling improved super resolution of data where image intensities are diverse and have large variance. Unlike the conventional MoE that automatically aggregates expert results for each input, we explicitly assign an input to the corresponding expert based on the predictive pseudo error labels in a self-supervised fashion. A new gater module is trained to discriminate the error levels of inputs estimated by Multiscale Quantile Segmentation. We show that our new paradigm reduces the error and improves the robustness when super resolving combined diffusion-relaxometry MRI data from the Super MUDI dataset. Our approach is suitable for a wide range of quantitative MRI techniques, and multi-contrast or multi-modal imaging techniques in general. It could be applied to super resolve images with inadequate resolution, or reduce the scanning time needed to acquire images of the required resolution. The source code and the trained models are available at https://github.com/hongxiangharry/SS-MoE.

H. Lin and Y. Zhou contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The rule empirically selects an equispaced grid along a power-law distribution as class boundaries.

  2. 2.

    Uniformly crop patches by the function extract_patches in scikit-learn 0.22.

References

  1. CDMRI super MUDI challenge 2020. https://www.developingbrain.co.uk/data/

  2. Alexander, D.C., Zikic, D., Ghosh, A., et al.: Image quality transfer and applications in diffusion MRI. Neuroimage 152, 283–298 (2017)

    Article  Google Scholar 

  3. Blumberg, S.B., Tanno, R., Kokkinos, I., Alexander, D.C.: Deeper image quality transfer: training low-memory neural networks for 3D images. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 118–125. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_14

    Chapter  Google Scholar 

  4. Chen, G., Dong, B., Zhang, Y., Lin, W., Shen, D., Yap, P.T.: XQ-SR: joint x-q space super-resolution with application to infant diffusion MRI. Med. Image Anal. 57, 44–55 (2019)

    Article  Google Scholar 

  5. Chen, Y., Shi, F., Christodoulou, A.G., Xie, Y., Zhou, Z., Li, D.: Efficient and accurate MRI super-resolution using a generative adversarial network and 3D multi-level densely connected network. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 91–99. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_11

    Chapter  Google Scholar 

  6. Dong, C., Loy, C.C., Tang, X.: Accelerating the super-resolution convolutional neural network. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 391–407. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_25

    Chapter  Google Scholar 

  7. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)

    Google Scholar 

  8. Gross, S., Ranzato, M., Szlam, A.: Hard mixtures of experts for large scale weakly supervised vision. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5085–5093. IEEE (2017)

    Google Scholar 

  9. Grussu, F., et al.: Multi-parametric quantitative in vivo spinal cord MRI with unified signal readout and image denoising. Neuroimage 217, 116884 (2020)

    Article  Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE (2016)

    Google Scholar 

  11. Heinrich, L., Bogovic, J.A., Saalfeld, S.: Deep learning for isotropic super-resolution from non-isotropic 3D electron microscopy. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 135–143. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_16

    Chapter  Google Scholar 

  12. Hutter, J., Slator, P.J., Christiaens, D., et al.: Integrated and efficient diffusion-relaxometry using ZEBRA. Sci. Rep. 8(1), 1–13 (2018)

    Article  Google Scholar 

  13. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 448–456. PMLR, Lille (2015)

    Google Scholar 

  14. Jacobs, R.A., Jordan, M.I., Nowlan, S.E., Hinton, G.E.: Adaptive mixture of experts (1991)

    Google Scholar 

  15. Jula Vanegas, L., Behr, M., Munk, A.: Multiscale quantile segmentation. J. Am. Stat. Assoc., 1–14 (2021)

    Google Scholar 

  16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  17. Lin, H., et al.: Deep learning for low-field to high-field MR: image quality transfer with probabilistic decimation simulator. In: Knoll, F., Maier, A., Rueckert, D., Ye, J.C. (eds.) MLMIR 2019. LNCS, vol. 11905, pp. 58–70. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33843-5_6

    Chapter  Google Scholar 

  18. Lyu, Q., et al.: Multi-contrast super-resolution MRI through a progressive network. IEEE Trans. Med. Imaging 39(9), 2738–2749 (2020)

    Article  Google Scholar 

  19. Ma, J., Yu, J., Liu, S., et al.: PathSRGAN: multi-supervised super-resolution for cytopathological images using generative adversarial network. IEEE Trans. Med. Imaging 39(9), 2920–2930 (2020)

    Article  Google Scholar 

  20. Makkuva, A., Viswanath, P., Kannan, S., Oh, S.: Breaking the gridlock in mixture-of-experts: consistent and efficient algorithms. In: Proceedings of the 36th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 97, pp. 4304–4313. PMLR (2019)

    Google Scholar 

  21. Pizzolato, M., Palombo, M., Bonet-Carne, E., et al.: Acquiring and predicting multidimensional diffusion (MUDI) data: an open challenge. In: Gyori, N., Hutter, J., Nath, V., Palombo, M., Pizzolato, M., Zhang, F. (eds.) Computational Diffusion MRI, pp. 195–208. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-73018-5

    Chapter  MATH  Google Scholar 

  22. Reinhold, J.C., Dewey, B.E., Carass, A., Prince, J.L.: Evaluating the impact of intensity normalization on MR image synthesis. In: Medical Imaging 2019: Image Processing, p. 126. SPIE (2019)

    Google Scholar 

  23. Shen, S., Yao, Z., Gholami, A., Mahoney, M., Keutzer, K.: PowerNorm: rethinking batch normalization in transformers. In: Proceedings of the 37th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 119, pp. 8741–8751. PMLR (2020)

    Google Scholar 

  24. Shi, Y., Siddharth, N., Paige, B., Torr, P.: Variational mixture-of-experts autoencoders for multi-modal deep generative models. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R., (eds.) Advances in Neural Information Processing Systems, vol. 32, Curran Associates, Inc., (2019). https://proceedings.neurips.cc/paper/2019/file/0ae775a8cb3b499ad1fca944e6f5c836-Paper.pdf

  25. Tanno, R., Arulkumaran, K., Alexander, D., Criminisi, A., Nori, A.: Adaptive neural trees. In: Proceedings of the 36th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 97, pp. 6166–6175. PMLR (2019)

    Google Scholar 

  26. Tanno, R., et al.: Bayesian image quality transfer with CNNs: exploring uncertainty in dMRI super-resolution. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 611–619. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_70

    Chapter  Google Scholar 

  27. Tanno, R., Worrall, D.E., Kaden, E., et al.: Uncertainty modelling in deep learning for safer neuroimage enhancement: demonstration in diffusion MRI. NeuroImage 225, 117366 (2020)

    Google Scholar 

  28. Tong, Q., et al.: Multicenter dataset of multi-shell diffusion MRI in healthy traveling adults with identical settings. Sci. Data 7(1), 1–7 (2020)

    Article  Google Scholar 

  29. Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E., Yacoub, E., Ugurbil, K.: The WU-MINN human connectome project: an overview. Neuroimage 80, 62–79 (2013)

    Article  Google Scholar 

  30. Van Steenkiste, G., Poot, D.H., Jeurissen, B., et al.: Super-resolution T1 estimation: quantitative high resolution T1 mapping from a set of low resolution T1-weighted images with different slice orientations. Magn. Reson. Med. 77(5), 1818–1830 (2017)

    Article  Google Scholar 

  31. Wilson, A.G., Izmailov, P.: Bayesian deep learning and a probabilistic perspective of generalization. In: Advances in Neural Information Processing Systems, vol. 33, pp. 4697–4708. Curran Associates, Inc. (2020)

    Google Scholar 

  32. Zhang, R., Garrett, J., Ge, Y., Ji, X., Chen, G.H., Li, K.: Design, construction, and initial results of a prototype multi-contrast X-ray breast imaging system. In: Medical Imaging 2018: Physics of Medical Imaging, vol. 176, p. 31. SPIE (2018)

    Google Scholar 

  33. Zhang, Y., Yap, P.T., Chen, G., Lin, W., Wang, L., Shen, D.: Super-resolution reconstruction of neonatal brain magnetic resonance images via residual structured sparse representation. Med. Image Anal. 55, 76–87 (2019)

    Article  Google Scholar 

  34. Zhao, C., Shao, M., Carass, A., et al.: Applications of a deep learning method for anti-aliasing and super-resolution in MRI. Magn. Reson. Imaging 64, 132–141 (2019)

    Article  Google Scholar 

  35. Zheng, Z., et al.: Self-supervised mixture-of-experts by uncertainty estimation. Proc. AAAI Conf. Artif. Intell. 33, 5933–5940 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported by EPSRC grants EP/M020533/1, EP/R014019/1, and EP/V034537/1 as well as the NIHR UCLH Biomedical Research Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxiang Lin .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 250 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, H., Zhou, Y., Slator, P.J., Alexander, D.C. (2021). Generalised Super Resolution for Quantitative MRI Using Self-supervised Mixture of Experts. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12906. Springer, Cham. https://doi.org/10.1007/978-3-030-87231-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87231-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87230-4

  • Online ISBN: 978-3-030-87231-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics