Skip to main content

Multiple-Precision Arithmetic of Biot-Savart Integrals for Reconnections of Vortex Filaments

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Abstract

In this paper, we show an efficient application of multiple-precision arithmetic to numerical computation of the Biot-Savart integral, which is a mathematical model of motion of vortex filaments. Since it is a non-linear integro-differential equation, numerical methods play a significant role in analysis. Hence reliable schemes are desired even though their computational costs are high. Multiple-precision arithmetic enables us to estimate rounding errors quantitatively, and comparing various precision arithmetic. Thus we conclude reliability of numerical results. In particular, reconnection of vortex filaments is investigated, and we meet oscillation of numerical solutions due to singularity. The proposed method clarifies that the divergence immediately after reconnection is still reliable in terms of rounding errors.

The second author was supported in part by JSPS KAKENHI Grant Numbers JP19H00641 and JP20H01821.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. FFTW. http://www.fftw.org. Accessed 1 Mar 2021

  2. ANSI/IEEE 754-1985 standard for binary floating-point arithmetic (1985)

    Google Scholar 

  3. Baggaley, A.W., Barenghi, C.F.: Spectrum of turbulent Kelvin-waves cascade in superfluid helium. Phys. Rev. B 83, 134509 (2011)

    Google Scholar 

  4. Briggs, W.L., Henson, V.E.: The DFT: An Owner’s Manual for the Discrete Fourier Transform. Society for Industrial and Applied Mathematics (1995)

    Google Scholar 

  5. Da Rios, L.S.: Sul moto d’un liquido indefinito con un filetto vorticoso di forma qualunque. Rend. Circ. Mat. Palermo 22, 117–135 (1906)

    Article  Google Scholar 

  6. Fujiwara, H.: exflib. http://www-an.acs.i.kyoto-u.ac.jp/~fujiwara/exflib. Accessed 1 Mar 2021

  7. GCC libquadmath. https://gcc.gnu.org/onlinedocs/libquadmath/. Accessed 1 Mar 2021

  8. Gentleman, W.M., Sande, G.: Fast fourier transforms: for fun and profit. In: Proceedings of the November 7–10, 1966, Fall Joint Computer Conference, AFIPS 1966, pp. 563–578 (Fall). Association for Computing Machinery, New York (1966)

    Google Scholar 

  9. Hama, F.R.: Progressive deformation of a curved vortex filament by its own induction. Phys. Fluid 5, 1156–1162 (1962)

    Article  Google Scholar 

  10. Hänninen, R., Baggaley, A.W.: Vortex filament method as a tool for computational visualization of quantum turbulence. Proc. Natl. Acad. Sci. U.S.A. 111(Suppl. 1), 4667–4674 (2014)

    Article  MathSciNet  Google Scholar 

  11. Kimura, Y., Moffatt, H.K.: Scaling properties towards vortex reconnection under biot–savart evolution. Fluid Dyn. Res. 50(1), 011409 (2017)

    Google Scholar 

  12. Kimura, Y., Moffatt, H.K.: A tent model of vortex reconnection under biot-savart evolution. J. Fluid Mech. 834, R1 (2018)

    Article  MathSciNet  Google Scholar 

  13. Majda, A.J., Bertozzi, A.L.: Vorticity and Incompressible Flow. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  14. Moore, D.W., Saffman, P.G.: The motion of a vortex filament with axial flow. Philos. Trans. R. Soc. London Ser. A 272, 403–429 (1972)

    Google Scholar 

  15. Oshima, Y., Noguchi, T., Oshima, K.: Numerical study of interaction of two vortex rings. Fluid Dyn. Res. 1(3), 215–227 (1987)

    Article  Google Scholar 

  16. Pumir, A., Siggia, E.D.: Vortex dynamics and the existence of solutions to the Navier-Stokes equations. Phys. Fluid 30(6), 1606–1626 (1987)

    Article  Google Scholar 

  17. Rosenhead, L.: The spread of vorticity in the wake behind a cylinder. Proc. R. Soc. Lond. A 127, 590–612 (1930)

    Article  Google Scholar 

  18. Sarpkaya, T.: Vortex element methods for flow simulation. In: Advances in Applied Mechanics, vol. 31, pp. 113–247. Elsevier (1994)

    Google Scholar 

  19. Schwarz, K.W.: Three-dimensional vortex dynamics in superfluid \(^{4}\rm He\): homogeneous superfluid turbulence. Phys. Rev. B 38, 2398–2417 (1988)

    Article  Google Scholar 

  20. Takahasi, H., Mori, M.: Double exponential formulas for numerical integration. Publ. Res. Inst. Math. Sci. 9, 721–741 (1973/74)

    Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude for Professor Yoshifumi Kimura (Nagoya University) for his fruitful suggestions and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Hsun Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lee, YH., Fujiwara, H. (2021). Multiple-Precision Arithmetic of Biot-Savart Integrals for Reconnections of Vortex Filaments. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12953. Springer, Cham. https://doi.org/10.1007/978-3-030-86976-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86976-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86975-5

  • Online ISBN: 978-3-030-86976-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics