Skip to main content

Postoperative Spinal Cord Ischemia and Stroke

  • Chapter
  • First Online:
Vascular Complications of Surgery and Intervention

Abstract

Postoperative spinal cord ischemia (SCI) and stroke are devastating complications that necessitate expeditious diagnosis and management. Intraoperative preventive modalities and postoperative management protocols are available to mitigate these risks.

Mitigation techniques for SCI include permissive hypothermia, distal aortic perfusion, reimplantation of intercostal arteries, avoidance of any hypotension, and prophylactic placement of a lumbar drain. Presence of paraplegia or paraparesis prompts initiation of SCI treatment protocol, involving drainage of cerebrospinal fluid, optimization of systemic oxygenation, and permissive hypertension.

Cerebral protection strategies include shunting, embolic protection devices, and hypothermia, and various cerebral monitoring modalities are available to use. Management of postoperative strokes is dependent on timing of symptoms. Intraoperative strokes are re-explored by reopening the neck incision or repeating angiographic imaging to evaluate for flow-limiting dissection, thrombus, or distal emboli amenable for intervention. Delayed postoperative strokes must be evaluated with computed tomography of the head to rule out intracranial hemorrhage prior to other workup.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CAS:

Carotid artery stenting

CEA:

Carotid endarterectomy

CI:

Cardiac index

CSF:

Cerebrospinal fluid

CT:

Computed tomography

EEG:

Electroencephalography

EPD:

Embolic protection device

ICA:

Internal carotid artery

MEP:

Motor evoked potential

NIRS:

Near-infrared spectroscopy

SCI:

Spinal cord ischemia

SSEP:

Somatosensory evoked potential

TCD:

Transcranial Doppler

TEVAR:

Thoracic endovascular aortic repair

TPA:

Tissue plasminogen activator

References

  1. Tanaka A, Safi HJ, Estrera AL. Current strategies of spinal cord protection during thoracoabdominal aortic surgery. Gen Thorac Cardiovasc Surg. 2018;66(6):307–14.

    Article  PubMed  Google Scholar 

  2. Rosenthal D, Chaikof EL, Williams GM, Gregory RT, Safi HJ, Gross GM, et al. Spinal cord ischemia after abdominal aortic operation: is it preventable? J Vasc Surg. 1999;30(3):391–9.

    Article  CAS  PubMed  Google Scholar 

  3. Berg P, Kaufmann D, Van Marrewijk CJ, Buth J. Spinal cord ischaemia after stent-graft treatment for infra-renal abdominal aortic aneurysms. Analysis of the Eurostar database. Eur J Vasc Endovasc Surg. 2001;22(4):342–7.

    Article  CAS  PubMed  Google Scholar 

  4. Maldonado TS, Rockman CB, Riles E, Douglas D, Adelman MA, Jacobowitz GR, et al. Ischemic complications after endovascular abdominal aortic aneurysm repair. J Vasc Surg. 2004 Oct;40(4):703–10.

    Article  PubMed  Google Scholar 

  5. Wong CS, Healy D, Canning C, Coffey JC, Boyle JR, Walsh SR. A systematic review of spinal cord injury and cerebrospinal fluid drainage after thoracic aortic endografting. J Vasc Surg. 2012;56(5):1438–47.

    Article  PubMed  Google Scholar 

  6. Awad H, Ehab Ramadan M, El Sayed HF, Tolpin DA, Tili E, Collard CD, et al. Spinal cord injury after thoracic endovascular aortic aneurysm repair. Can J Anaesth. 2017;64(12):1218–35.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chiesa R, Melissano G, Marrocco-Trischitta MM, Civilini E, Setacci F. Spinal cord ischemia after elective stent-graft repair of the thoracic aorta. J Vasc Surg. 2005;42(1):11–7.

    Article  PubMed  Google Scholar 

  8. Izumi S, Okada K, Hasegawa T, Omura A, Munakata H, Matsumori M, et al. Augmentation of systemic blood pressure during spinal cord ischemia to prevent postoperative paraplegia after aortic surgery in a rabbit model. J Thorac Cardiovasc Surg. 2010;139(5):1261–8.

    Article  PubMed  Google Scholar 

  9. Maeda T, Yoshitani K, Sato S, Matsuda H, Inatomi Y, Tomita Y, et al. Spinal cord ischemia after endovascular aortic repair versus open surgical repair for descending thoracic and thoracoabdominal aortic aneurism. J Anesth. 2012;26(6):805–11.

    Article  PubMed  Google Scholar 

  10. Grabitz K, Sandmann W, Stuhmeier K, Mainzer B, Godehardt E, Ohle B, et al. The risk of ischemic spinal cord injury in patients undergoing graft replacement for thoracoabdominal aortic aneurysms. J Vasc Surg. 1996;23(2):230–40.

    Article  CAS  PubMed  Google Scholar 

  11. Griepp RB, Griepp EB. Spinal cord perfusion and protection during descending thoracic and thoracoabdominal aortic surgery: the collateral network concept. Ann Thorac Surg. 2007;83(2):S865–9.

    Article  PubMed  Google Scholar 

  12. Christiansson L, Ulus AT, Hellbergg A, Bergqvist D, Wiklund L, Karacagil S. Aspects of the spinal cord circulation as assessed by intrathecal oxygen tension monitoring during various arterial interruptions in the pig. J Thorac Cardiovasc Surg. 2001;121(4):762–72.

    Article  CAS  PubMed  Google Scholar 

  13. D’oria M, Chiarandini S, Pipitone M, Calvagna C, Ziani B. Coverage of visible intercostal and lumbar segmental arteries can predict the volume of cerebrospinal fluid drainage in elective endovascular repair of descending thoracic and thoracoabdominal aortic disease: a pilot study. Eur J Cardiothorac Surg. 2019;55(4):646–52.

    Article  PubMed  Google Scholar 

  14. Wynn M, Acher C, Marks E, Acher CW. The effect of intercostal artery reimplantation on spinal cord injury in thoracoabdominal aortic aneurysm surgery. J Vasc Surg. 2016;64(2):289–96.

    Article  PubMed  Google Scholar 

  15. Gombert A, Grommes J, Hilkman D, Kotelis D, Mess WH, Jacobs MJ. Recovery of lost motor evoked potentials in open thoracoabdominal aortic aneurysm repair using intercostal artery bypass. J Vasc Surg Cases Innov Tech. 2018;4(1):54–7.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jacobs MJ, Mess W, Mochtar B, Nijenhuis RJ, Statius Van Eps RG, Schurink GWH. The value of motor evoked potentials in reducing paraplegia during thoracoabdominal aneurysm repair. J Vasc Surg. 2006;43(2):239–46.

    Article  PubMed  Google Scholar 

  17. Dias-Neto M, Reis PV, Rolim D, Ramos JF, Teixeira JF, Rgio SS. Strategies to prevent TEVAR-related spinal cord ischemia. Vascular. 2017;25(3):307–15.

    Article  PubMed  Google Scholar 

  18. Lennard N, Smith J, Dumville J, Abbott R, Evans DH, London NJM, et al. Prevention of postoperative thrombotic stroke after carotid endarterectomy: the role of transcranial Doppler ultrasound. J Vasc Surg. 1997;26(4):579–84.

    Article  CAS  PubMed  Google Scholar 

  19. Kwaan JH, Connolly JE, Sharefkin JB. Successful management of early stroke after carotid endarterectomy. Ann Surg. 1979;190(5):676–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ellis M. Transcranial Doppler: preventing stroke during carotid endarterectomy. Ann R Coll Surg Engl. 1998;80(6):377–87.

    Google Scholar 

  21. Jacobowitz GR, Rockman CB, Lamparello PJ, Adelman MA, Schanzer A, Woo D, et al. Causes of perioperative stroke after carotid endarterectomy: special considerations in symptomatic patients. Ann Vasc Surg. 2001;15(1):19–24.

    Article  CAS  PubMed  Google Scholar 

  22. Schneider JR, Droste JS, Schindler N, Golan JF, Bernstein LP, Rosenberg RS. Carotid endarterectomy with routine electroencephalography and selective shunting: influence of contralateral internal carotid artery occlusion and utility in prevention of perioperative strokes. J Vasc Surg. 2002;35(6):1114–22.

    Article  PubMed  Google Scholar 

  23. Imparato AM, Ramirez A, Riles T, Mintzer R. Cerebral protection in carotid surgery. Arch Surg. 1982;117(8):1073–8.

    Article  CAS  PubMed  Google Scholar 

  24. Piepgras DG, Morgan MK, Sundt TM, Yanagihara T, Mussman LM. Intracerebral hemorrhage after carotid endarterectomy. J Neurosurg. 1988;68(4):532–6.

    Article  CAS  PubMed  Google Scholar 

  25. Wholey MH, Wholey MH, Tan WA, Toursarkissian B, Bailey S, Eles G, et al. Management of neurological complications of carotid artery stenting. J Endovasc Ther. 2001;8(4):341–53.

    Article  CAS  PubMed  Google Scholar 

  26. Halm EA, Tuhrim S, Wang JJ, Rockman C, Riles TS, Chassin MR. Risk factors for perioperative death and stroke after carotid endarterectomy: results of the New York carotid artery surgery study. Stroke. 2009;40(1):221–9.

    Article  PubMed  Google Scholar 

  27. Li Y, Walicki D, Mathiesen C, Jenny D, Li Q, Isayev Y, et al. Strokes after cardiac surgery and relationship to carotid stenosis. Arch Neurol. 2009;66(9):1091–6.

    Article  PubMed  Google Scholar 

  28. Wallaert JB, Goodney PP, Vignati JJ, Stone DH, Nolan BW, Bertges DJ, et al. Completion imaging after carotid endarterectomy in the Vascular Study Group of New England. J Vasc Surg. 2011;54(2):376–85, 385.e1–3.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Goldstein LJ, Davies RR, Rizzo JA, Davila JJ, Cooperberg MR, Shaw RK, et al. Stroke in surgery of the thoracic aorta: incidence, impact, etiology, and prevention. J Thorac Cardiovasc Surg. 2001;122(5):935–45.

    Article  CAS  PubMed  Google Scholar 

  30. Englum BR, He X, Gulack BC, Ganapathi AM, Mathew JP, Brennan JM, et al. Hypothermia and cerebral protection strategies in aortic arch surgery: a comparative effectiveness analysis from the STS adult cardiac surgery database. Eur J Cardiothorac Surg. 2017;52(3):492–8.

    Article  PubMed  Google Scholar 

  31. Axelrod DA, Stanley JC, Upchurch GR, Khuri S, Daley J, Henderson W, et al. Risk for stroke after elective noncarotid vascular surgery. J Vasc Surg. 2004;39(1):67–72.

    Article  PubMed  Google Scholar 

  32. Pratesi C, Dorigo W, Innocenti AA, Azas L, Barbanti E, Lombardi R, et al. Reducing the risk of intraoperative neurological complications during carotid endarterectomy with early distal control of the internal carotid artery. Eur J Vasc Endovasc Surg. 2004;28(6):670–3.

    Article  CAS  PubMed  Google Scholar 

  33. Bandyk DF, Thiele BL. Safe intraluminal shunting during carotid endarterectomy. Surgery. 1983;93(2):260–3.

    CAS  PubMed  Google Scholar 

  34. Jamil M, Usman R, Ghaffar S. Advantages of selective use of intraluminal shunt in carotid endarterectomy: a study of 122 cases. Ann Vasc Dis. 2016;9(4):285–8.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mousa AY, Campbell JE, Aburahma AF, Bates MC. Current update of cerebral embolic protection devices. J Vasc Surg. 2012;56(5):1429–37.

    Article  PubMed  Google Scholar 

  36. Ohki T, Parodi J, Veith FJ, Bates M, Bade M, Chang D, et al. Efficacy of a proximal occlusion catheter with reversal of flow in the prevention of embolic events during carotid artery stenting: an experimental analysis. J Vasc Surg. 2001;33(3):504–9.

    Article  CAS  PubMed  Google Scholar 

  37. Gray WA, Hopkins LN, Yadav S, Davis T, Wholey M, Atkinson R, et al. Protected carotid stenting in high-surgical-risk patients: the ARCHeR results. J Vasc Surg. 2006;44(2):258–68.

    Article  PubMed  Google Scholar 

  38. Matsumura JS, Gray W, Chaturvedi S, Gao X, Cheng J, Verta P. CAPTURE 2 risk-adjusted stroke outcome benchmarks for carotid artery stenting with distal embolic protection. J Vasc Surg. 2010;52(3):576–83, 583.e1-583.e2.

    Article  PubMed  Google Scholar 

  39. Cremonesi A, Manetti R, Setacci F, Setacci C, Castriota F. Protected carotid stenting clinical advantages and complications of embolic protection devices in 442 consecutive patients. Stroke. 2003;34(8):1936–41.

    Article  PubMed  Google Scholar 

  40. Coggia M, Goeau-Brissonniere O, Duval JL, Leschi JP, Letort M, Nagel MD. Embolic risk of the different stages of carotid bifurcation balloon angioplasty: an experimental study. J Vasc Surg. 2000;31(3):550–7.

    Article  CAS  PubMed  Google Scholar 

  41. Alvarez B, Matas M, Ribo M, Maeso J, Yugueros X, Alvarez-Sabin J. Transcervical carotid stenting with flow reversal is a safe technique for high-risk patients older than 70 years. J Vasc Surg. 2012;55(4):978–84.

    Article  PubMed  Google Scholar 

  42. Pinter L, Ribo M, Loh C, Lane B, Roberts T, Chou TM, et al. Safety and feasibility of a novel transcervical access neuroprotection system for carotid artery stenting in the PROOF study. J Vasc Surg. 2011;54(5):1317–23.

    Article  PubMed  Google Scholar 

  43. Pacini D, Leone A, Di Marco L, Marsilli D, Sobaih F, Turci S, et al. Antegrade selective cerebral perfusion in thoracic aorta surgery: safety of moderate hypothermia. Eur J Cardiothorac Surg. 2007;31(4):618–22.

    Article  PubMed  Google Scholar 

  44. Weiss AJ, Pawale A, Griepp RB, Di Luozzo G. Deep versus mild hypothermia during thoracoabdominal aortic surgery. Ann Cardiothorac Surg. 2012;1(3):329–33.

    PubMed  PubMed Central  Google Scholar 

  45. Griepp RB. Cerebral protection during aortic arch surgery. J Thorac Cardiovasc Surg. 2001;121(3):425–7.

    Article  CAS  PubMed  Google Scholar 

  46. Tian DH, Wan B, Bannon PG, Misfeld M, LeMaire SA, Kazui T, et al. A meta-analysis of deep hypothermic circulatory arrest versus moderate hypothermic circulatory arrest with selective antegrade cerebral perfusion. Ann Cardiothorac Surg. 2013;2(2):148–58.

    PubMed  PubMed Central  Google Scholar 

  47. Kamiya H, Hagl C, Kropivnitskaya I, Böthig D, Kallenbach K, Khaladj N, et al. The safety of moderate hypothermic lower body circulatory arrest with selective cerebral perfusion: a propensity score analysis. J Thorac Cardiovasc Surg. 2007;133(2):501–9.

    Article  PubMed  Google Scholar 

  48. Ueda Y, Miki S, Kusuhara K, Okita Y, Tahata T, Yamanaka K. Surgical treatment of aneurysm or dissection involving the ascending aorta and aortic arch, utilizing circulatory arrest and retrograde cerebral perfusion. J Cardiovasc Surg. 1990;31(5):553–8.

    CAS  Google Scholar 

  49. Coselli JS. Retrograde cerebral perfusion is an effective means of neural support during deep hypothermic circulatory arrest. Ann Thorac Surg. 1997;64(3):908–12.

    Article  CAS  PubMed  Google Scholar 

  50. Crittenden MD, Roberts CS, Rosa L, Vatsia SK, Katz D, Clark RE, et al. Brain protection during circulatory arrest. Ann Thorac Surg. 1991;51(6):942–7.

    Article  CAS  PubMed  Google Scholar 

  51. Peitzman AB, Webster MW, Loubeau J-M, Grundy BL, Bahnson HT. Carotid endarterectomy under regional (conductive) anesthesia. Ann Surg. 1982;196(1):59–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Evans WE, Hayes JP, Waltke EA, Vermilion BD. Optimal cerebral monitoring during carotid endarterectomy: neurologic response under local anesthesia. J Vasc Surg. 1985;2(6):775–7.

    Article  CAS  PubMed  Google Scholar 

  53. Benjamin ME, Silva MB, Watt C, McCaffrey MT, Burford-Foggs A, Flinn WR. Awake patient monitoring to determine the need for shunting during carotid endarterectomy. Surgery. 1993;114(4):673–9; discussion 679-81.

    CAS  PubMed  Google Scholar 

  54. Hans SS, Jareunpoon O. Prospective evaluation of electroencephalography, carotid artery stump pressure, and neurologic changes during 314 consecutive carotid endarterectomies performed in awake patients. J Vasc Surg. 2007;45(3):511–5.

    Article  PubMed  Google Scholar 

  55. Giannoni MF, Sbarigia E, Panico MA, Speziale F, Antonini M, Maraglino C, et al. Intraoperative transcranial Doppler sonography monitoring during carotid surgery under locoregional anaesthesia. Eur J Vasc Endovasc Surg. 1996;12(4):407–11.

    Article  CAS  PubMed  Google Scholar 

  56. Jacob T, Hingorani A, Ascher E. Carotid artery stump pressure (CASP) in 1135 consecutive endarterectomies under general anesthesia: an old method that survived the test of times. J Cardiovasc Surg. 2007;48(6):677–81.

    CAS  Google Scholar 

  57. Tyagi SC, Dougherty MJ, Fukuhara S, Troutman DA, Pineda DM, Zheng H, et al. Low carotid stump pressure as a predictor for ischemic symptoms and as a marker for compromised cerebral reserve in octogenarians undergoing carotid endarterectomy. J Vasc Surg. 2018;68(2):445–50.

    Article  PubMed  Google Scholar 

  58. Green RM, Messick WJ, Ricotta JJ, Charlton MH, Satran R, Mcbride MM, et al. Benefits, shortcomings, and costs of EEG monitoring. Ann Surg. 1985;201(6):785–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pinkerton JA. EEG as a criterion for shunt need in carotid endarterectomy. Ann Vasc Surg. 2002;16(6):756–61.

    Article  PubMed  Google Scholar 

  60. Plestis KA, Loubser P, Mizrahi EM, Kantis G, Jiang ZD, Howell JF. Continuous electroencephalographic monitoring and selective shunting reduces neurologic morbidity rates in carotid endarterectomy. J Vasc Surg. 1997;25(4):620–8.

    Article  CAS  PubMed  Google Scholar 

  61. Ackerstaff RGA, Jansen C, Moll FL, Vermeulen FEE, Hamerlijnck RPHM, Mauser HW. The significance of microemboli detection by means of transcranial Doppler ultrasonography monitoring in carotid endarterectomy. J Vasc Surg. 1995;21(6):963–9.

    Article  CAS  PubMed  Google Scholar 

  62. Jansen C, Vriens EM, Eikelboom BC, Vermeulen FEE, Van Gijn J, Ackerstaff RGA. Carotid endarterectomy with transcranial Doppler and electroencephalographic monitoring a prospective study in 130 operations. Stroke. 1993;24(5):665–9.

    Article  CAS  PubMed  Google Scholar 

  63. Samra SK, Dy EA, Welch K, Dorje P, Zelenock GB, Stanley JC. Evaluation of a cerebral oximeter as a monitor of cerebral ischemia during carotid endarterectomy. Anesthesiology. 2000;93(4):964–70.

    Article  CAS  PubMed  Google Scholar 

  64. Williams IM, Picton A, Farrell A, Mead GE, Mortimer AJ, McCollum CN. Light-reflective cerebral oximetry and jugular bulb venous oxygen saturation during carotid endarterectomy. Br J Surg. 1994;81(9):1291–5.

    Article  CAS  PubMed  Google Scholar 

  65. Cho H, Nemoto EM, Yonas H, Balzer J, Sclabassi RJ. Cerebral monitoring by means of oximetry and somatosensory evoked potentials during carotid endarterectomy. J Neurosurg. 1998;89(4):533–8.

    Article  CAS  PubMed  Google Scholar 

  66. Duffy CM, Manninen PH, Chan A, Kearns CF. Comparison of cerebral oximeter and evoked potential monitoring in carotid endarterectomy. Can J Anaesth. 1997;44(10):1077–81.

    Article  CAS  PubMed  Google Scholar 

  67. Beese U, Langer H, Lang W, Dinkel M. Comparison of near-infrared spectroscopy and somatosensory evoked potentials for the detection of cerebral ischemia during carotid endarterectomy. Stroke. 1998;29(10):2032–7.

    Article  CAS  PubMed  Google Scholar 

  68. De Letter JAM, Sie HT, Thomas BMJH, Moll FL, Algra A, Eikelboom BC, et al. Near-infrared reflected spectroscopy and electroencephalography during carotid endarterectomy—in search of a new shunt criterion. Neurol Res. 1998;20(Suppl 1):S23–7.

    Article  PubMed  Google Scholar 

  69. Mille T, Tachimiri ME, Klersy C, Ticozzelli G, Bellinzona G, Blangetti I, et al. Near infrared spectroscopy monitoring during carotid endarterectomy: which threshold value is critical? Eur J Vasc Endovasc Surg. 2004;27(6):646–50.

    Article  CAS  PubMed  Google Scholar 

  70. Schwartz ML, Panetta TF, Kaplan BJ, Legatt AD, Suggs WD, Wengerter KR, et al. Somatosensory evoked potential monitoring during carotid surgery. Vascular. 1996;4(1):77–80.

    CAS  Google Scholar 

  71. Kearse LA, Brown EN, Mcpeck K. Somatosensory evoked potentials sensitivity relative to electroencephalography for cerebral ischemia during carotid endarterectomy. Stroke. 1992;23(4):498–505.

    Article  PubMed  Google Scholar 

  72. Sbarigia E, Schioppa A, Misuraca M, Panico MA, Battocchio C, Maraglino C, et al. Somatosensory evoked potentials versus locoregional anaesthesia in the monitoring of cerebral function during carotid artery surgery: preliminary results of a prospective study. Eur J Vasc Endovasc Surg. 2001;21(5):413–6.

    Article  CAS  PubMed  Google Scholar 

  73. Nwachuku EL, Balzer JR, Yabes JG, Habeych ME, Crammond DJ, Thirumala PD. Diagnostic value of somatosensory evoked potential changes during carotid endarterectomy: a systematic review and meta-analysis. JAMA Neurol. 2015;72(1):73–80.

    Article  PubMed  Google Scholar 

  74. Endo S, Kuwayama N, Hirashima Y, Akai T, Nishijima M, Takaku A. Results of urgent thrombolysis in patients with major stroke and atherothrombotic occlusion of the cervical internal carotid artery. AJNR Am J Neuroradiol. 1998;19(6):1169–75.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Disclosures

Dr. Charlton-Ouw is a consultant for WL Gore & Associates and Medtronic. The other authors have no disclosures and no outside funding was used for this report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristofer M. Charlton-Ouw .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Peng, X., Tjaden, B.L., Charlton-Ouw, K.M. (2022). Postoperative Spinal Cord Ischemia and Stroke. In: Gilani, R., Mills Sr., J.L. (eds) Vascular Complications of Surgery and Intervention. Springer, Cham. https://doi.org/10.1007/978-3-030-86713-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86713-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86712-6

  • Online ISBN: 978-3-030-86713-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics