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Abstract. Medical coding translates professionally written medical
reports into standardized codes, which is an essential part of medical
information systems and health insurance reimbursement. Manual cod-
ing by trained human coders is time-consuming and error-prone. Thus,
automated coding algorithms have been developed, building especially
on the recent advances in machine learning and deep neural networks.
To solve the challenges of encoding lengthy and noisy clinical documents
and capturing code associations, we propose a multitask recalibrated
aggregation network. In particular, multitask learning shares information
across different coding schemes and captures the dependencies between
different medical codes. Feature recalibration and aggregation in shared
modules enhance representation learning for lengthy notes. Experiments
with a real-world MIMIC-III dataset show significantly improved predic-
tive performance.

Keywords: Medical code prediction · Multitask learning ·
Recalibrated aggregation network

1 Introduction

Clinical notes generated by clinicians contain rich information about patients’
diagnoses and treatment procedures. Healthcare institutions digitized these clin-
ical texts into Electronic Health Records (EHRs), together with other structural
medical and treatment histories of patients, for clinical data management, health
condition tracking and automation. To facilitate information management, clin-
ical notes are usually annotated with standardized statistical codes. Different
diagnosis classification systems utilize various medical coding systems. One of
the most widely used coding systems is the International Classification of Dis-
eases (ICD) maintained by the World Health Organization1. The ICD system
is used to transform diseases, symptoms, signs, and treatment procedures into
standard medical codes and has been widely used for clinical data analysis, auto-
mated medical decision support [8], and medical insurance reimbursement [24].
1 https://www.who.int/standards/classifications/classification-of-diseases.
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The latest ICD version is ICD-11 that will become effective in 2022, while older
versions such as ICD-9 and ICD-9-CM, ICD-10 are also concurrently used. Other
popular medical condition classification tools include the Clinical Classifications
Software (CCS) and Hierarchical Condition Category (HCC) coding.

This paper primarily studies ICD and CCS coding systems because of their
individual characteristics of popularization and simplicity. CCS codes main-
tained by the Healthcare Cost and Utilization Project (HCUP2) provide medical
workers, insurance companies, and researchers with an easy-to-understand cod-
ing scheme of diagnoses and processes. On the other hand, the ICD coding sys-
tem provides a comprehensive classification tool for diseases and related health
problems. Nonetheless, the CCS and ICD codes have a one-to-many relationship
that enables the CCS software to convert ICD codes into CCS codes with a
smaller label space at different levels. For instance, in Fig. 1, the ICD-CCS map-
ping scheme converts “921.3” (“Contusion of eyeball”) and “918.1” (“Superficial
injury of cornea”) to the same CCS code “239”, which represents the “Superfi-
cial injury; contusion”. The CCS code “239” establishes a connection between
two different ICD codes.

Medical
Coding
Model

... the patient was
found on imaging to

have a type dens
fracture ... right
medial canthus

laceration with duct
involvement right

microhyphema and
right lower lid ...

ICD code

921.3 Contusion of eyeball

918.1 Superficial injury of
cornea

870.2

Laceration of eyelid,
full-thickness, not
involving lacrimal
passages

CCS code

239 Superficial injury;
contusion

235 Open wounds of head;
neck; and trunk

Clinical Document

Fig. 1. An example of medical code prediction, where ICD and CCS codes are used
as the coding systems. The second column of each tables shows the disease name
corresponding to each medical code.

Medical codes concisely summarize useful information from vast amounts of
inpatient discharge summaries, and have high medical and commercial value.
They are consequently of interest for both medical institutions and health insur-
ance companies. For example, major insurance companies use standard medical
codes in their insurance claim business [4]. Professional coders do the medi-
cal coding task by annotating clinical texts with corresponding medical codes.
Since manual coding is error-prone and labor-consuming [23], automated cod-
ing is needed. Taking the ICD coding as an example, many publications have
2 www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp.

www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp
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proposed automated coding approaches, including feature engineering-based
machine learning methods [15,25] and deep learning methods [5,17,22].

However, the automated medical coding task is still challenging as reflected
in the following two aspects. Clinical notes contain noisy information, such as
spelling errors, irrelevant information, and incorrect wording, which may have
an adverse impact on representation learning, increasing the difficulty of medi-
cal coding. Also, it is a challenge to benefit from the relationship between dif-
ferent medical codes, especially when the label is high-dimensional. Existing
automatic ICD coding models, such as CAML [22] and MultiResCNN [17], have
limited performance because they do not consider the relationship between ICD
codes. In the medical ontology, there exists certain connections between different
concepts. For example, in the ICD coding system, “921.3” and “918.1”, repre-
senting “Contusion of eyeball” and “Superficial injury of cornea”, respectively,
belong to “Superficial injury; contusion”. Medical coding models may suffer from
underperformance if they can not effectively capture the relationships between
medical codes. For example in Fig. 1, the highlight area in a clinical document
is converted into corresponding medical codes, including ICD codes and CCS
codes.

In this paper, we propose a novel framework called MT-RAM, which com-
bines MultiTask (MT) learning with a Recalibrated Aggregation Module
(RAM) for medical code prediction. In particular, the RAM improves the qual-
ity of representation learning of clinical documents, by injecting rich contextual
information and performing nested convolutions, thereby solving the challenge of
encoding noisy and lengthy clinical notes. In multitask training, we consider the
joint training on two tasks, ICD and CCS code prediction. MultiTask Learning
(MTL) is inspired by human learning, where people often apply the knowledge
from previous tasks to help with a new task [33]. It makes full use of the infor-
mation contained in each task, shares information between related tasks through
common parameters, and enhances training efficiency [6,30]. In addition, MTL
reduces over-fitting to specific tasks by regularizing the learned representation
to be generalizable across tasks [18]. In the context of the two medical coding
systems, CCS coding can promote the training on the ICD codes; further, the
CCS codes can inform about the relationship between the ICD codes, thereby
improving model performance.

Our contributions fall into the following four aspects.

– To the best of our knowledge, this paper is the first to adopt multitask learn-
ing for medical code prediction and demonstrate the benefits of leveraging
multiple coding schemes.

– We design a recalibrated aggregation module (RAM) to generate clinical doc-
ument features with better quality and less noise.

– We propose a novel framework called MT-RAM, which combines multitask
learning, bidirectional GRU, RAM and label-aware attention mechanism.

– Experimental results show competitive performance of our framework across
different evaluation criteria on the standard real-world MIMIC-III database
when compared with several strong baselines.
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Our paper is organized as follows: Sect. 2 introduces related work; Sect. 3
describes the proposed model; Sect. 4 performs a series of comparison experi-
ments, an ablation study and a detailed analysis of the properties of the RAM;
finally, Sect. 5 provides concluding remarks.

2 Related Work

Automated Medical Coding. Automated medical coding is an essential and chal-
lenging task in medical information systems [25]. Healthcare institutes use dif-
ferent medical coding systems such as ICD, one of the most widely used coding
schemes. The majority of early automated medical coding works use machine
learning algorithms. Larkey and Croft [16] proposed a ICD code classifier with
multiple models, including K-nearest neighbor, relevance feedback, and Bayesian
independence classifiers. Perotte et al. [25] presented two ICD coding approaches:
a flat and a hierarchy-based SVM classifier. The experiments showed that hier-
archical SVM model outperforms flat SVM because it captures the hierarchical
structure of ICD codes.

Neural networks have gained popularity for medical coding with the recent
advances of deep learning techniques. Recurrent neural networks capture the
sequential nature of medical text and have been applied by several studies such
as the attention LSTM [26], the Hierarchical Attention Gated Recurrent Unit
(HA-GRU) [2], and the multilayer attention-based bidirectional RNN [31]. Con-
volutional networks also play an important role in this field. Mullenbach et
al. [22] proposed Convolutional Attention network for Multi-Label classification
(CAML). Li and Yu [17] utilized a Multi-Filter Residual Convolutional Neural
Network (MultiResCNN), and Ji et al. [11] developed a dilated convolutional
network. Fine-tuning retrained language models as an emerging trend for NLP
applications has been reported to have limits in medical coding by several ini-
tial studies [11,17] and a comprehensive analysis on the pretraining domain and
fine-tuning architectures [12].

Multitask Learning. Multitask learning is a machine learning paradigm that
jointly trains multiple related tasks to improve the performance of each task
and the generalization of the model. Multitask learning is widely used in various
medical applications such as drug action extraction [34], biological image anal-
ysis [32] and clinical information extraction [3,28]. In recent years, researchers
have studied leveraging multitask learning strategies to better process medical
notes. Malakouti et al. [20] jointly trained different diagnostic models to improve
performance of each diagnostic task. This work implemented the parameter shar-
ing between tasks by utilizing the bottom-up and top-down steps. This multitask
learning framework improved the performance and the generalization ability of
independently learned models. Si and Roberts [27] presented a CNN-based mul-
titask learning network for inpatient mortality prediction task, which comprises
some related tasks such as 0-day, 30-day, 1-year patient death prediction.
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Fig. 2. Model architecture. In the Recalibrated Aggregation Module (RAM), “⊙”
denotes as element-wise multiplication, “◻” represent a down node; ‘◻” indicates a
lateral node; “◻” represents a up node; “⊗” is the matrix multiplication operation.

3 Method

This section describes the proposed Multi-Task Recalibrated Aggregation Net-
work, referred as MT-RAM, as it combines the Multi-Task learning scheme
and a Recalibrated Aggregation Module. The overall architecture of our MT-
RAM network has five parts as shown in Fig. 2. We use word embeddings pre-
trained by the word2vec [21] as the input. Secondly, we use the bidirectional
gated recurrent unit (BiGRU) [7] layer to extract document representation fea-
tures capturing sequential dependencies in clinical notes. Next, a RAM module
is used to improve the quality of the feature matrix and the efficiency of training
for the multitask objective. Fourthly, the attention classification layers with two
branches of ICD and CCS codes are composed of label-wise attention mechanism
and linear classification layers. The last part combines the respective losses of
the two classification heads and performs multitask training.

3.1 Input Layer

Denote a clinical document with n tokens as w = {w1, w2, . . . , wn}. We utilize
word2vec [21] to pretrain each clinical document to obtain word embedding
matrices. A word embedding matrix, referred to X = [x1,x2, . . . ,xn]T, is the
combination of each word vector xn ∈ R

de , where de is the embedding dimension.
Next, we feed word embedding matrix X ∈ Rn×de into the BiGRU layer to extract
document representation features.

3.2 Bidirectional GRU Layer

We use a bidirectional GRU layer to extract the contextual information from
the word embeddings X of the input documents. We calculate the latent states
of GRUs on i-th tokenxi:
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−→
hi =
−−−−→
GRU(xi,

−−−→
hi−1) (1)

←−
hi =

←−−−−
GRU(xi,

←−−−
hi+1) (2)

where
−−−−→
GRU and

←−−−−
GRU represent forward and backward GRUs, respectively. Final

operation is to concatenate the
−→
hi and then

←−
hi into hidden vector hi:

hi = Concat(
−→
hi,

←−
hi) (3)

Dimension of forward or backward GRU is set to dr. Bidirectional hidden vectors
hi ∈ R

2dr are horizontally concatenated into a resulting hidden representation
matrix H = [h1,h2, . . . ,hn]T , where the dimension of H ∈ Rn×2dr .

3.3 Recalibrated Aggregation Module

We propose a Recalibrated Aggregation Module (RAM) that abstracts features
learned by the BiGRU, recalibrates the abstraction, aggregates the abstraction
and the recalibrated features, and eventually combines the new representation
with the original one. This way, the RAM module can reduce the effect of noise
in the clinical notes and lead to improved representations for medical code classi-
fication. In detail, the RAM leverages a nested convolution structure to extract
and aggregate contextual information, which is used to recalibrate the noisy
input features. In addition to this, through the convolutions, the RAM attains
global receptive fields during feature extraction, which is complementary to the
GRU-based recurrent structure described in Sect. 3.2. With these two character-
istics, our RAM can improve the encoding of noisy and lengthy clinical notes.
The RAM consists of feature aggregation and recalibration. The calculation flow
of RAM is shown in Fig. 3 and described as below.

H A A'

LBH' O

Down
Node

Down
Node

Lateral
 Node

Up
Node

Up
Node

Fig. 3. The calculation flow of the RAM
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Firstly, the hidden representation H from the BiGRU layer passes through
two down nodes to obtain matrices A and A′. This downsampling process can
be denoted as:

A =
dr∧

n=1

{
Kd1

2

[
tanh

(
dr∧

m=1

(
Kd1

1 H
)

m

)]

n

}
∈ R

n×dr , (4)

where
∧dr

m=1 represents dislocation addition, i.e., the second matrix is shifted by
one unit to the right based on the position of the first matrix. The overlapped
area is summed up. We repeat this operation until the last matrix and cut off
unit vectors on both sides of the concatenated matrix. In Eq. 4, Kd1

1 ∈R
2dr×k×dr

and Kd1
2 ∈ R

dr×k×dr represent two convolutional kernel groups in the first down
node and k is the kernel size. The second downsampled matrix A′

∈ R
n× dr

2 can
also be obtained in a similar way with different convolutional kernel groups
Kd2

1 ∈ R
dr×k×

dr
2 and Kd2

2 ∈ R
dr
2 ×k× dr

2 . Next, we use a lateral node with another
two convolutional kernel groups Kl

1 ∈ R
dr
2 ×k× dr

2 and Kl
2 ∈ R

dr
2 ×k× dr

2 , which have
consistent in and out channel dimensions, to transform A′ into lateral feature
matrix L∈Rn× dr

2 . We recover L with a up node and pair-wisely add the recovered
signal with the first downsampled feature matrix A to obtain the primarily
aggregated matrix B ∈ Rn×dr as denoted in Eq. 5, where Ku1

1 ∈ R
dr
2 ×k×dr and

Ku1
2 ∈ R

dr×k×dr represent deconvolutional kernel groups in the first up node.

B =A +
dr∧

n=1

{
Ku1

2

[
tanh

(
dr∧

m=1

(Ku1
1 L)m

)]

n

}
(5)

B T
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dr
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n
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k
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Fig. 4. Recover weight matrix O from the primary aggregation B in the RAM module.
k is the kernel size, and dr and 2dr refer to the input and output feature dimensions
in a up node.

Secondly, we perform upsampling operations on the aggregated feature
matrix B to obtain weight matrix O ∈ Rn×2dr as illustrated in Fig. 4. Specifi-
cally, we leverage a deconvolution kernel group Ku2

1 ∈ R
dr×k×2dr to obtain the



374 W. Sun et al.

intermediate representation T ∈Rn×2dr . The different colors of Ku2
1 in Fig. 7 cor-

respond to how the different parts of the matrix T′
∈ R

n×k×2dr are calculated.
This process is denoted as:

T =
2dr∧

m=1

T′
m =

2dr∧

m=1

(BKu2
1 )m. (6)

We adopt a deconvolution operation on the intermediate representation T to get
the weight matrix O ∈ Rn×2dr , denoted as:

O =
2dr∧

n=1

O′
n =

2dr∧

n=1

(tanh (T)Ku2
2 )n , (7)

where Ku2
2 represents the deconvolution kernel group.

Finally, we employ the feature recalibration in a way similar to the attention
mechanism, where the “attention” score is learned by an iterative procedure with
convolutional feature abstraction (Eq. 4) and de-convolutional feature excitation
(Eq. 7). Specifically, we multiply the input feature matrix H by the weight matrix
O to obtain the recalibrated feature matrix H′

∈ R
n×2dr , denoted as:

H′
= tanh (O ⊙H) , (8)

where “⊙” represents element-wise multiplication. The recalibration operation
enhances the original features with contextual information injection through
the weight matrix O, which comprises rich semantic information that is conse-
quently less sensitive to errors. It enables the RAM module to have improved
generalization ability and, in the end, improved performance in medical coding.

3.4 Attention Classification Layers

Features extracted by lower layers in shared modules are label-agnostic. The
Recalibrated Aggregation Module inherits the capacity of learning label-specific
features from the Squeeze-and-Excitation block [10] to some extent. In order to
make different positions of clinical notes correspond to different medical codes,
we develop the label attention for classification layers to reorganize the charac-
teristic information related to medical codes and enhance label specifications.
Working together with the RAM module and label attention mechanism, our
model can achieve label-aware representation learning, which is helpful for mul-
titask heads as described in the next section (Sect. 3.5).

The attention classification layers are described as follows. We take a sub-
script d to denote a type of medical code. It can be generalized into different
coding systems. Specifically, d represents the ICD code in our paper. For sim-
plicity, the bias term is omitted. The attention scores of medical code Ad ∈R

n×m

can be calculated as:
Ad = Softmax(H′Ud) (9)



Multitask Recalibrated Aggregation Network for Medical Code Prediction 375

where H′ is the document features extracted by the RAM block, Ud ∈ R
dr×md

represents the parameter matrix of query in the attention mechanism, and md

denotes the number of target medical code. The attentive document features
Vd ∈ R

dr×md can be obtained by:

Vd =AT
dH

′ (10)

The label-wise attention mechanism captures the selective information contained
in the document encoding H′ and the query matrix Ud determines what infor-
mation in the encoding matrix to prioritize.

Then, we use a fully-connected max pooling layer as a classifier, which affines
the weight matrix to obtain the score vector Yd ∈ R

md×1 denoted as:

Yd = Pooling(WdVT
d ) (11)

where Wd ∈ R
md×md represents the linear weight of the score vector. We use

the Sigmoid activation function to produce the probability logits ȳd for final
prediction.

3.5 Multitask Training

We introduce two self-contained tasks for multitask learning, i.e., ICD and CCS
code prediction. The two medical coding branch tasks enter different coding
processes and back-propagate the ICD code loss and CCS code loss, respectively.
The structure of the two coding processing branches is similar. By passing the
encoded features of clinical notes through the label attention module, we can get
the weighted document features of the ICD code Vd ∈R

dr×md and the CCS code
Vs∈R

dr×ms , where md and ms is the number of ICD and CCS codes respectively.
With the linear classifier layer, the prediction probability of ICD and CCS codes
are generated as ȳd and ȳs.

The medical code assignment is a typical multi-label classification task. We
use the binary cross entropy loss as the loss function of each sub-task in the
multitask setting. The ICD coding loss and CCS coding loss are denoted as:

Ld =

md∑

i=1

[
− ydi

log(ȳdi
) − (1 − ydi

) log(1 − ȳdi
)
]

(12)

Ls =

ms∑

i=1

[
− ysi log(ȳsi) − (1 − ysi) log(1 − ȳsi)

]
(13)

where ydi
, ysi ∈ {0, 1} are the target medical code labels. ȳdi

and ȳsi represent
prediction probability of ICD and CCS codes, and the number of ICD and CCS
codes are denoted as md and ms respectively. We adopt joint training for the
two medical coding losses to facilitate multitask learning. The joint training loss
is defined as

LM = λdLd + λsLs, (14)

where λd and λs are scaling factors of ICD and CCS codes.
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4 Experiments

We perform a series of experiments to validate the effectiveness of our proposed
model on public real-world datasets. Source code is available at https://github.
com/VRCMF/MT-RAM.

4.1 Datasets

MIMIC-III (ICD). The third version of Medical Information Mart for Inten-
sive Care (MIMIC-III)3 is a large, open-access dataset consists of clinical data
associated with above 40,000 inpatients in critical care units of the Beth Israel
Deaconess Medical Center between 2001 and 2012 [13]. Following Mullenbach
et al. [22] and Li and Yu [17], we segment all discharge summaries documents
based on the patient IDs, and generate 50 most frequent ICD codes for exper-
iments. We refer MIMIC-III dataset with top 50 ICD codes as the MIMIC-III
ICD dataset. There are 8,067 discharge summaries for training, and 1,574 and
1,730 documents for validation and testing, respectively.

MIMIC-III (CCS). We utilize the ICD-CCS mapping scheme, provided by the
HCUP, to convert the ICD codes and obtain the dataset with CCS codes. The
converted CCS dataset denotes as MIMIC-III CCS, which contains 38 frequent
CCS labels. Because the MIMIC-III ICD dataset shares the discharge summary
documents with the CCS dataset, the documents used for CCS code training,
validation and testing are consistent with the ICD code documents. We change
several conflicting mapping items so that ICD and CCS codes can achieve one-
versus-one matching. The converted CCS codes are then used as the labels of
discharge summaries.

4.2 Settings

Data Preprocessing. Following the processing flow of CAML [22], the non-
alphabetic tokens, such as punctuation and numbers, are removed from clinical
text. All tokens are transformed into lowercase format, and we replace low-
frequency tokens (appearing in fewer than three documents) into the ‘UNK’
token. We train the word2vec [21] on all discharge summaries to obtain the
word embeddings. The maximum length of each document is limited to 2,500,
i.e., documents longer than this length are truncated. The kernel size of convo-
lution layer in the RAM module is 3.

Evaluation Metrics. To evaluate the performance of models in CCS and ICD
code (collectively called medical code) datasets, we follow the evaluation pro-
tocols of previous works [17,22]. We utilize micro-averaged and macro-averaged
F1, micro-averaged and macro-averaged AUC (area under the receiver operat-
ing characteristic curve), precision at k as the evaluation methods. Precision

3 https://mimic.physionet.org/gettingstarted/access/.

https://github.com/VRCMF/MT-RAM
https://github.com/VRCMF/MT-RAM
https://mimic.physionet.org/gettingstarted/access/
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at k (‘P@k’ in shorthand) is the proportion of k highest scored labels in the
ground truth labels. When calculating of micro-averaged scores, each clinical
text and medical codes are treated as separate predictions. During the comput-
ing of macro-averaged metrics, we calculate the scores for each medical code and
take the average of them. We run our model ten times and report the mean and
standard deviation of all the metrics.

Hyper-parameter Tuning. We refer to the previous works [17,22] and apply
some common hyper-parameter settings. Specifically, we set the word embed-
ding dimension to 100, the maximum document length to 2500, dropout rate to
0.2, the batch size to 16, and the dimension of hidden units to 300. In the choice
of learning rate, 0.008 is the optimal learning rate, which achieves good model
performance and consumes moderate time to converge. We set the scaling factors
λd and λs to 0.7 and 0.3 respectively. We use different optimizers to train our
model, including Adam [14], AdamW [19] and SGD+momemtum [29]. Although
the AdamW optimizer can shorten the training time, its predictive performance
is not as good as the Adam. The performance of the SGD+momentum and the
Adam are close, while Adam converges faster.

4.3 Baselines

CAML [22] comprises a single convolutional backbone and a label-wise attention
mechanism, achieving high performance for ICD code prediction.
DR-CAML [22], i.e., the Description Regularized CAML, is an extension of
CAML that incorporates the ICD description to regularize the CAML model.
HyperCore [5] uses the hyperbolic representation space to leverage the code
hierarchy and utilize the graph convolutional network to capture the ICD code
co-occurrence correlation.
MultiResCNN [17] adopts a multi-filter convolutional layer to capture various
text patterns and a residual connection to enlarge the receptive field.

4.4 Results

MIMIC-III (ICD Codes). Table 1 shows that the results of our MT-RAM
model performs better than all baseline models on all evaluation metrics. When
compared with the state-of-the-art MultiResCNN [17], our model has improved
the scores of macro-AUC, micro-AUC, macro-F1, micro-F1 and P@5 by 2.2%,
1.5% 4.5%, 3.6% and 2.3% respectively. Our model outperforms the CAML [22],
which is the classical automated ICD coding model, by 4.6%, 3.4%, 11.9%, 9.2%
and 5.5%. The improvement of our model in macro-F1 and micro-F1 is more
significant than other metrics by comparing with HyperCore [5], specifically by
4.2% and 4.3% respectively. While other scores see moderate improvement by
1% ∼ 3%. Recent pretrained language models such as BERT [9] and its domain-
specific variants like ClinicalBERT [1] are omitted from the comparison because
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Table 1. MIMIC-III results (ICD code). Results are shown in %. We set different
random seeds for initialization to run our model for 10 times. Results of MT-RAM are
demonstrated in means ± standard deviation

Models AUC-ROC F1 P@5

Macro Micro Macro Micro

CNN 87.6 90.7 57.6 62.5 62.0

CAML 87.5 90.9 53.2 61.4 60.9

DR-CAML 88.4 91.6 57.6 63.3 61.8

HyperCore 89.5± 0.3 92.9± 0.2 60.9± 0.1 66.3 ± 0.1 63.2± 0.2

MultiResCNN 89.9± 0.4 92.8± 0.2 60.6± 1.1 67.0± 0.3 64.1 ± 0.1

MT-RAM (ours) 92.1 ± 0.1 94.3 ± 0.1 65.2 ± 0.3 70.7± 0.2 66.4± 0.2

these models are limited to process text with 512 tokens and have been reported
with poor performance by two recent studies [12,17].

MIMIC-III (CCS Code). We evaluate the CAML, DR-CAML and the Mul-
tiResCNN on the MIMIC-III CCS dataset and record the results in Table 2.
Since the Hypercore [5] does not provide the source code, we omit it from the
comparison. Following the practice described in the section of hyper-parameter
tuning, we set all the parameters of the CAML and the MultiResCNN to be con-
sistent with the hyper-parameters of the original works except for the learning
rate.

As shown in Table 2, we can see that our model obtains better results in the
macro AUC, micro AUC, macro F1, micro F1, P@5, compared with the strong
MultiResCNN baseline. The improvement of our model is 1.6% in both macro
AUC and micro AUC, 4.2% in macro F1, 3.4% in micro F1, and 2.7% in P@5.
DR-CAML uses the ICD code description to achieve performance improvement.
DR-CAML uses the description of ICD codes to improve the performance of
CAML. But on MIMIC-III (CCS) dataset, this description will cause interference
to CAML, so the result of DR-CAML is worse. Our model improves the F1 macro
metric by 5.5%, comparing with the CAML model.

Table 2. MIMIC-III results (CCS code). We run each model for 10 times and each time
set different random seeds for initialization. Results of all models are demonstrated in
means ± standard deviation

Models AUC-ROC F1 P@5

Macro Micro Macro Micro

CAML 89.2± 0.3 92.2± 0.3 60.9± 0.9 67.5± 0.4 64.5± 0.4

DR-CAML 87.5± 0.4 90.5± 0.4 59.3± 1.0 65.6± 0.6 62.6± 0.5

MultiResCNN 89.2± 0.2 92.4± 0.2 62.9± 0.9 68.8± 0.6 64.6± 0.3

MT-RAM (ours) 92.2 ± 0.1 94.6 ± 0.1 69.4 ± 0.1 74.4 ± 0.2 68.4 ± 0.1
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4.5 Ablation Study

We examine the general usefulness of the two main components - multitask
training (MTL) and RAM module, by conducting an ablation study, where we
consider the performance of three representative ICD coding models: CAML,
MultiResCNN, and the GRU-based model (our method), with and without the
specific components.

Multitask Learning. We firstly investigate the effectiveness of the multitask
learning (MTL) scheme. From Table 3, we can observe that CAML and BiGRU
have been improved by a relatively large margin across all evaluation metrics
with multitask training. The CAML with MTL achieves 7.6% and 5.2% improve-
ment in macro and micro F1, respectively, and obtains increases by about 2%
to 3% in other scores. Similarly, the BiGRU with MTL has achieved a good
improvement in macro and micro F1, increased by 4.2% and 3.3% respectively.
For the MultiResCNN model, the multitask learning also contributes to relatively
good results, which is 2.3% improvement in the macro F1 score. The reason why
multitask learning can improve the performance of the model is the information
exchange between the two tasks. Intuitively, there exists a correlation relation-
ship between ICD and CCS coding systems This leads to complementary ben-
efits for both ICD and CCS code prediction tasks. CAML and MultiResCNN
have achieved significant gains by incorporating the multitask learning aggre-
gation framework as a whole, i.e., the multitask learning scheme and the RAM
together. Therefore, the gain of the multitask learning aggregation framework is
not limited to some special network structures, and it has strong generalization
ability.

Table 3. Ablation study

Models AUC-ROC F1 P@5

Macro Micro Macro Micro

CAML 87.5 90.9 53.2 61.4 60.9

CAML + RAM 91.3 93.5 61.4 67.4 65.1

CAML + MTL 90.8 93.2 60.8 66.6 64.0

CAML + MTL + RAM 91.4 93.8 62.5 68.7 65.3

MultiResCNN 89.9 92.8 60.6 67.0 64.1

MultiResCNN + RAM 91.2 93.4 62.4 68.1 64.7

MultiResCNN + MTL 90.8 93.2 62.9 67.8 64.3

MultiResCNN + MTL + RAM 91.7 93.9 64.1 69.0 65.0

BiGRU 91.0 93.4 60.4 66.6 64.4

BiGRU + RAM 91.7 93.6 63.5 69.1 65.0

BiGRU + MTL 91.8 94.1 64.6 69.9 66.2

BiGRU + MTL + RAM (MT-RAM) 92.1 94.3 65.1 70.6 66.4
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Recalibrated Aggregation Module. The second part of ablation study if
examines whether the proposed Recalibrated Aggregation Module (RAM) can
learn useful features and consequently lead to better performance. In Table 3,
the performance of the three models has been greatly improved after including
the RAM module to the multitask BiGRU architecture. The micro F1 scores
of CAML, MultiResCNN and MT-RAM have been improved by 2.1%, 1.2%
and 0.8%, respectively. The RAM module helps the GRU-based model achieve
greater improvement than convolution-based models.

4.6 A Detailed Analysis of the Properties of the RAM

We conduct an exploratory study to investigate the effectiveness of element-wise
multiplication in the final feature weighting stage. We denote models applying
the multitask learning and multiplicative to CAML and MultiResCNN as MT-
CAML + RAM (Mult) and MT-MultiResCNN + RAM (Mult), respectively. The
RAM (Add) means to replace the multiplication operation in RAM with an addi-
tion operation. From Table 4, we can observe that the model with RAM (Mult)
outperforms models with RAM (Add) in most evaluation metrics. Although the
results of MT-RAM (Add) in F1 macro, F1 micro and P@5 are slightly better
than the results of MT-RAM (Mult), the gap is marginal. Considering the gen-
eralization ability and performance improvement of the two modules, the RAM
with multiplication operation outperforms the RAM with addition operation.

Table 4. Analysis of RAM: multiplicative versus additive

Models AUC-ROC F1 P@5

Macro Micro Macro Micro

MT-CAML + RAM (Add) 91.1 93.5 62.1 68.1 65.0

MT-CAML + RAM (Mult) 91.4 93.8 62.5 68.7 65.3

MT-MultiResCNN + RAM (Add) 91.1 93.3 62.4 67.7 64.1

MT-MultiResCNN+ RAM (Mult) 91.7 93.9 64.1 69.0 65.0

MT-RAM (Add) 92.0 94.1 65.9 70.8 66.7

MT-RAM (Mult) 92.1 94.3 65.1 70.6 66.4

Regarding to the position of RAM in the multitasking learning framework,
we found that it is best to embed the RAM in the shared layers. Compared with
putting RAM in the two branches of the framework, RAM module embedded
in the shared layers helps two sub-tasks share more information. If RAM is
embedded in two sub-branch networks, the depth of the sub-network will increase
and the shared part will decrease. The deepening of the sub-network will interfere
with the network convergence and make training more difficult. At the same time,
reducing the shared part will reduce the amount of information exchange between
sub-tasks, which will affect the improvement of the model by the multitask
learning scheme.
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5 Conclusion

In this paper, we proposed a novel multitask framework for the automated med-
ical coding task, which improved feature learning for clinical documents and
accounted for the dependencies between different medical coding systems. We
designed a Recalibrated Aggregation Module (RAM) to enrich document fea-
tures and reduce noisy information. Furthermore, we leveraged multitask learn-
ing to share information across different medical codes. We demonstrated that
the combination of multitask learning and RAM improved automatic medical
coding considerably. In addition, these components are generalizable and can be
successfully integrated to other overall architectures. The experimental results
on the real-world clinical MIMIC-III database showed that our framework out-
performed previous strong baselines. Finally, we believe our framework can be
beneficial not only in medical coding tasks, but also in other text label prediction
tasks.
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