Skip to main content

Realistic 3D Simulation of a Hybrid Legged-Wheeled Robot

  • Conference paper
  • First Online:
Robotics for Sustainable Future (CLAWAR 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 324))

Included in the following conference series:

Abstract

In order to study the behavior and performance of a robot, building its simulation model is crucial. Realistic simulation tools using physics engines enable faster, more accurate and realistic testing conditions, without depending on the real vehicle. By combining legged and wheeled locomotion, hybrid vehicles are specially useful for operating in different types of terrains, both indoors and outdoors. They present increased mobility, versatility and adaptability, as well as easier maneuverability, when compared to vehicles using only one of the mechanisms. This paper presents the realistic simulation through the SimTwo simulator software of a hybrid legged-wheeled robot. It has four 3-DOF (degrees of freedom) legs combining rigid and non-rigid joints and has been fully designed, tested and validated in the simulated environment with incorporated dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pinto, V.H., Gonçalves, J., Costa, P.: Design, modeling, and control of a single leg for a legged-wheeled locomotion system with non-rigid joint. Actuators 10(2), 29 (2021). https://doi.org/10.3390/act10020029

    Article  Google Scholar 

  2. Lacagnina, M., Muscato, G., Sinatra, R.: Kinematics, dynamics and control of a hybrid robot Wheeleg. Robot. Auton. Syst. 45(3–4), 161–180 (2003). https://doi.org/10.1016/j.robot.2003.09.006

    Article  Google Scholar 

  3. Ottaviano, E., Rea, P.: Design and operation of a 2-DOF leg-wheel hybrid robot. Robotica 31(8), 1319–1325 (2013). https://doi.org/10.1017/S0263574713000556

    Article  Google Scholar 

  4. Bruzzone, L., Fanghella, P.: Mantis: hybrid leg-wheel ground mobile robot. Ind. Robot: Int. J. (2014). https://doi.org/10.1108/IR-02-2013-330

  5. Halme, A., Leppänen, I., Suomela, J., Ylönen, S., Kettunen, I.: WorkPartner: interactive human-like service robot for outdoor applications. Int. J. Robot. Res. 22(7–8), 627–640 (2003)

    Article  Google Scholar 

  6. Kashiri, N., et al.: CENTAURO: a hybrid locomotion and high power resilient manipulation platform. IEEE Robot. Autom. Lett. 4(2), 1595–1602 (2019). https://doi.org/10.1109/LRA.2019.2896758

    Article  Google Scholar 

  7. Schwarz, M., et al.: NimbRo rescue: solving disaster-response tasks with the mobile manipulation robot Momaro. J. Field Robot. 34(2), 400–425 (2017). https://doi.org/10.1002/rob.21677

    Article  Google Scholar 

  8. Peng, H., Wang, J., Shen, W., Shi, D.: Cooperative attitude control for a wheel-legged robot. Peer-to-Peer Netw. Appl. 12(6), 1741–1752 (2019). https://doi.org/10.1007/s12083-019-00747-x

    Article  Google Scholar 

  9. Chen, Z., et al.: Control strategy of stable walking for a hexapod wheel-legged robot. ISA Trans. (2020). https://doi.org/10.1016/j.isatra.2020.08.033

    Article  Google Scholar 

  10. Bjelonic, M., Sankar, P.K., Bellicoso, C.D., Vallery, H., Hutter, M.: Rolling in the deep-hybrid locomotion for wheeled-legged robots using online trajectory optimization. IEEE Robot. Autom. Lett. 5(2), 3626–3633 (2020). https://doi.org/10.1109/LRA.2020.2979661

    Article  Google Scholar 

  11. Boxerbaum, A.S., Oro, J., Peterson, G., Quinn, R.D.: The latest generation Whegs\(^{{\rm TM}}\) robot features a passive-compliant body joint. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1636–1641 (2008)

    Google Scholar 

  12. Eich, M., Grimminger, F., Bosse, S., Spenneberg, D., Kirchner, F.: Asguard: a hybrid-wheel security and SAR-robot using bio-inspired locomotion for rough terrain. In: Proceedings ROBIO, pp. 774–779 (2008)

    Google Scholar 

  13. Chen, S.C., Huang, K.J., Chen, W.H., Shen, S.Y., Li, C.H., Lin, P.C.: Quattroped: a leg-wheel transformable robot. IEEE/ASME Trans. Mechatron. 19(2), 730–742 (2013). https://doi.org/10.1109/TMECH.2013.2253615

    Article  Google Scholar 

  14. Chen, W.H., Lin, H.S., Lin, Y.M., Lin, P.C.: TurboQuad: a novel leg-wheel transformable robot with smooth and fast behavioral transitions. IEEE Trans. Robot. 33(5), 1025–1040 (2017). https://doi.org/10.1109/TRO.2017.2696022

    Article  Google Scholar 

  15. Bai, L., Guan, J., Chen, X., Hou, J., Duan, W.: An optional passive/active transformable wheel-legged mobility concept for search and rescue robots. Robot. Auton. Syst. 107, 145–155 (2018). https://doi.org/10.1016/j.robot.2018.06.005

    Article  Google Scholar 

  16. Rivera, Z.B., De Simone, M.C., Guida, D.: Unmanned ground vehicle modelling in Gazebo/ROS-based environments. Machines 7(2), 42 (2019). https://doi.org/10.3390/machines7020042

    Article  Google Scholar 

  17. Michel, O.: Cyberbotics Ltd., Webots\(^{\rm TM}\): professional mobile robot simulation. Int. J. Adv. Robot. Syst. 1(1), 5 (2004)

    Article  Google Scholar 

  18. Paulo, C., José, G., José, L., Paulo, M.: SimTwo realistic simulator: a tool for the development and validation of robot software. Theory Appl. Math. Comput. Sci. 1(1), 17–33 (2011)

    Google Scholar 

  19. Kamedula, M., Kashiri, N., Tsagarakis, N.G.: On the kinematics of wheeled motion control of a hybrid wheeled-legged CENTAURO robot. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2426–2433. IEEE (2018)

    Google Scholar 

  20. Suzumura, A., Fujimoto, Y.: Real-time motion generation and control systems for high wheel-legged robot mobility. IEEE Trans. Ind. Electron. 61(7), 3648–3659 (2013). https://doi.org/10.1109/TIE.2013.2286071

    Article  Google Scholar 

  21. Pinto, V.H., Gonçalves, J., Costa, P.: Towards a more robust non-rigid robotic joint. Appl. Syst. Innov. 3(4), 45 (2020). https://doi.org/10.3390/asi3040045

    Article  Google Scholar 

Download references

Acknowledgements

This work is financed by National Funds through the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia within project UIDB/50014/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inês N. Soares .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Soares, I.N., Pinto, V.H., Lima, J., Costa, P. (2022). Realistic 3D Simulation of a Hybrid Legged-Wheeled Robot. In: Chugo, D., Tokhi, M.O., Silva, M.F., Nakamura, T., Goher, K. (eds) Robotics for Sustainable Future. CLAWAR 2021. Lecture Notes in Networks and Systems, vol 324. Springer, Cham. https://doi.org/10.1007/978-3-030-86294-7_27

Download citation

Publish with us

Policies and ethics