Private AI: Machine Learning m
on Encrypted Data e

Kristin Lauter

Abstract This paper gives an overview of my Invited Plenary Lecture at the Inter-
national Congress of Industrial and Applied Mathematics (ICIAM) in Valencia in
July 2019.

1 Motivation: Privacy in Artificial Intelligence

These days more and more people are taking advantage of cloud-based artificial intel-
ligence (Al) services on their smart phones to get useful predictions such as weather,
directions, or nearby restaurant recommendations based on their location and other
personal information and preferences. The Al revolution that we are experiencing in
the high tech industry is based on the following value proposition: you input your
private data and agree to share it with the cloud service in exchange for some use-
ful prediction or recommendation. In some cases the data may contain extremely
personal information, such as your sequenced genome, your health record, or your
minute-to-minute location.

This quid pro quo may lead to the unwanted disclosure of sensitive information
or an invasion of privacy. Examples during the year of ICTAM 2019 include the case
of the Strava fitness app which revealed the location of U.S. army bases world-wide,
or the case of the city of Los Angeles suing IBM’s weather company over deceptive
use of location data. It is hard to quantify the potential harm from loss of privacy,
but employment discrimination or loss of employment due to a confidential health
or genomic condition are potential undesirable outcomes. Corporations also have a
need to protect their confidential customer and operations data while storing, using,
and analyzing it.

To protect privacy, one option is to lock down personal information by encrypting
it before uploading it to the cloud. However, traditional encryption schemes do not
allow for any computation to be done on encrypted data. In order to make useful

K. Lauter ()
Cryptography and Privacy Research, Microsoft Research, Redmond, USA
e-mail: klauter @microsoft.com

© The Author(s) 2022 97
T. Chacén Rebollo et al. (eds.), Recent Advances in Industrial and Applied

Mathematics, ICIAM 2019 SEMA SIMAI Springer Series 1,
https://doi.org/10.1007/978-3-030-86236-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86236-7_6&domain=pdf
mailto:klauter@microsoft.com
https://doi.org/10.1007/978-3-030-86236-7_6

98 K. Lauter

predictions, we need a new kind of encryption which maintains the structure of the
data when encrypting it so that meaningful computation is possible. Homomorphic
encryption allows us to switch the order of encryption and computation: we get the
same result if we first encrypt and then compute, as if we first compute and then
encrypt.

The first solution for a homomorphic encryption scheme which can process any
circuit was proposed in 2009 by Gentry [21]. Since then, many researchers in cryp-
tography have worked hard to find schemes which are both practical and also based
on well-known hard math problems. In 2011, my team at Microsoft Research collabo-
rated on the homomorphic encryption schemes [8, 9] and many practical applications
and improvements [30] which are now widely used in applications of Homomorphic
Encryption. Then in 2016, we had a surprise breakthrough at Microsoft Research
with the now widely cited CryptoNets paper [22], which demonstrated for the first
time that evaluation of neural network predictions was possible on encrypted data.

Thus began our Private Al project, the topic of my Invited Plenary Lecture at the
International Congress of Industrial and Applied Mathematics in Valencia in July
2019. Private Al refers to our Homomorphic Encryption-based tools for protecting
the privacy of enterprise, customer, or patient data, while doing Machine Learning
(ML)-based Al both learning classification models and making valuable predictions
based on such models.

You may ask, “What is Privacy?” Preserving “Privacy” can mean different things
to different people or parties. Researchers in many fields including social science and
computer science have formulated and discussed definitions of privacy. My favorite
definition of privacy is: a person or party should be able to control how and when their
data is used or disclosed. This is exactly what Homomorphic Encryption enables.

1.1 Real-World Applications

In 2019, the British Royal Society released a report on Protecting privacy in practice:
Privacy Enhancing Technologies in data analysis. The report covers Homomorphic
Encryption (HE) and Secure Multi-Party Computation (MPC), but also technologies
not built with cryptography, including Differential Privacy (DP) and secure hardware
hybrid solutions. Our homomorphic encryption project was featured as a way to
protect “Privacy as a human right” at the Microsoft Build world-wide developers
conference in 2018 [39]. Private Al forms one of the pillars of Responsible ML in
our collection of Responsible Al research and Private Prediction notebooks were
released in Azure ML at Build 2020.

Over the last 8 years, my team has created demos of Private Al in action, running
private analytics services in the Azure cloud. I showed a few of these demos in my talk
at ICIAM in Valencia. Our applications include an encrypted fitness app, which is a
cloud service which processes all your workout and fitness data and locations in the
cloud in encrypted form, and displays your summary statistics to you on your phone
after decrypting the results of the analysis locally. Another application shows an

Private AI: Machine Learning on Encrypted Data 99

encrypted weather prediction app, which takes your encrypted zip-code and returns
encrypted versions of the weather at your location to be decrypted and displayed to
you on your phone. The cloud service never learns your location or what weather
data was returned to you. Finally, I showed a private medical diagnosis application,
which uploads an encrypted version of your Chest X-Ray image, and the medical
condition is diagnosed by running image recognition algorithms on the encrypted
image in the cloud, and returned in encrypted form to the doctor.

Over the years, my team' has developed other Private Al applications, enabling
private predictions such as sentiment analysis in text, cat/dog image classification,
heart attack risk based on personal health data, neural net image recognition of
hand-written digits, flowering time based on the genome of a flower, and pneumonia
mortality risk using intelligible models. All of these operate on encrypted data in the
cloud to make predictions, and return encrypted results in a matter of fractions of a
second.

Many of these demos and applications have been inspired by collaborations with
researchers in Medicine, Genomics, Bioinformatics, and Machine Learning. We have
worked together with finance experts and pharmaceutical companies to demonstrate
a range of ML algorithms operating on encrypted data. The UK Financial Conduct
Authority (FCA) ran an international Hackathon in August 2019 to combat money-
laundering with encryption technologies by allowing banks to share confidential
information with each other. Since 2015, the annual iDASH competition has attracted
teams from around the world to submit solutions to the Secure Genome Analysis
Competition. Participants include researchers at companies such as Microsoft and
IBM, start-up companies, and academics from the U.S., Korea, Japan, Switzerland,
Germany, France, etc. The results provide benchmarks for the medical research
community of the performance of encryption tools for preserving privacy of health
and genomic data.

2 What Is Homomorphic Encryption?

I could say, “Homomorphic Encryption is encryption which is homomorphic.” But
that is not very helpful without further explanation. Encryption is one of the building
blocks of cryptography: encryption protects the confidentiality of information. In
mathematical language, encryption is just a map which transforms plaintexts (unen-
crypted data) into ciphertexts (encrypted data), according to some recipe. Examples
of encryption include blockciphers, which take sequences of bits and process them
in blocks, passing them through an S-box which scrambles them, and iterating that
process many times. A more mathematical example is RSA encryption, which raises

1 My collaborators on the SEAL team include: Kim Laine, Hao Chen, Radames Cruz, Wei Dai, Ran
Gilad-Bachrach, Yongsoo Song, Shabnam Erfani, Sreekanth Kannepalli, Jeremy Tieman, Tarun
Singh, Hamed Khanpour, Steven Chith, James French, with substantial contributions from interns
Gizem Cetin, Kyoohyung Han, Zhicong Huang, Amir Jalali, Rachel Player, Peter Rindal, Yuhou
Xia as well.

100 K. Lauter

compute
a, b axb
encrypt encrypt
compute
E(a), E(b)

Fig. 1 Homomorphic encryption

a message to a certain power modulo a large integer N, whose prime factoriza-
tion is secret, N = p - g, where p and g are large primes of equal size with certain
properties.

A map which is homomorphic preserves the structure, in the sense that an operation
on plaintexts should correspond to an operation on ciphertexts. In practice that means
that switching the order of operations preserves the outcome after decryption: i.e.
encrypt-then-compute and compute-then-encrypt give the same answer. This property
is described by the following diagram:

Starting with two pieces of data, a and b, the functional outcome should be the
same when following the arrows in either direction, across and then down (compute-
then-encrypt), or down and then across (encrypt-then-compute): E(a + b) E(a) +
E(b). If this diagram holds for two operations, addition and multiplication, then
any circuit of AND and OR gates encrypted under map the encryption map E. It is
important to note that homomorphic encryption solutions provide for randomized
encryption, which is an important property to protect against so-called dictionary
attacks. This means that new randomness is used each time a value is encrypted,
and it should not be computationally feasible to detect whether two ciphertexts are
the encryption of the same plaintext or not. Thus the ciphertexts in the bottom right
corner of the diagram need to be decrypted in order to detect whether they are equal.

The above description gives a mathematical explanation of homomorphic encryp-
tion by defining its properties. To return to the motivation of Private Al, another way
to describe homomorphic encryption is to explain the functionality that it enables.
Figure2 shows Homer-morphic encryption, where Homer Simpson is a jeweler
tasked with making jewelry given some valuable gold. Here the gold represents
some private data, and making jewelry is analogous to analyzing the data by apply-
ing some Al model. Instead of accessing the gold directly, the gold remains in a
locked box, and the owner keeps the key to unlock the box. Homer can only handle
the gold through gloves inserted in the box (analogous to handling only encrypted
data). When Homer completes his work, the locked box is returned to the owner who
unlocks the box to retrieve the jewelry.

Private Al: Machine Learning on Encrypted Data 101

Protectmg Data via Encryptlon
[l |1|I encl -:__.-;,u 10

1. Put your gold in a locked box.
2. Keep the key.

3. Let your jeweler work on it through a glove box.
4. Unlock the box when the jeweler is done!

Fig. 2 Homer-morphic encryption

To connect to Fig. 1 above, outsourcing sensitive work to an untrusted jeweler
(cloud) is like following the arrows down, across, and then up. First the data owner
encrypts the data and uploads it to the cloud, then the cloud operates on the encrypted
data, then the cloud returns the output to the data owner to decrypt.

2.1 History

Almost 5 decades ago, we already had an example of encryption which is homomor-
phic for one operation: the RSA encryption scheme [36]. A message m is encrypted
by raising it to the power e modulo N for fixed integers e and N. Thus the product
of the encryption of two messages m; and m; is m{m$ = (m;m5)¢. It was an open
problem for more than thirty years to find an encryption scheme which was homo-
morphic with respect to two (ring) operations, allowing for the evaluation of any
circuit. Boneh-Goh-Nissim [3] proposed a scheme allowing for unlimited additions
and one multiplication, using the group of points on an elliptic curve over a finite
field, along with the Weil pairing map to the multiplicative group of a finite field.

In 2009, Gentry proposed the first homomorphic encryption scheme, allowing in
theory for evaluation of arbitrary circuits on encrypted data. However it took several
years before researchers found schemes which were implementable, relatively prac-
tical, and based on known hard mathematical problems. Today all the major homo-
morphic encryption libraries world-wide implement schemes based on the hardness
of lattice problems. A lattice can be thought of as a discrete linear subspace of
Euclidean space, with the operations of vector addition, scalar multiplication, and
inner product, and its dimension, n, is the number of basis vectors.

102 K. Lauter

2.2 Lattice-Based Solutions

The high-level idea behind current solutions for homomorphic encryption is as fol-
lows. Building on an old and fundamental method of encryption, each message is
blinded, by adding a random inner product to it: the inner product of a secret vector
with a randomly generated vector. Historically, blinding a message with fresh ran-
domness was the idea behind encryption via one-time pads, but those did not satisfy
the homomorphic property. Taking inner products of vectors is a linear operation, but
if homomorphic encryption involved only addition of the inner product, it would be
easy to break using linear algebra. Instead, the encryption must also add some freshly
generated noise to each blinded message, making it difficult to separate the noise
from the secret inner product. The noise, or error, is selected from a fairly narrow
Gaussian distribution. Thus the hard problem to solve becomes a noisy decoding
problem in a linear space, essentially Bounded Distance Decoding (BDD) or a Clos-
est Vector Problem (CVP) in a lattice. Decryption is possible with the secret key,
because the decryptor can subtract the secret inner product and then the noise is small
and is easy to cancel.

Although the above high-level description was formulated in terms of lattices, in
fact the structure that we use in practice is a polynomial ring. A vector in a lattice
of n dimensions can be thought of as a monic polynomial of degree n, where the
coordinates of the vector are the coefficients of the polynomial. Any number ring is
given as a quotient of Z[x], the polynomial ring with integer coefficients, by a monic
irreducible polynomial f(x). The ring can be thought of as a lattice in R when
embedded into Euclidean space via the canonical embedding. To make all objects
finite, we consider these polynomial rings modulo a large prime g, which is often
called the ciphertext modulus.

2.3 Encoding Data

When thinking about practical applications, it becomes clear that real data first has
to be embedded into the mathematical structure that the encryption map is applied
to, the plaintext space, before it is encrypted. This encoding procedure must also be
homomorphic in order to achieve the desired functionality. The encryption will be
applied to the polynomial ring with integer coefficients modulo ¢, so real data must
be embedded into this polynomial ring.

In a now widely cited 2011 paper, “Can Homomorphic Encryption be Practical?”
([30, Sect.4.1]), we introduced a new way of encoding real data in the polynomial
space which allowed for efficient arithmetic operations on real data, opening up a
new direction of research focusing on practical applications and computations. The
encoding technique was simple: embed an integer m as a polynomial whose ith
coefficient is the ith bit of the binary expansion of m (using the ordering of bits
so that the least significant bit is encoded as the constant term in the polynomial).

Private Al: Machine Learning on Encrypted Data 103

This allows for direct multiplication of real integers, represented as polynomials,
instead of encoding and encrypting data bit-by-bit, which requires a deep circuit just
to evaluate simple integer multiplication. When using this approach, it is important
to keep track of the growth of the size of the output to the computation. In order to
assure correct decryption, we limit the total size of the polynomial coefficients to 7.
Note that each coefficient was a single bit to start with, and a sum of k of them grows
to at most k. We obtain the correct decryption and decoding as long as g > ¢ > k,
so that the result does not wrap around modulo 7.

This encoding of integers as polynomials has two important implications, for
performance and for storage overhead. In addition to enabling multiplication of
floating point numbers via direct multiplication of ciphertexts (rather than requiring
deep circuits to multiply data encoded bit wise), this technique also saves space by
packing a large floating point number into a single ciphertext, reducing the storage
overhead. These encoding techniques help to squash the circuits to be evaluated, and
make the size expansion reasonable. However, they limit the possible computations
in interesting ways, and so all computations need to be expressed as polynomials.
The key factor in determining the efficiency is the degree of the polynomial to be
evaluated.

2.4 Brakerski/Fan-Vercauteren Scheme (BFV)

For completeness, I will describe one of the most widely used homomorphic encryp-
tion schemes, the Brakerski/Fan-Vercauteren Scheme (BFV) [7, 20], using the lan-
guage of polynomial rings.

2.4.1 Parameters and Notation
Let g > t be positive integers and n a power of 2. Denote A = |g/t]. Define
R =Z[x]/(x" + 1),
Ry = R/qR = (Z/qD)[x]/(x" + 1),

and R, = Z/tZ[x]/(x™ 4+ 1), where Z[x] is the set of polynomials with integer coef-
ficients and (Z/q7Z)[x] is the set of polynomials with integer coefficients in the range
[0,g —1).

In the BFV scheme, plaintexts are elements of R,, and ciphertexts are elements
of R; x R,. Let x denote a narrow (centered) discrete Gaussian error distribution.
In practice, most implementations of homomorphic encryption use a Gaussian dis-
tribution with standard deviation o[x] ~ 3.2. Finally, let U, denote the uniform
distribution on Z N [—k /2, k/2).

104 K. Lauter
24.2 Key Generation

To generate a public key, pk, and a corresponding secret key, sk, sample s < Uy,
a<U g, and e < x". Each of 5, a, and e is treated as an element of R,, where the
n coefficients are sampled independently from the given distributions. To form the
public key—secret key pair, let

pk = ([—(as +e)],.a) € R}, sk =+

where [-], denotes the (coefficient-wise) reduction modulo g.

24.3 Encryption
Letm € R, beaplaintext message. To encrypt m with the public key pk = (po, p1) €
R;, sample u <— U3 and e, e; <— x". Consider u and ¢; as elements of R, as in key

generation, and create the ciphertext

ct = ([Am + pou + erly, [pru + e2],) € R;.

2.4.4 Decryption

To decrypt a ciphertext ct = (cp, c1) given a secret key sk = s, write
t
—(co+c18) =m + v+ bt,
q

where ¢y 4 ¢ is computed as an integer coefficient polynomial, and scaled by the
rational number #/g. The polynomial b has integer coefficients, m is the underlying
message, and v satisfies ||v||o < 1/2. Thus decryption is performed by evaluating

m= F(CO + c]S)—‘ ,
q '

where |-] denotes rounding to the nearest integer.

2.4.5 Homomorphic Computation
Next we see how to enable addition and multiplication of ciphertexts. Addition is
easy: we define an operation @ between two ciphertexts ct; = (cg, ¢;) and ct, =

(dy, dy) as follows:

ct1 @ cty = ([co + dolg. [e1 + di]y) € R;.

Private Al: Machine Learning on Encrypted Data 105

sum

Denote this homomorphic sum by ctgm = (cg'™, ¢{"™), and note that if
t t
5(00+C15)=m1+v1+b1t, C—I(d0+d15)=m2+vz+bzl‘,

then .
E(Céum +c"s) = [my + mal; + vi + v2 + baumt,

Aslong as ||[v; + v2]le0 < 1/2, the ciphertext ctyn is a correct encryption of [m +
ms];.

Similarly, there is an operation ® between two ciphertexts that results in a cipher-
text decrypting to [mm>];, as long as ||v;||s and ||v2 ||« are small enough. Since ®
is more difficult to describe than @, we refer the reader to [20] for details.

2.4.6 Noise

In the decryption formula presented above the polynomial v with rational coefficients
is assumed to have infinity-norm less than 1/2. Otherwise, the plaintext output by
decryption will be incorrect. Given a ciphertext ct = (co, ¢;) which is an encryption
of a plaintext m, let v € Q[x]/(x" 4 1) be such that

t
—(co+c18) =m+ v+ bt.
q

The infinity norm of the polynomial v called the noise, and the ciphertext decrypts
correctly as long as the noise is less than 1/2.

When operations such as addition and multiplication are applied to encrypted data,
the noise in the result may be larger than the noise in the inputs. This noise growth
is very small in homomorphic additions, but substantially larger in homomorphic
multiplications. Thus, given a specific set of encryption parameters (n, g, ¢, x), one
can only evaluate computations of a bounded size (or bounded multiplicative depth).

A precise estimate of the noise growth for the YASHE scheme was givenin [4] and
these estimates were used in [5] to give an algorithm for selecting secure parameters
for performing any given computation. Although the specific noise growth estimates
needed for this algorithm do depend on which homomorphic encryption scheme is
used, the general idea applies to any scheme.

2.5 Other Homomorphic Encryption Schemes

In 2011, researchers at Microsoft Research and Weizmann Institute published the
(BV/BGV [8, 9]) homomorphic encryption scheme which is used by teams around
the world today. In 2013, IBM released HELib, a homomorphic encryption library

106 K. Lauter

for research purposes, which implemented the BGV scheme. HELIib is written in
C++ and uses the NTL mathematical library. The Brakerski/Fan-Vercauteren (BFV)
scheme described above was proposed in 2012. Alternative schemes with different
security and error-growth properties were proposed in 2012 by Lopez-Alt, Tromer,
and Vaikuntanathan (LTV [33]), and in 2013 by Bos, Lauter, Loftus, and Naehrig
(YASHE [4]). The Cheon-Kim-Kim-Song (CKKS [14]) scheme was introduced in
2016, enabling approximate computation on ciphertexts.

Other schemes [16, 19] for general computation on bits are more efficient for
logical tasks such as comparison, which operate bit-by-bit. Current research attempts
to make it practical to switch between such schemes to enable both arithmetic and
logical operations efficiently ([6]).

2.6 Microsoft SEAL

Early research prototype libraries were developed by the Microsoft Research (MSR)
Cryptography group to demonstrate the performance numbers for initial applications
such as those developed in [4, 5, 23, 29]. But due to requests from the biomedical
research community, it became clear that it would be very valuable to develop a well-
engineered library which would be widely usable by developers to enable privacy
solutions. The Simple Encrypted Arithmetic Library (SEAL) [37] was developed in
2015 by the MSR Cryptography group with this goal in mind, and is written in C++.
Microsoft SEAL was publicly released in November 2015, and was released open
source in November 2018 for commercial use. It has been widely adopted by teams
worldwide and is freely available online (http://sealcrypto.org).

Microsoft SEAL aims to be easy to use for non-experts, and at the same time
powerful and flexible for expert use. SEAL maintains a delicate balance between
usability and performance, but is extremely fast due to high-quality engineering.
SEAL is extensively documented, and has no external dependencies. Other publicly
available libraries include HELib from IBM, PALISADE by Duality Technologies,
and HEAAN from Seoul National University.

2.7 Standardization of Homomorphic Encryption [1]

When new public key cryptographic primitives are introduced, historically there
has been roughly a 10-year lag in adoption across the industry. In 2017, Microsoft
Research Outreach and the MSR Cryptography group launched a consortium for
advancing the standardization of homomorphic encryption technology, together with
our academic partners, researchers from government and military agencies, and part-
ners and customers from various industries: Homomorphic Encryption.org. The first
workshop was hosted at Microsoft in July 2017, and developers for all the existing
implementations around the world were invited to demo their libraries.

http://sealcrypto.org

Private Al: Machine Learning on Encrypted Data 107

At the July 2017 workshop, we worked in groups to draft three white papers on
Security, Applications, and APIs. We then worked with all relevant stakeholders of
the HE community to revise the Security white paper [11] into the first draft standard
for homomorphic encryption [1]. The Homomorphic Encryption Standard (HES)
specifies secure parameters for the use of homomorphic encryption. The draft stan-
dard was initially approved by the HomomorphicEncryption.org community at the
second workshop at MIT in March 2018, and then was finalized and made publicly
available at the third workshop in October 2018 at the University of Toronto [1]. A
study group was initiated in 2020 at the ISO, the International Standards Organiza-
tion, to consider next steps for standardization.

3 What Kind of Computation Can We Do?

3.1 Statistical Computations

In early work, we focused on demonstrating the feasibility of statistical computations
on health and genomic data, because privacy concerns are obvious in the realm of
health and genomic data, and statistical computations are an excellent fit for efficient
HE because they have very low depth. We demonstrated HE implementations and
performance numbers for statistical computations in genomics such as the chi-square
test, Cochran-Armitage Test for Trend, and Haplotype Estimation Maximization [29].
Next, we focused on string matching, using the Smith-Waterman algorithm for edit
distance [15], another task which is frequently performed for genome sequencing
and the study of genomic disease.

3.2 Heart Attack Risk

To demonstrate operations on health data, in 2013 we developed a live demo pre-
dicting the risk of having a heart attack based on six health characteristics [5]. We
evaluated predictive models developed over decades in the Framingham Heart study,
using the Cox proportional Hazard method. I showed the demo live to news reporters
at the 2014 AAAS meeting, and our software processed my risk for a heart attack in
the cloud, operating on encrypted data, in a fraction of a second.

In 2016, we started a collaboration with Merck to demonstrate the feasibility
of evaluating such models on large patient populations. Inspired by our published
work on heart attack risk prediction [5], they used SEAL to demonstrate running the
heart attack risk prediction on one million patients from an affiliated hospital. Their
implementation returned the results for all patients in about 2h, compared to 10 min
for the same computation on unencrypted patient data.

108 K. Lauter

3.3 Cancer Patient Statistics

In2017, we began a collaboration with a Crayon, a Norwegian company that develops
health record systems. The goal of this collaboration was to demonstrate the value of
SEAL in a real world working environment. Crayon reproduced all computations in
the 2016 Norwegian Cancer Report using SEAL and operating on encrypted inputs.
The report processed the cancer statistics from all cancer patients in Norway collected
over the last roughly 5 decades.

3.4 Genomic Privacy

Engaging with a community of researchers in bioinformatics and biostatistics who
were concerned with patient privacy issues led to a growing interdisciplinary com-
munity interested in the development of a range of cryptographic techniques to apply
to privacy problems in the health and biological sciences arenas [18]. One measure
of the growth of this community over the last five years has been participation in
the iDASH Secure Genome Analysis Competition, a series of annual international
competitions funded by the National Institutes of Health (NIH) in the U.S. The
iDASH competition has included a track on Homomorphic Encryption for the last
five years 2015-2019, and our team from MSR submitted winning solutions for the
competition in 2015 ([27]) and 2016 ([10]). The tasks were: chi-square test, mod-
ified edit distance, database search, training logistic regression models, genotype
imputation. Each year, roughly 5-10 teams from research groups around the world
submitted solutions for the task, which were bench-marked by the iDASH team.
These results provide the biological data science community and NIH with real and
evolving measures of the performance and capability of homomorphic encryption to
protect the privacy of genomic data sets while in use. Summaries of the competitions
are published in [38, 40].

3.5 Machine Learning: Training and Prediction

The 2013 “ML Confidential” paper [23] was the first to propose training ML algo-
rithms on homomorphically encrypted data and to show initial performance numbers
for simple models such as linear means classifiers and gradient descent. Training is
inherently challenging because of the large and unknown amount of data to be pro-
cessed.

Prediction tasks on the other hand, process an input and model of known size, so
many can be processed efficiently. For example, in 2016 we developed a demo using
SEAL to predict the flowering time for a flower. The model processed 200, 000 SNPs
from the genome of the flower, and evaluated a Fast Linear Mixed Model (LMM).

Private Al: Machine Learning on Encrypted Data 109

Including the round-trip communication time with the cloud running the demo as a
service in Azure, the prediction was obtained in under a second.

Another demo developed in 2016 using SEAL predicted the mortality risk for
pneumonia patients based on 46 characteristics from the medical record for the
patient. The model in this case is an example of an intelligible model and consists
of 46° 4 polynomials to be evaluated on the patient’s data. Data from 4, 096 patients
can be batched together, and the prediction for all 4, 096 patients was returned by
the cloud service in a few seconds (in 2016).

These two demos evaluated models which were represented by shallow circuits,
linear in the first case and degree 4 in the second case. Other models such as deep
neural nets (DNNSs) are inherently more challenging because the circuits are so deep.
To enable efficient solutions for such tasks requires a blend of cryptography and
ML research, aimed at designing and testing ways to process data which allow for
efficient operations on encrypted data while maintaining accuracy. An example of
that was introduced in CryptoNets [22], showing that the activation function in the
layers of the neural nets can be approximated with a low-degree polynomial function
(x?) without significant loss of accuracy.

The CryptoNets paper was the first to show the evaluation of a neural net pre-
dictions on encrypted data, and used the techniques introduced there to classify
hand-written digits from the MNIST [31] data set. Many teams have since worked
on improving the performance of CryptoNets, either with hybrid schemes or other
optimizations [17, 25, 35]. In 2018, in collaboration with Median Technologies,
we demonstrated deep neural net predictions for a medical image recognition task:
classification of liver tumors based on medical images.

Returning to the challenge of training ML algorithms, the 2017 iDASH contest
task required the teams to train a logistic regression model on encrypted data. The
data set provided for the competition was very simple and did not require many
iterations to train an effective model (the winning solution used only 7 iterations [26,
28]). The MSR solution [12] computed over 300 iterations and was fully scalable
to any arbitrary number of iterations. We also applied our solution to a simplified
version of the MNIST data set to demonstrate the performance numbers.

Performance numbers for all computations described here were published at the
time of discovery. They would need to be updated now with the latest version of
SEAL, or can be estimated. Hardware acceleration techniques using state-of-the-art
FPGAs can be used to improve the performance further ([34]).

4 How Do We Assess Security?

The security of all homomorphic encryption schemes described in this article is based
on the mathematics of lattice-based cryptography, and the hardness of well-known
lattice problems in high dimensions, problems which have been studied for more than
25 years. Compare this to the age of other public key systems such as RSA (1975)
or Elliptic Curve Cryptography ECC (1985). Cryptographic applications of Lattice-

110 K. Lauter

based Cryptography were first proposed by Hoffstein, Pipher, and Silverman [24]
in 1996 and led them to launch the company NTRU. New hard problems such as
LWE were proposed in the period of 2004-2010, but were reduced to older problems
which had been studied already for several decades: the Approximate Shortest Vector
Problem (SVP) and Bounded Distance Decoding.

The best known algorithms for attacking the Shortest Vector Problem or the Clos-
est Vector Problem are called lattice basis reduction algorithms, and they have a more
than 30-year history, including the LLL algorithm [32]. LLL runs in polynomial time,
but only finds an exponentially bad approximation to the shortest vector. More recent
improvements, such as BKZ 2.0 [13], involve exponential algorithms such as sieving
and enumeration. Hard Lattice Challenges were created by TU Darmstadt and are
publicly available online for anyone to try to attack and solve hard lattice problems
of larger and larger size for the record.

Homomorphic Encryption scheme parameters are set such that the best known
attacks take exponential time (exponential in the dimension of the lattice, n, meaning
roughly 2" time). These schemes have the advantage that there are no known polyno-
mial time quantum attacks, which means they are good candidates for Post-Quantum
Cryptography (PQC) in the ongoing 5-year NIST PQC competition.

Lattice-based cryptography is currently under consideration for standardization in
the ongoing NIST PQC Post-Quantum Cryptography competition. Most Homomor-
phic Encryption deployments use small secrets as an optimization, so it is important to
understand the concrete security when sampling the secret from a non-uniform, small
distribution. There are numerous heuristics used to estimate the running time and
quality of lattice reduction algorithms such as BKZ2.0. The Homomorphic Encryp-
tion Standard recommends parameters based on the heuristic running time of the
best known attacks, as estimated in the online LWE Estimator [2].

5 Conclusion

Homomorphic Encryption is a technology which allows meaningful computation on
encrypted data, and provides a tool to protect privacy of data in use. A primary appli-
cation of Homomorphic Encryption is secure and confidential outsourced storage
and computation in the cloud (i.e. a data center). A client encrypts their data locally,
and stores their encryption key(s) locally, then uploads it to the cloud for long-term
storage and analysis. The cloud processes the encrypted data without decrypting it,
and returns encrypted answers to the client for decryption. The cloud learns nothing
about the data other than the size of the encrypted data and the size of the computa-
tion. The cloud can process Machine Learning or Artificial Intelligence (ML or AI)
computations, either to make predictions based on known models or to train new
models, while preserving the client’s privacy.

Current solutions for HE are implemented in 5-6 major open source libraries
world-wide. The Homomorphic Encryption Standard [1] for using HE securely was

Private Al: Machine Learning on Encrypted Data 111

approved in 2018 by HomomorphicEncryption.org, an international consortium of
researchers in industry, government, and academia.

Today, applied Homomorphic Encryption remains an exciting direction in cryp-
tography research. Several big and small companies, government contractors, and
academic research groups are enthusiastic about the possibilities of this technol-
ogy. With new algorithmic improvements, new schemes, an improved understanding
of concrete use-cases, and an active standardization effort, wide-scale deployment
of homomorphic encryption seems possible within the next 2-5 years. Small-scale
deployment is already happening.

Computational performance, memory overhead, and the limited set of operations
available in most libraries remain the main challenges. Most homomorphic encryp-
tion schemes are inherently parallelizable, which is important to take advantage of to
achieve good performance. Thus, easily parallelizable arithmetic computations seem
to be the most amenable to homomorphic encryption at this time and it seems plau-
sible that initial wide-scale deployment may be in applications of Machine Learning
to enable Private Al

Acknowledgements I would like to gratefully acknowledge the contributions of many people in
the achievements, software, demos, standards, assets and impact described in this article. First and
foremost, none of this software or applications would exist without my collaborators on the SEAL
team, including Kim Laine, Hao Chen, Radames Cruz, Wei Dai, Ran Gilad-Bachrach, Yongsoo
Song, John Wernsing, with substantial contributions from interns Gizem Cetin, Kyoohyung Han,
Zhicong Huang, Amir Jalali, Rachel Player, Peter Rindal, Yuhou Xia as well. The demos described
here were developed largely by our partner engineering team in Foundry 99: Shabnam Erfani,
Sreekanth Kannepalli, Steven Chith, James French, Hamed Khanpour, Tarun Singh, Jeremy Tieman.
I launched the Homomorphic Encryption Standardization process in collaboration with Kim Laine
from my team, with Roy Zimmermann and the support of Microsoft Outreach, and collaborators
Kurt Rohloff, Vinod Vaikuntanathan, Shai Halevi, and Jung Hee Cheon, and collectively we now
form the Steering Committee of HomomorphicEncryption.org. Finally I would like to thank the
organizers of ICIAM 2019 for the invitation to speak and to write this article.

References

1. Albrecht, M., Chase, M., Chen, H., Ding, J., Goldwasser, S., Gorbunov, S., Halevi, S., Hoff-
stein, J., Laine, K., Lauter, K., Lokam, S., Micciancio, Moody, D., Morrison, T., Sahai, A.,
Vaikuntanathan, V.: Homomorphic encryption security standard. Technical report, Homomor-
phicEncryption.org, Toronto, Canada, Nov 2018. https://eprint.iacr.org/2019/939

2. Albrecht, M., Player, R., Scott, S.: On the concrete hardness of learning with errors. J. Math.
Cryptol. 9(3), 169-203 (2015)

3. Boneh, D., Goh, E., Nissim, K.: Evaluating 2-dnf formulas on ciphertexts. In: TCC’05: Pro-
ceedings of the Second international conference on Theory of Cryptography, vol. 3378. Lecture
Notes in Computer Science, pp. 325-341. Springer, Berlin (2005)

4. Bos, J.W,, Lauter, K., Loftus, J., Naehrig, M.: Improved security for a ring-based fully homo-
morphic encryption scheme. In: Cryptography and Coding, pp. 45-64. Springer, Berlin (2013)

5. Bos, J.W,, Lauter, K., Naehrig, M.: Private predictive analysis on encrypted medical data. J.
Biomed. Inform. 50, 234-243 (2014)

https://eprint.iacr.org/2019/939

112

6.

10.

11.

13.

14.

15.

16.

18.

19.

20.

21.

22.

23.

24.

25.

26.

K. Lauter

Boura, C., Gama, N., Georgieva, M., Jetchev, D.: Chimera: combining ring-LWE-based fully
homomorphic encryption schemes. Cryptology ePrint Archive. https://eprint.iacr.org/2018/
758

. Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical

GapSVP. In: Advances in Cryptology—CRYPTO 2012, pp. 868-886. Springer, Berlin (2012)

. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without

bootstrapping. In: Proceedings of ITCS, pp. 309-325. ACM (2012)

. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard)

LWE. In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, pp.
97-106, Oct 2011

Cetin, G.S., Chen, H., Laine, K., Lauter, K., Rindal, P., Xia, Y.: Private queries on encrypted
genomic data. BMC Med. Genomics 10(45) (2017)

Chase, M., Chen, H., Ding, J., Goldwasser, S., Gorbunov, S., Hoffstein, J., Lauter, K., Lokam, S.,
Moody, D., Morrison, T., Sahai, A., Vaikuntanathan, V.: Security of homomorphic encryption.
HomomorphicEncryption.org, Redmond WA, Technical report (2017)

. Chen, H., Gilad-Bachrach, R., Han, K., Huang, Z., Jalali, A., Laine, K., Lauter, K.: Logistic

regression over encrypted data from fully homomorphic encryption. BMC Med. Genomics
11(81) (2018)

Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H., Wang, X.
(eds.) Advances in Cryptology—ASIACRYPT 2011, pp. 1-20. Springer, Berlin (2011)
Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic of approxi-
mate numbers. In: International Conference on the Theory and Application of Cryptology and
Information Security, pp. 409—437. Springer, Berlin (2017)

Cheon, J.H., Kim, M., Song, Y.: . Homomorphic computation of edit distance. In: International
Conference on Financial Cryptography and Data Security, pp. 194-212. Springer, Berlin (2015)
Chillotti, I., Gama, N., Georgieva, M., [zabacheéne, M.: TFHE: fast fully homomorphic encryp-
tion over the torus. J. Cryptol. 33, 34-91 (2020)

. Dathathri, R., Saarikivi, O., Chen, H., Laine, K., Lauter, K., Maleki, S., Musuvathi, M., Mytkow-

icz, T.: CHET: an optimizing compiler for fully-homomorphic neural-network inferencing. In:
Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation, pp. 142-156. ACM (2019)

Dowlin, N., Gilad-Bachrach, R., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.: Manual for
using homomorphic encryption for bioinformatics. Proc. IEEE 105(3), 552-567 (2017)
Ducas, L.,Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less than a sec-
ond. In: Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pp. 617-640. Springer, Berlin (2015)

Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. In: IACR Cryp-
tology ePrint Archive 144 (2012). https://eprint.iacr.org/2012/144. Accessed on 9 April 2018
Gentry, C.: A fully homomorphic encryption scheme. Stanford University (2009)
Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.: Cryptonets:
applying neural networks to encrypted data with high throughput and accuracy. In: International
Conference on Machine Learning, pp. 201-210 (2016)

Graepel, T., Lauter, K., Naehrig, M.: ML confidential: Machine learning on encrypted data. In:
International Conference on Information Security and Cryptology, pp. 1-21. Springer, Berlin
(2012)

Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosystem. In:
Algorithmic number theory (Portland, OR, 1998), vo. 1423. Lecture Notes in Computer Sci-
ence, pp. 267-288. Springer, Berlin (1998)

Juvekar, C., Vaikuntanathan, V., Chandrakasan, A.: GAZELLE: a low latency framework for
secure neural network inference. In: 27th USENIX Security Symposium (USENIX Security
18), pp. 1651-1669 (2018)

Kim, A., Song, Y., Kim, M., Lee, K., Cheon, J.-H.: Logistic regression model training based
on the approximate homomorphic encryption. Cryptology ePrint Archive, Report 2018/254
(2018). https://eprint.iacr.org/2018/254

https://eprint.iacr.org/2018/758
https://eprint.iacr.org/2018/758
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2018/254

Private Al: Machine Learning on Encrypted Data 113

27. Kim, M., Lauter, K.: Private genome analysis through homomorphic encryption. BMC Med.
Inform. Decis. Making 15(Suppl 5), S3 (2015)

28. Kim, M., Song, Y., Wang, S., Xia, Y., Jiang, X.: Secure logistic regression based on homomor-
phic encryption. Cryptology ePrint Archive, Report 2018/074 (2018). https://eprint.iacr.org/
2018/074

29. Lauter, K., Lopez-Alt, A., Naehrig, M.: Private computation on encrypted genomic data. In:
International Conference on Cryptology and Information Security in Latin America, pp. 3-27.
Springer, Berlin (2014)

30. Lauter, K., Naehrig, M., Vaikuntanathan, V.: Can homomorphic encryption be practical? In:
Proceedings of the 3rd ACM Workshop on Cloud Computing Security Workshop (CCSW °11),
New York, NY, USA, pp. 113-124. ACM (2011)

31. LeCun, Y., Cortes, C., Burges, C.J.C.: The MNIST database of handwritten digits (1998). http://
yann.lecun.com/exdb/mnist/

32. Lenstra, A.K., Lenstra, H.W., Lovasz, L.: Factoring polynomials with rational coefficients.
Mathematische Annalen 261(4), 515-534 (1982)

33. Lopez-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on the cloud
via multikey fully homomorphic encryption. In: Proceedings of STOC, pp. 1219-1234. IEEE
Computer Society (2012)

34. Sadegh Riazi, M., Laine, K., Pelton, B., Dai, W.: Heax: high-performance architecture for com-
putation on homomorphically encrypted data in the cloud. arXiv preprint arXiv:1909.09731
(2019)

35. Sadegh Riazi, M., Samragh, M., Chen, H., Laine, K., Lauter, K., Koushanfar, F.: XONN:
Xnor-based oblivious deep neural network inference. In: 28th USENIX Security Symposium
(USENIX Security 19), Santa Clara, CA, pp. 1501-1518. USENIX Association, Aug 2019

36. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key
cryptosystems. Commun. ACM 21(2), 120-126 (1978)

37. Microsoft SEAL (release 3.2). https://github.com/Microsoft/SEAL. Microsoft Research, Red-
mond, WA, Nov 2018

38. Tang, H., Jiang, X., Wang, X., Wang, S., Sofia, H., Fox, D., Lauter, K., Malin, B., Telenti, A.,
Li, Xi., Ohno-Machado, L.: Protecting genomic data analytics in the cloud: state of the art and
opportunities. BMC Med. Genomics 9(63) (2016)

39. Vanian, J.: 4 Big Takeaways from Satya Nadella’s talk at Microsoft Build (2018). https://
fortune.com/2018/05/07/microsoft-satya-nadella-build/

40. Wang, S., Jiang, X., Tang, H., Wang, X., Bu, D., Carey, K., Dyke, S.O0.M., Fox, D., Jiang,
C., Lauter, K., Malin, B., Sofia, H., Telenti, A., Wang, L., Wang, W., Ohno-Machado, L.: A
community effort to protect genomic data sharing, collaboration and outsourcing. NPJ Genomic
Med. 2(33) (2017)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://eprint.iacr.org/2018/074
https://eprint.iacr.org/2018/074
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/1909.09731
https://github.com/Microsoft/SEAL
https://fortune.com/2018/05/07/microsoft-satya-nadella-build/
https://fortune.com/2018/05/07/microsoft-satya-nadella-build/
http://creativecommons.org/licenses/by/4.0/

	 Private AI: Machine Learning on Encrypted Data
	1 Motivation: Privacy in Artificial Intelligence
	1.1 Real-World Applications

	2 What Is Homomorphic Encryption?
	2.1 History
	2.2 Lattice-Based Solutions
	2.3 Encoding Data
	2.4 Brakerski/Fan-Vercauteren Scheme (BFV)
	2.5 Other Homomorphic Encryption Schemes
	2.6 Microsoft SEAL
	2.7 Standardization of Homomorphic Encryption ch6HES

	3 What Kind of Computation Can We Do?
	3.1 Statistical Computations
	3.2 Heart Attack Risk
	3.3 Cancer Patient Statistics
	3.4 Genomic Privacy
	3.5 Machine Learning: Training and Prediction

	4 How Do We Assess Security?
	5 Conclusion
	References

