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Abstract While most of our tissues appear static, in fact, cell motion comprises
an important facet of all life forms, whether in single or multicellular organisms.
Amoeboid cells navigate their environment seeking nutrients, whereas collectively,
streams of cells move past and through evolving tissue in the development of com-
plex organisms. Cell motion is powered by dynamic changes in the structural pro-
teins (actin) that make up the cytoskeleton, and regulated by a circuit of signaling
proteins (GTPases) that control the cytoskeleton growth, disassembly, and active
contraction. Interesting mathematical questions we have explored include (1) How
do GTPases spontaneously redistribute inside a cell? How does this determine the
emergent polarization and directed motion of a cell? (2) How does feedback between
actin and these regulatory proteins create dynamic spatial patterns (such as waves)
in the cell? (3) How do properties of single cells scale up to cell populations and
multicellular tissues given interactions (adhesive, mechanical) between cells? Here
I survey mathematical models studied in my group to address such questions. We
use reaction-diffusion systems to model GTPase spatiotemporal phenomena in both
detailed and toy models (for analytic clarity). We simulate single and multiple cells
to visualize model predictions and study emergent patterns of behavior. Finally, we
work with experimental biologists to address data-driven questions about specific
cell types and conditions.

1 Introduction: Motile Cells and Their Inner Workings

Many types of cells are endowed with the ability to move purposefully. As an exam-
ple, neutrophils, shown in Fig. 1a, are white blood cells that make up part of our
immune system, in charge of patrolling tissues for pathogens or sites of injury. The
motion of unicellular organisms such as bacteria, while interesting in its own right,
is governed by distinct mechanisms that will not be discussed here.
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Fig. 1 Cellmotility and cell polarization: frombiology tomathematicalmodel: aAwhite blood
cell (neutrophil) moving between red blood cells (disk-shaped objects) from a 1950s movie clip by
David Rogers. The 1D band represents a transect of the cell from front to back. We are concerned
with how the cell breaks symmetry and polarizes to define such a front-back axis. b, c Sketch of
a cell in top-down b and side c views, indicating the same 1D axis. d In our mathematical model,
we aim to explain how regulatory proteins in the cell (called GTPases) spontaneously polarize and
form hot spots of activity that define the front and back of the cell. e In our abstract “wave-pinning”
model, this same process is depicted as a 1D pattern-formation event, with a wave that stalls to
produced a polarized distribution

In a movie dating to the 1950s’ David Rogers (then at Vanderbilt University)
captured the amoeboid movements of a neutrophil as it navigates between red blood
cells (disk shaped objects in Fig. 1a). In this movie, which can be seen on a popular
YouTube site, we see a crawling cell, with dynamic shape—a broad front that pushes
outwards, and a thin tail that is pulled along as the cell moves. Figure1b, c are two
projections of cell shape (top down in (b) and side view in (c)) that we later utilize
in modeling cell polarization.

It is worth pointing out the sizes and timescales that concern us here. In contrast
to some papers (e.g. Prof. Marsha Berger’s whose work describes geological size
scales and timescales of hours and days [1]), here we deal with the micro-world of
cells, whose diameter is on the order of 10–30µm. The time-scale of relevance is
on the order of seconds. As summarized in Table1, the process of cell polarization,
which defines the front and back of the cell and specifies its direction of motion,
take place over seconds across the tiny cell diameter. Also noteworthy is the fact
that the production of new copies of proteins (i.e. protein synthesis) does not suffice
to explain how protein activity becomes concentrated at some parts of a cell, since
synthesis takes hour(s), while the response times of a cell to stimuli that polarize it
is known to take only seconds for fast-moving cells like neutrophils.

Here the purpose is to explain an important first step in cell motility: the symmetry
breaking that creates a front and a back in the cell (Fig. 1d), namely the polarization
of the cell. But before embarking on the mathematics that describes this process, we
first discuss the important cellular components that are involved.
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Table 1 Typical sizes and speeds of cells, and typical time-scales of protein synthesis and activation

Cell part or process Typical size

Cell diameter 10–30µm

Cell thickness 0.1µm

Cell speed (WBC) 0.1–0.2µm/s

Response time to stimuli Few seconds

Protein synthesis time Hour(s) (!!)

Protein activation time Few seconds

Diffusion rates (proteins) 0.1–10µm2/s

Recall that 1µm = 10−6 m. WBC white blood cell (neutrophil)

1.1 Actin Powers Cell Motility

Unlike plants and bacteria, animal cells have no tough outer cell wall. They are
enclosed in a lipid membrane that envelopes the interior, which in turn includes the
fluid cytosol and many organelles. Most organelles, including the cell’s nucleus are
not directly involved in powering cellular motion.

Without some structural components, the cell would be essentially a bag of fluids.
An internal “skeleton” (called the cytoskeleton) is formed by a meshwork of fila-
mentous actin (F-actin), a dynamic biopolymer protein structure that is assembled at
what becomes the cell front. The polymerization of actin leads to protrusion of the
cell front [23]. Meanwhile, in association with the motor protein myosin, contraction
of actomyosin leads to retraction of the rear portion of the cell [33], Fig. 2a.

Due to the abundance of actin monomers at excess concentration in every cell,
actin assembly would be an explosive process were it not tightly controlled by many
interacting regulatory cellular proteins. Many of those proteins, discovered and char-
acterized experimentally over the last decades [27, 34], interact with actin to make it
branch, to cut or cap its growing ends, to sequester or to recycle its monomeric sub-
units. Other proteins play the role of master-regulators that control the components
of the cytoskeleton [30].

1.2 GTPases Are Master Regulators

One important class of proteins that regulate the cytoskeleton is the class of Rho
GTPases, among which Rac and Rho are well known [3]. In the schematic Fig. 2,
GTPases are shown to promote the assembly of filamentous actin, and the activity
of myosin contraction. The GTPase Rac does the former, while the GTPase Rho
enables the latter. Hence, if we can explain how Rac and Rho activities concentrate
at one or another part of the cell, we can also explain the localizations of a front and
rear cellular axis, and hence cell polarization. This then, is the main focus of our
approach.
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Fig. 2 Schematic diagram of the cell’s motility machinery: a Actin filaments (F-actin), rep-
resented as blue curves, assemble at what becomes the cell front. Actin polymerization leads to
protrusion at the front edge of the cell. In the cell rear, myosin motors (not shown) associate with
F-actin to contract and pull up the “tail”. Proteins in the class known as Rho GTPases are master
regulators. These proteins control where and when actin assembly and myosin contraction take
place. GTPases play an essential role in cell polarization. b Each GTPase has an active and an
inactive state, modeled by the variables u, v. Only when bound to the cell membrane (shown in
yellow) is the GTPase active. A, I denote rates of activation and inactivation

Interestingly, proteins in the family of Rho GTPases have a curious life-cycle.
They occur in active and inactive forms, with only the active forms exerting the
effects mentioned above [8]. Moreover, the active forms are always bound to the
fatty membrane that forms the outer cell envelop (shown in yellow in Fig. 2). Hence,
the small GTPases spend their cellular lives shuttling between the cell membrane
(where part of their structure gets embedded when active) and the cell interior (where
they are entirely inactive). This basic idea is illustrated in Fig. 2b. The GTPases act
as cellular switches that are “ON” when active and “OFF” otherwise.

A natural question one could ask, is what is the functional purpose of the GTPase
cycling between the cell’s membrane and the cell’s interior? As we shall see, math-
ematics may have something to contribute towards answering such questions. A
second question is what property of the cellular machinery account for the spon-
taneous polarization of the cell? That is, how do GTPases redistribute so that their
levels of activity differ between the front and rear of a cell [2].

2 Mathematical Models

In our earliest works on cell polarization, we attempted to account for many known
features of the GTPase activity and their crosstalk and interactions [6, 18, 20]. Such
models were largely computational, as it was a challenge to analyse themmathemat-
ically. It was clear that more basic model variants would be useful for mathematical
progress to be feasible.

As described in Mori et al. [24, 25], we simplify a very complicated cellular pro-
cess to allow for mathematical tractability. We thereby hope to identify key elements
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Fig. 3 Model geometry: The complicated cell geometry is simplified into a 1D domain (transect
along the cell diameter) with active and inactive proteins distributed along that axis, but with distinct
rates of diffusion, Du � Dv

that allow for spontaneous cell polarization. First, we consider just one GTPase (say
Rac), rather than the entire network (Cdc42, Rac and Rho). We ask which biological
attributes account for spontaneous symmetry breaking and polar pattern formation.
To investigate this, we construct the following mathematical model.

We define u(t), v(t) to be the concentrations of the active and inactive forms of
the GTPase. Then, based on the schematic diagram in Fig. 2b, it follows that

du

dt
= Av − I u,

dv

dt
= −Av + I u.

This is not yet enough, since spatial distribution is a vital aspect. Hence, we require
a spatial variable, and need to account for the localization of each of u, v. To do so,
we also need to define the geometry of interest.

As argued earlier, and noted in Fig. 1, to explain symmetry breaking for polariza-
tion, a 1D model along the front-back axis suffices. And while the detailed residence
of the proteins on the membrane or cell interior is important, it proves helpful to
simplify this too, in the steps shown in Fig. 3. In that figure, we first idealize the
cell as a thin sheet of uniform thickness, surrounded top and bottom by a membrane
(yellow outline). Zooming in on a small portion of the cell, we might see active (red)
and inactive (black) copies of the GTPase associated with the membrane or the fluid
cell interior.We homogenize these compartments, treating both u and v as dependent
variables on a 1D spatial domain 0 ≤ x ≤ L where L is the cell diameter. We do
however, take into account the very different rates of diffusion of a protein in the
membrane (Du ≈ 0.01−0.1µm2/s) versus the fluid cell interior (Dv ≈ 10µm2/s)
[28]. As we shall see, this huge disparity in diffusion plays a significant role.
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The model becomes

∂u

∂t
= Du

∂2u

∂x2
+ Av − I u, (1a)

∂v

∂t
= Dv

∂2v

∂x2
− Av + I u. (1b)

In principle, the rates of activation and inactivation A, I , are not merely constant.
If they were, then Eq. (1) would be linear in u, v, and would have fairly uninter-
esting steady state solutions. Some nonlinearity is essential, and this also requires
feedback—something that can only depend on levels of active proteins. (Recall that
the inactive GTPases do not participate in any interactions.) We have considered
models where many other proteins influence each of the state transitions [14, 18,
21], and in that case, the model would expand in complexity,

∂u1
∂t

= Du
∂2u1
∂x2

+ A(u1, u2, . . . )v1 − I (u1, u2, . . . )u1, (2a)

∂v1

∂t
= Dv

∂2v1

∂x2
− A(u1, u2, . . . )v1 + I (u1, u2, . . . )u1, (2b)

∂u2
∂t

= . . . (2c)

Such examples, considered in the context of biological experiments, are briefly
discussed further on, but mathematically, they are harder to analyze.

Our ultimate purpose, mathematically, is to strip away such complexity and focus
on the most elementary example, where a single GTPase polarizes on its own. To do
so, we considered the version

∂u

∂t
= Du

∂2u

∂x2
+ A(u)v − I u, (3a)

∂v

∂t
= Dv

∂2v

∂x2
− A(u)v + I u, (3b)

with feedback exclusively in the activation rate A(u) and a constant rate of inactiva-
tion I . This specific choice is somewhat arbitrary, as shown in [18], since it is possible
to obtain essentially the same behaviour with nonlinearity introduced by assuming
that I = I (u) with A constant, or by other variants where both A and I depend on
u. The biological interpretation is somewhat different, since distinct proteins in cells
play the role of activating (GEFs) and inactivating (GAPS) the GTPases. In the case
of constant I , we can rescale time, so that I = 1. Altogether, then, the single-GTPase
system consists of the pair of PDEs
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∂u

∂t
= Du

∂2u

∂x2
+ f (u, v), (4a)

∂v

∂t
= Dv

∂2v

∂x2
− f (u, v), (4b)

with

f (u, v) =
(
b + γ

un

1 + un

)
v − u, (4c)

where b is the basal rate of activation and γ is an additional rate of activation depicting
positive feedback from u to its own activation. The constant n ≥ 2 is the so-called
“Hill coefficient”. Larger values of n result in sharper switching between states.

We also assume Neumann boundary conditions, namely,

ux (0, t) = 0, ux (L , t) = 0, vx (0, t) = 0, vx (L , t) = 0. (4d)

This signifies that no material leaks out of the ends of the 1D domain, i.e. that the
cell ends are sealed.

Notably, on the timescale of interest (a few seconds), no protein is made or lost,
it is merely exchanged between the active and inactive states (see Table1). This is
captured by the model, since it is easy to see that the total amount of protein in the
domain is conserved, that is,

Mean total concentration = 1

L

L∫
0

(u(x, t) + v(x, t))dx = constant (5)

As shown in [24, 25], the following properties are necessary and sufficient to
ensure that a unimodal pattern (depicting a polarized distribution) will exist as a
nonuniform steady state of the model:

1. There is some range of values v1 ≤ v ≤ v2 for which the function f (u, v) has
three roots, ua < um < ub. (We refer to this range of v as the bistable regime.)

2. Of these three roots, the outer two (ua, ub) are stable fixed points of the spatially
homogeneous variant of (4).

3. For some value, v∗ in v1 ≤ v ≤ v2, there is a change in the sign of the integral

ub∫
ua

f (u, v)du.

4. The rates of diffusion of u and v are sufficiently different: Du � Dv .

It is interesting to contrast the system (4) with a related one consisting of (4a),
(4c) and (4d) but with v ≡ constant, that is, with a single bistable reaction-diffusion
equation in one variable, u. The latter is known to sustain traveling wave solutions, as
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Fig. 4 Travelling waves versus wave-pinning: a A single reaction-diffusion equation (4a) (for
constant v) with kinetics of type (4c) is known to sustain traveling wave solutions for u(x, t).
b In contrast, the system of Eqs. (4a)–(4d) with conservation and distinct rates of diffusion (Du �
Dv) results in waves that stop inside the domain, a phenomenon we termed “wave-pinning”

shown in Fig. 4a. In contrast, the two-variable system (4a)–(4d) leads to waves that
decelerate and stop inside the domain (once the sign condition above is satisfied) as
demonstrated in Fig. 4b. We refer to this behaviour as “wave-pinning”. We see that
Fig. 4a fails to explain polarization, because the cell diameter is eventually uniformly
active. Figure4b is consistent with polarization, since the two ends of the domain
develop distinct levels of activity as time goes by. In this sense, wave-pinning is a
simple caricature of cell polarization.

2.1 How Wave-Pinning Works

Full details of the analysis of such dynamics are described in [25]. Here it suffices
to briefly mention the key asymptotic analysis ideas used in establishing the result.

The system (4) is rescaled to exploit the existence of a small parameter

ε2 = Du

r L2
,

where r is a typical kinetics rate constant with units of 1/time (e.g., r = γ ). We then
examine the short and intermediate time-scales of the rescaled system.

On a short time-scale (ts = t/ε), it can be shown that to leading order, at various
sites in the domain, u approaches its steady state values ua, ub. This means that the
domain is “carved up” into plateaus of high and of low activity levels u separated by
transition layers between them.

To make progress, we consider the case of a single interface separating a low
and a high plateau. Let the position of the interface be φ(t). We go on to seek the
intermediate time scale behaviour.We construct an inner and an outer solution next to
the transition layer and show that, to leading order, the variable v is roughly spatially
constant on the two sides of the interface v ≈ V0(t), while it is depleted in time as u
evolves.
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Fig. 5 Regimes of wave-pinning: Wave-pinning, which represents cell polarization, depends on a
balance between the total amount of GTPase (5) and the size of the small parameter ε = Du/(r L2).
If the total amount is too small, the wave of activity collapses, whereas if it is too large, the wave
sweeps across the entire domain, and a net homogenous state results. Polarization can also be lost
in several ways (1) If the cell size decreases too much, and hence ε increases, the system leaves the
polarization regime. (2) If cell size increases so that the mean total GTPase becomes too “diluted”,
polarization can also be lost. Image credit: Alexandra JIlkine

Using well-known analysis for wave-speed, we construct the speed of the wave,
finding it to be described by a ratio of two integrals

speed =
∫ ub
ua

f (u, v)du

I2
.

Here ua, ub depend on V0(t), and I2 is a strictly positive integral. We argue that the
wave stops when the numerator vanishes, which is guaranteed to happen at some
point by Condition 3, a Maxwell condition. Indeed, once v is depleted sufficiently,
to the level v∗, the integral in the numerator vanishes. Details and discussion of the
steps appear in [25]. Regimes of polarization are shown in (Fig. 5).

Intuitively, the result can be explained as follows: at the transition zone, the high u
plateau activates an adjoining site by virtue of local diffusion and positive feedback.
The spread of u, however, is at the expense of the inactive form v, which gets
depleted as the wave of activity spreads. Once v is sufficiently depleted, the spread
of the activity wave can no longer be sustained. At that point, the wave freezes.

It is also interesting to note that the fast diffusion of vmeans that it acts as a “global
messenger” in the sense that it rapidly stores domain-wide information about the level
of activity in the cell. Hence, local activation (of u by itself) and global depletion (of
v) synergize to produce the polarization of activity in the domain.
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3 Recent Work: Analysis, Simulation, and Contact with
Experiments

The wave-pinning equations are merely a prototype of the dynamics of a protein in
the small GTPase family. Related systemswith greater levels of biological detail have
also been explored [12, 14, 21]. Indeed insights by AFM Marée in [20] contributed
to the understanding that led to the mathematical treatment of wave-pinning in
[24, 25].

3.1 Analysis of Slow-Fast Reaction Diffusion Systems: LPA

While studying systems of reaction-diffusion equations (RDEs) for cell polarization,
we have benefitted from a number of recent methods that result in shortcuts for
quick diagnosis of pattern-formation regimes. Among these, the “Local Perturbation
Analysis” (LPA) is a method to track local and global variables in RDEs using ODEs
that approximate the fate of a small peak of activity (uL ). This method was invented
by AFMMareé and V Grieneisen [9, 36], and popularized in several papers [11, 12,
15]. It has helped us to identify approximate regimes where a nonuniform pattern
could form by a finite perturbation of a spatially uniform state in a fast-slow reaction
diffusion system.

Figure6 illustrates a typical LPA bifurcation result, and its interpretation. The
method identifies the existence of a spatially uniform global branch (in black), and
parameter regimes where this branch is stable (solid) or unstable (dot-dashed curve).
Even when the global homogeneous steady state is stable, a polarized pattern can be
established with large enough stimulus. The local variable uL represents a thin local
peakof activeu. That peak could grow (and lead to a polar pattern) in the regimewhere
the solid red curve is present. The LPA diagram demonstrates that a sufficiently large
stimulus peak is needed, that its size has to exceed a threshold (dashed red curve),
and that some parameter regimes allow for patterning in response to arbitrarily small
stimuli (dot-dashed black curve). The latter regimes can be identified with Turing
instabilities. The former regimes are not discoverable by the usual linear stability
analysis (LSA) for Turing pattern formation, and are a helpful aspect of LPA that
goes beyond LSA.

In our experience, solving the full PDEs with insights gained from LPA diagrams
makes it easier to identify the interesting parameter regimes. Details of the method
and its uses has been extensively described in [15]. Other useful shortcuts have
included “sharp-switch” approximations (Hill functions replaced by piecewise con-
stant functions), as in [12], and analysis of plateaus described in [36]. None of these
replace the need for simulating the PDEs, but all of them help to gain familiarity
with possible expected behaviours of the reaction-diffusion systems we have inves-
tigated. Most recently, Andreas Buttenschön has created full numerical bifurcation
software for PDEs that permits much greater accuracy in tracking solution branches
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Fig. 6 Methods of analysis and simulations: a Local perturbation analysis (LPA), a shortcut
bifurcation method has helped to detect regimes of patterning in slow-fast reaction-diffusion sys-
tems. Here we show an example of how the basal activation rate b influences potential regimes of
wave-pinning and of Turing-type instability. See text and references [11, 12, 15] for details. b A
number of methods have been used to simulate polarization in 2D deforming domains representing
the “top-down” view of a cell (as in Fig. 1b). From top to bottom: A cellular-Potts model simula-
tion by A. F. M. Mareé of a 2D deforming cell with an internal reaction-diffusion signaling circuit
(and an implicit reaction-diffusion solver) that includes GTPases, interacting lipids, actin, and other
components [21], the wave-pinning system (4) solved in an immersed-boundary method simulation
by Ben Vanderlei [35], by the level set and moving boundary node method by Zajac [7], and using
CompuCell3D by undergraduate summer research student Zachary Pellegrin

[4]. The software builds on state of the art well-conditioned collocation techniques
to discretize functions and their operators. Solution branches are continued using
a matrix-free Newton-Gauss method, for which rigorous convergence estimates are
available.

3.2 Simulating the PDEs in Dynamic Cell-Shaped Domains

So far, analytic results were described in 1D domains that represent a cell transect.
It is instructive to ask how the same systems behave in domains whose shape more
closely relates to that of cells, and in particular, where the internal chemistry affects
(and is affected by) the deforming cell. Based on the fact that cell fragments (radius
≈ 5–10 μm) without a nucleus, and with overall uniform thickness (≈0.2µm) are
capable of motility, we take the liberty of reducing cell shape to its two-dimensional
“top-down” projection shown in Fig. 1b, d. We solve the governing equations (4)
or more detailed versions, in the 2D domain, and assume that the boundary of the
domain is influenced by the local chemical activity level. For example, if u represents
the level of activity of the GTPase Rac, it causes the boundary to be pushed outwards
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(via F-actin assembly), whereas Rho has the opposite effect (activating contraction
via myosin).

A number of results obtained over the years by group members are illustrated in
Fig. 6b. In general, we found that the simplest system to understand analytically (4), is
not as robust computationally as other variants. Cross-talk between GTPases results
in larger parameter regimes for polarization.As an example,models consisting of four
PDEs that describe the mutual antagonism between Rac and Rho [12] lead to greater
robustness in 2D computations. An even more detailed variant, that includes several
GTPases (Rac, Rho, Cdc42), as well as their effects on actin assembly and myosin
contraction was capable of realistic behaviour such as directed motility (chemotaxis)
[20]. The addition of a layer of signaling lipids (phosphoinositides) also permitted
a simulated cell to rapidly select one front despite conflicting or competing stimuli
[21].

Simulating the reaction-diffusion systems for GTPase signaling in deforming
domains also reveals that evolving domain shape and level curves of the chemical
system influence one another: the zero-flux boundary conditions impose constraints
on the level curves that also accelerate the dynamics of the chemical redistribution
when the domain deforms. Such findings were discussed in detail in [21].

For practical reasons, it is harder to simulate the same systems in 3D. However,
recent work by the group of Anotida Madzvamuse [5] has extended these results to a
coupled bulk-surface wave-pinning computation in a 3D cell-shaped static domain.

3.3 Contact with Biological Experiments

While details are beyond the scope of this summary, it is worth noting several direc-
tions in which the mathematical modeling has contributed to understanding of exper-
imental cell biology.

Willian Bement (U Wisconsin) studies the patterns of GTPases (Rho and Cdc42)
that form spontaneously around sites of laser-inflicted wounds in frog eggs (Xeno-
pus oocytes). The connectivity of these GTPases, and their crosstalk with proteins
that activate or inactivate them (e.g. Abr) has been modeled by group members,
including Cory Simon, Laura Liao, and William R Holmes. Combining models with
experiments has helped to build an understanding of the biology [12, 13, 32].

The polarization of HeLa cells exposed to gradients that stimulate a graded
response by the GTPase Rac were studied experimentally by Benjamin Lin, in the
Lab of Andre Levchenko [19]. A model for Cdc42, Rac, and Rho, interacting with
one another and with the phosphoinositides PIP, PIP2 and PIP3 explained the timing
and strength of the response, and predicted results of experimental manipulations
that affect parts of the crosstalk [14, 19].

Experiments have been carried out on melanoma cells grown on microfabricated
surfaces that mimic the natural environment of cells (“extracellular matrix”). JinSeok
Park, of the Levchenko Lab at Yale University found three typical motility pheno-
types, including persistently polarized, random, and oscillatory front-back cycling,
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Fig. 7 Extensions of the minimal model: a The simplest basic wave-pinning model of Eq. (4)
can produce a polarized pattern. b When the GTPase promotes assembly of F-actin, which then
promotes GTPase inactivation, waves and other exotic dynamics can be observed, provided the
negative feedback is on a slow time-scale [10, 22]. In a, b time increases along the vertical axis and
space is on the horizontal axis. c Some GTPases cause the cell to spread (Rac) or to shrink (Rho),
affecting cell tension. If the tension also affects GTPase activity, interesting dynamics are observed.
Shown is a time sequence (left to right) of a “tissue” composed of≈370 cells, colour coded by their
internal GTPase activity. The cell size is correlated to that activity, as described in [37]

depending on levels of adhesion to the substrate, and manipulations that affect activ-
ities of the GTPases or their downstream targets. We were able to account for the
observed phenotypes by a model for Rac-Rho mutual antagonism, weighted by sig-
nals from the extracellular matrix substrate [16, 26, 29].

4 Extending the Minimal Model

Thewave-pinningmodel has been used as a nucleus fromwhichwe have expanded to
larger circuits, and greater levels of biological detail.We showed that some properties
of the system (4) is shared by a circuit of the mutually antagonistic GTPases Rac-
Rho [12]. A notable common feature is the existence of parameter regimes in which
several states coexist. These include states of uniformly low activity, uniformly high
activity, or polarized levels of activity. Which of these develops then depends on
initial conditions. A recent contribution [38] extends these findings to more general
model variants.

A hallmark of the kinetics we described above is the presence of bistability in
some parameter regimes, i.e. the existence of two stable steady states separated by an
unstable one. Such systems also display hysteresis, or a kind of history-dependence:
slowly increasing a parameter results in a sudden appearance of a new steady state
at some transition point, but to reverse the process, the same parameter has to be
decreased much beyond the transition point. The addition of feedback from a third
dynamic variable in such cases, is known to produce the possibility of oscillations.
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We examined several cases of this type, motivated by biological observations.
In one case, we studied feedback from F-actin to the inactivation of a GTPase, as
observed, for example, in [31]. Assuming slow negative feedback from F-actin (to
the inactivation of the GTPase), as shown in Fig. 7b leads to interesting dynamics of
traveling waves and pulses in the domain [10, 22]. Feedback between the Rac-Rho
circuit and the extracellularmatrix also results in oscillations, as previously described
[16]. More recently, we also modeled the interplay between mechanical tension in
the cell and the activity of GTPases, as observed experimentally by [17]. Here we
assumed that GTPase such as Rho and Rac can affect cell spreading, which changes
the tension on the cell and feeds back to the activation of the GTPase. A typical
circuit of this type is shown in Fig. 7c. As expected, such negative feedback is also
consistent with regimes of oscillatory dynamics in individual cells, as demonstrated
in [37]. Moreover, when cells with such behaviour are coupled to one another in 1D
or in 2D (simulations in Fig. 7c), one observes waves of chemical activity coupled
to cell-size changes as the “model tissue” undergoes the spatio-temporal dynamics
so created.

5 Discussion

Cell biology presents an unlimited source of inspiring problems. The links between
mathematics and cell biology are relatively recent, and not yet fully recognized. But
the need for quantitativemethods, computational platforms, andmathematical analy-
sis of cellular phenomena promises to growwith time, presentingmany opportunities
for young applied mathematicians looking for problems to study.

Here I havemainly described a toymodel thatwe constructed to help us understand
cell polarization. The simplicity of the model made it mathematically tractable. Its
analysis reveals several insights that were not a priori evident. First, with the right
kind of positive feedback, we showed that a single GTPase could, on its own, lead
to spontaneous polarization that explains cell directionality. In other words, it is
not essential to have networks of such proteins to achieve this cellular process.
Second, there is a functional purpose for the curious biology of GTPases: their
cycling between membrane and cytosol is not a mere evolutionary artifact. We argue
that this transition sets up the differences in diffusion between active and inactive
GTPases—a difference that is crucial for polarization to be possible, according to
our mathematical model.

The motivation of cell polarity led us to mathematics with a surprising twist,
uncovering the phenomenon of decelerating waves and wave-pinning that were not
widely recognized before in the literature on reaction-diffusion systems. From this
standpoint, we could argue that biology inspires new mathematics. The efforts to
understand models that were so developed also resulted in a variety of methods that
ease the analysis, among them LPA. Extensions of the basic wave-pinning model led
to variants with more exotic patterns and waves. These were investigated in various
geometries, in single cells, and finally, in interacting groups of cells to identify
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causes for cell size fluctuations in a tissue and for a variety of emergent phenomena
in single and collective cell motility. Finally, developing simple theoretical models
and in parallel considering biologically-inspired detailed models are not mutually
exclusive. Our experience in the former helps us with the later, and vice versa.

Many still-unanswered questions can be posed. Among these are some of the fol-
lowing:Howdoes the internalGTPase state of a cell affect the outcomeof interactions
between cells, and how does contact between cells change their GTPase state? What
are reasonable ways to model such cell-cell interactions leading to cell adhesion or
cell separation? How is cell state coordinated in a multicellular tissue? What aspects
of cell adhesion, mechanics, deformation, chemical secretion, and environmental
topography (to name a few) affect and are affected by GTPase activities, and how
should these be modelled? What methods of analysis can we develop to help with
larger, more realistic models that have many interacting components? What aspects
of 3D cell shape, and of cell motion in a 3Dmatrix lead to new phenomena, and what
numerical methods should be developed to address such behaviours? Is there a com-
promise between large-scale computations and mathematical analysis in these more
challenging scenarios? In conclusion, the motility and interactions of cells is a rich
scientific area calling for investigation by applied mathematicians. Pattern formation
inside living cells is merely one facet, while many other fundamental challenges are
at hand.
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