
Chapter 20
Navigating Deep Uncertainty in Complex
Human–Water Systems

C. D. Pérez-Blanco

Abstract Complex human–water systems are deeply uncertain. Policymakers are
not aware of all possible futures (deep uncertainty type 2), while the probability
of those futures that can be identified ex-ante is typically unknown (deep uncer-
tainty type 1). In this context, standard decision-making based on a complete
probabilistic description of future conditions and optimization of expected perfor-
mance is no longer appropriate; instead, priority should be given to robustness,
through the identification of policies that are (i) insensitive to foreseeable changes
in future conditions (classical robustness that addresses deep uncertainty type 1) and
(ii) adaptive to unforeseen contingencies (adaptive robustness that addresses deep
uncertainty type 2). This research surveys recent advances in (socio-)hydrology
and (institutional) economics toward robust decision-making. Despite significant
progress, integration among disciplines remains weak and allows only for a frac-
tioned understanding and partial representation of uncertainty. To bridge this gap, I
will argue that science needs to further underpin the development and integration of
two pieces of ex-ante information: (1) amodeling hierarchy of human–water systems
to assess policy performance under alternative scenarios and model settings, so as to
navigate deep uncertainty type 1 and (2) a longitudinal accounting and analysis of
public transaction costs to navigate deep uncertainty type 2.
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Introduction

Climate change, population growth and changing distributions of wealth will lead
water demand to outstrip supply by 40% in 2030, causing GDP growth to decline
by as much as 6% in water-scarce areas (i.e. continued negative growth) (World
Bank 2016). At the other extreme, floods represent the most economically damaging
risk, costing circa $100 billion annually, and their impact is expected to rise to
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$521 billion/year in 2030 (World Resources Institute 2019). The combined effects
of growing water scarcity and flood risk increasingly constrain decision-makers to
adopt new approaches and policies to the management of the human-modified water
cycle. Critically, the dynamics of complex human–water systems of relevance for
water policy design and implementation are characterized by positive feedbacks,
non-mechanistic dynamics and multiple equilibria leading to Knightian or deep
uncertainty, where it is not possible to identify all possible futures (deep uncertainty
type 2) or assign a probability to each identified possible future (deep uncertainty
type 1). Under deep uncertainty, standard decision-making based on a complete
probabilistic description of future conditions and optimization of expected perfor-
mance is no longer appropriate; instead, priority should be given to robustness,
through: (i) the avoidance of policies leading to unfavorable contingencies that can
be identified beforehand (classical robustness, which addresses deep uncertainty
type 1) (Marchau et al. 2019) and (ii) the avoidance of path-dependent trajectories,
so to enable future adaptation to unpredictable, surprising, and potentially catas-
trophic (“black swan”) events that are explainable only after they happen (adaptive
robustness, which addresses deep uncertainty type 2) (Garrick 2015).

This research surveys recent advances in (socio-)hydrology and (institutional)
economics that contribute toward uncertainty sampling and robust decision-making.
I will argue that despite significant progress, integration among disciplines remains
weak and allows only for fractioned understanding and partial representation of
uncertainty. To bridge this gap, along these pages, I develop a research agenda toward
an interdisciplinary, replicable, and scalable research framework integrating data
and methods from (socio-)hydrology and economics to quantify the broad socioe-
conomic and environmental implications of adaptation policies in complex human–
water systems, and the uncertainty involved in the process, so to allow stakeholders to
explicitly trade-off incremental changes in robustness with expected policy perfor-
mance (e.g. cost-effectiveness). To this end, I argue that science needs to further
underpin the development and integration of two pieces of ex-ante information: (1)
a modeling hierarchy of human–water systems to assess policy performance under
alternative scenarios and models/model settings, so as to navigate deep uncertainty
type 1 and (2) a longitudinal accounting and analysis of public transaction costs from
before the project or policy commences. Public transaction costs are the institutional
and organizational investments required to arrange, monitor, and enforce a policy
and are instrumental to measure institutions’ adaptive ability, avoid path depen-
dent and potentially irreversible trajectories and strengthen adaptive robustness that
addresses deep uncertainty type 2. Note that the first piece of information is only
partially addressed in the scientific literature, which appears biased toward consol-
idative modeling and standard decision-making (Marchau et al. 2019); while empir-
ical longitudinal assessments on public transaction costs are “virtually non-existent”
(Loch and Gregg 2018).

Building a framework that addresses these gaps is challenging, but now feasible
due to: (1) recent growth in availability of data from hydrology and socioeconomic
domains (e.g. micro- and macro-economic); (2) recent advances in computational
and statistical techniques for processing and harmonizing big data; (3) the growing
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number of water policy reforms, which can serve as ‘living laboratories’ for the
collection, measurement, and analysis of public transaction costs (Garrick 2015); and
(4) the consolidationof analytical andmodelingmethodsproposedbyemergingwater
resource research literature to study impacts and adaptation, including alongside
stakeholders (Marchau et al. 2019).

Navigating Deep Uncertainty Type 1: Modular Hierarchies
for Multi-system Ensembles

Three fundamental sources of deep uncertainty type 1 can be distinguished: (1)
uncertainty arising from scenario assumptions and design (Marchau et al. 2019); (2)
“parameter and structural uncertainties” within models (Tebaldi and Knutti 2007);
and (3) uncertainty arising from the missing or “overly simplistic” representation of
the interconnected dynamics of complex adaptive human–water systems (Pande and
Sivapalan 2017).

The first two sources of uncertainty have been addressedwith relative success. The
Society for Decision Making under Deep Uncertainty has developed tools to address
uncertainty arising from scenario assumptions and design through an exploratory
modeling approach. Exploratory modeling and analysis works as a prosthesis for the
intellect, using computational experiments representing the consequences of alter-
native sets of feasible assumptions to discover the implications of a priori knowl-
edge—including domains of previously unforeseen contingencies. This information
can then be used to illustrate relevant tradeoffs and revise scenarios and policy adop-
tion in successive iterations leveraging on stakeholder and expert feedback until a
robust policy is agreed upon (Marchau et al. 2019).

An ensemble of models can be used to sample uncertainty arising from parameter
and structural uncertainties. Economic and hydrologic sciences have been successful
at developing scientifically sound conceptual models capable of representing the
essence of critical systems within the human–water conundrum. These include
microeconomic models to represent the behavior of individuals or firms, macroe-
conomic models to study interrelations among sectors and regions of the economy
and their impact on aggregated indicators and hydrologic models to study the move-
ment, distribution, and quality of water at different scales, among other modeling
families. There is consensus in the literature that the combination of scientifically
sound prediction methods in perturbed physics and multi-model ensemble exper-
iments (i.e. grouping multiple models and exploring alternative values for critical
parameters) can be used to sample parameter and structural uncertainties through
the ensemble spread. This approach has been already used in disciplines such as
climate sciences, economics, and hydrology, also in combination with exploratory
modeling (which in climate ensemble experiments are treated as an additional layer
to the ensemble referred to as ‘initial condition ensemble’) (Tebaldi andKnutti 2007).
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However, economics and hydrology have not been successful at integrating
human and water systems (Pande and Sivapalan 2017). Conventional hydrologic
(economic) models perceive pressures from human (water) systems, if considered
at all, as external forcings. Where socioeconomic and hydrologic models interact
in hydroeconomic models, responses to policy shocks or other stimuli are typi-
cally assessed using an external economic sub-model, which is subsequently inte-
grated with the architecture of the hydrologic model through piecewise equations.
This offers the advantage of a more straightforward and effective representation
of causal relationships and interdependencies, while reducing computational costs
since shocks do not require to be represented separately for each sub-model. Yet, such
holistic models do not capture the interrelationships or two-way feedbacks between
human and water systems that shape adaptive responses (Pande and Sivapalan 2017).
As a result, the effects of policy- and climate-induced adaptation and feedback
responses between socioeconomic, land surface, and water systems dynamics are
still poorly understood.

There is a basic need to better understand the dynamics of complex adaptive
human–water systems and to represent them in modeling tools that can be used to
effectively inform policymakers. To this end, the transformative discipline of socio-
hydrology has called for the development of integrated approaches that “explic-
itly account for the two-way feedbacks between human and water systems” (Siva-
palan et al. 2014). Recent socio-hydrology-inspired science has explored feedback
responses between human (typically water users) and water systems (Essenfelder
et al. 2018). In parallel, economics has also developed new tools to explore feedback
responses in complex human–human systems, notably between micro- and macro-
economic systems (Parrado et al. 2019). These contributions run standard models at
each system level independently in modules, which are defined as specialized, self-
contained mathematical elements that process information and generate outputs and
connect them through sets of protocols, which are defined as rules designed tomanage
interrelationships (e.g. two-way feedbacks) between systems’ modules (Csete and
Doyle 2002). Modularity offers potentially higher detail in the representation of each
system, which can be independently developed and adjusted. This makes possible
the addition of non-linearity to each element of the system, so that surprises are not
so surprising and can be adequately understood, and their repercussions transferred
from one system to another.

While holistic models that use differential equations to capture as many systems
as possible in comprehensive numerical models have significant practical value and
continuing increases in computational power means, they can be systematically
upgraded and adjusted to more accurately represent observed responses in human–
water systems, it is reasonable to say that “we typically gain some understanding of a
complex system by relating its behavior to that of other, especially simpler, systems”
(Held 2005). It is through hierarchies of systems of increasing complexity, amenable
to experimental manipulation that experimental sciences such as biology have made
steady progress in, e.g., deciphering the human genome. Recently, climate research
has put a stronger emphasis on model hierarchies as a means to link the complexity
of high-end holistic simulations with a deeper understanding of the processes at work
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provided by conceptual models, so to discover previously unaccounted futures and
explore their implied consequences. Analogously, to the extent that we can divide
complex human–water systems into components that can be tested and developed
in isolation, a hierarchy of human and water systems would make possible a more
comprehensive understanding of the relevant processes involved through the use of
conceptual models that capture their essence, and of the interrelationships among
them through layers of feedback protocols (Csete and Doyle 2002).

I argue that recent advances in the construction of protocol-based modular
frameworks provide the backbone for the development of interdisciplinary
modeling hierarchies that connect multiple systems through two-way feed-
backs (multi-system hierarchy). Each module within the hierarchy can be popu-
lated with multiple models (multi-model ensemble) and combined with scenario
discovery techniques that explore scenario uncertainty through varying initial
states and forcings (e.g. climate change scenarios, policy scenarios). The result
is a large database of simulations in which each simulation represents the economic
and environmental performance under one specific scenario and modeling setting.
This information can be used to identify futures where proposed policies meet or
miss their objectives, explore potential tipping points, and inform the development of
robust policies that show a satisfactory performance under most conceivable futures.

Navigating Deep Uncertainty Type 2: Measuring
and Understanding Transaction Costs to Avoid
Techno-Institutional Lock-In

Assume the complete set of future outcomes in a system is RA, where outcomes
represent an event plus the policy response to that event. Through modeling we
can reveal a fraction of the complete set (RA − rA), where rA = (ε1A + ε2A), ε1
is modeling limitations and ε2 represents unawareness (the consequence of a priori
unknowns). In coupledmodeling frameworks, the secondmodel or groupofmodels in
the hierarchywill then begin searching the repercussions of the feasible set (RA − rA)

in a related system B and assess relevant feedbacks. Due to model limitations and
unawareness, the coupled modeling framework will yield an incomplete set of future
outcomes (R − rA ∗ rB), where R is the complete set of future outcomes in the
coupled system and rB = (ε1B + ε2B). Note again that by adding systems to the
ensemble, modeling limitations and unawareness at each system level compound,
increasing the range of possible future outcomes that we are unable to foresee. We
can explore ways to limit the impact of ε1 by adding and better representing models
and scenarios across systems. This is indeed the objective of combining modular
hierarchies with exploratory modeling and ensemble experiments. However, ε2 will
persist until empirically revealed. This is deep uncertainty type 2.
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Deep uncertainty type 2 is the consequence of “limits in the knowledge base,
chaotic dynamics, future actions by decision-makers, inherent randomness, non-
stationarity and changes in societal perspectives and preferences over time”,
including stakeholders’ preferences and their assessment of policies (Walker et al.
2003). Under deep uncertainty type 2, the only thing we know is that we do not know.
Future predictions are “impossible”, and society finds itself exposed to surprises,
some of them potentially catastrophic (“black swans”) (Taleb 2008). The natural
question that follows is what can be done where the only thing we know is that we
do not know. Critically, deep uncertainty type 2 is not an extreme on the scale of
uncertainty—that place is reserved to total ignorance (Walker et al. 2003). Knowing
we do not know gives us a valuable piece of information and allows us to plan in
advance.

In addressing deep uncertainty type 2, the challenge is to strengthen adaptive
robustness (Garrick 2015). Adaptive robustness involves the removal of techno-
institutional barriers that constrain our ability to take corrective action so that
incumbent policies can be replaced by superior alternatives as new information on
possible futures is made available through the occurrence of surprises. Measuring
and understanding techno-institutional barriers require information on public trans-
action costs, the institutional and organizational investments required to arrange,
monitor, and enforce a policy. Public transaction costs include: (1) administering,
monitoring, contracting, and enforcing current policy arrangements (termed static
transaction costs) and (2) periodically designing, enabling, implementing new and/or
transitioning existing management arrangements (termed transition costs). Trans-
action cost investments are also affected by (3) previous policy or institutional
choices, which may enhance or constrain future selections (termed technological
and institutional lock-in costs) (Loch and Gregg 2018).

Since predictions of future transaction costs are impossible under deep uncertainty
type 2, anticipating the emergence of adaptively robust institutions is challenging.
Yet, past transaction costs can be used to draw valuable insights into the trends and
future development of adaptively robust institutions. The concept of adaptive effi-
ciency is particularly useful in this regard. Adaptive efficiency measures the capacity
of institutions to achieve economic efficiency over the long term. As compared with
the conventional neoclassical approach, which views institutions as static and exoge-
nous constraints within which costs and benefits are assessed, adaptive efficiency
aims to understand long-term trajectories of institutional economic performance in
contexts of entrenched path dependencies, complexity, uncertainty, and feedback
between policy reform and implementation. In other words, adaptively efficient insti-
tutions are those showing “capacity to solve evolving and complex dilemmas over
long periods of time, in a context of uncertainty and periodic, often unforeseen,
shocks” (Garrick 2015). Note that the concept of adaptive efficiency mirrors that
of adaptive robustness: adaptive efficiency looks at past institutional performance
to individuate those institutions that were successful and efficient in taking correc-
tive action; and adaptive robustness aims to remove constraints to the institutional
ability to take corrective action in the future, so that future institutions are adaptively
efficient. While ex-post adaptive efficiency does not equate to adaptive robustness,
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it is reasonable to expect that institutions that have proven to be adaptively efficient
over long periods of time are more likely to be adaptively robust in the future. After
all, the best thing we can do to predict the future is to prognosticate from the past.
Just like (paleo)climatic data series can help narrowing the equilibrium response
of global surface temperature to alternative CO2 concentrations in climate models,
or past choices are used to reveal agent’s preferences and predict future behavior
in economic models, data on past techno-institutional performance over sufficiently
long periods of time can give valuable information to assess whether we are investing
in institutions that are adaptively robust.

Garrick (2015) associates adaptive efficiency with “three performance indicators:
(1) how well the objective(s) have been met (i.e. effectiveness); (2) the average
public transaction costs per unit of the met objective(s); and (3) total program
budgets”. For an adaptively efficient institutional complex, these three performance
targets should be “increasing, decreasing and sufficient”, respectively (Garrick 2015).
Although these three indicators are empirically measurable, public transaction costs
are typically excluded fromperformance assessments ofwater or other environmental
policies. In fact, transaction costs remain “a black box concept” for researchers,
who rarely progress beyond zero transaction costs ideals (Loch and Gregg 2018).
Although recent research has monetized transaction costs of water policy reform
in South Africa, USA, and Australia, the empirical base on transaction costs
of water policy reform elsewhere is virtually non-existent. Moreover, in those
areas where transaction cost data are available, studies usually do not quantify
them over time (Loch and Gregg 2018). Yet, measuring and analyzing adaptive
efficiency to understand and predict future institutional performance, and whether it
leads toward path-dependent/adaptively robust trajectories, necessitates longitudinal
data on transaction costs.

Developing and analyzing longitudinal transaction cost data is in itself
a major breakthrough that will help us understand the emergence of path-
dependent/adaptively robust trajectories; yet, the natural question that follows is:
what can we do if past institutional performance leads to path-dependent trajec-
tories that constrain our ability to take corrective action? Existing technologies
and institutions can constrain the range of policies that can be adopted in the
coming years or decades through institutional and technological lock-in. In the
context of water resource management, lock-in refers to the inertia of conventional
engineering-based policies due to the mutually reinforcing physical, economic, and
social constraints that emerge from existing technologies and institutions. Techno-
institutional lock-in dynamics are driven by path-dependent increasing returns to
adopted technologies and institutions at different levels: scale economies (produc-
tion costs per unit decrease as fixed costs spread over growing production), learning
economies (costs fall and performance improves as specialized knowledge and skills
accumulate through experience), adaptive expectations (increased confidence about
quality, performance, and permanence), and network economies (systemic rela-
tions among institutions, technologies, infrastructures, suppliers, and users). Water
resource management is particularly prone to lock-in of conventional engineering-
based policies due to large capital investments and long infrastructure lifetimes. The
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combined interrelationships between technological systems and basins’ institutional
matrices typically result in a self-referential system whose value increases with the
growth of the techno-institutional complex (Unruh 2000).

The question of how to overcome techno-institutional lock-in in water resources
management has received increasing attention in recent years. While traditional
neoclassical economics argues that even marginal efficiency improvements are suffi-
cient to drive the adoption of superior policies, empirical studies show that the inertia
created within a techno-institutional complex necessitates an order-of-magnitude
improvement in economic performance to induce transition, through exogenous
“annealing forces” that give change momentum (Unruh 2000). Such an improve-
ment is unlikely to arise endogenously from the techno-institutional complex. Public
institutions typically show patterns characterized by incremental change, rather than
transformational, over long periods, while examples of technology-led transforma-
tional responses are very limited (see below). The endogenous dynamics of a techno-
institutional complex tend to create and reinforce its own stability or equilibrium,
potentially leading to a path-dependent process of technological and institutional
co-evolution that creates barriers to the diffusion of new, transformational policies.

Conclusions and Recommendations

Along these pages, I have surveyed recent advances in (socio-)hydrology and (institu-
tional) economics toward robust decision-making; identified gaps in the development
and integration of this research; and suggested a way forward in the integration of
data andmethods from natural and social sciences, so to deliver a research framework
that informs the adoption of robust water policies with higher expected economic
and environmental performance. Three major recommendations for future scientific
work and research emerge from the analysis:

The development of a flexible and interdisciplinary modular hierarchy for the
development of multi-system ensembles that incorporates and assesses the “two-way
feedbacks” among modules, so to represent and understand the adaptive behavior of
complex human–water systems.

The effort to gather longitudinal transaction cost data to create a database
that supports analysis (notably through econometrics) toward a more in-depth
understanding of institutional performance and key drivers of adaptive robustness,
including “annealing forces” that impulse change and break up from path-dependent
trajectories.

The integration of stakeholders in the generation of methods and results, so to
underpin the emergence of valuable science-policy synergies that strengthen research
quality and help identify statically/dynamically and adaptively robust policies with
higher expected economic and environmental performance.

The three innovative elements above provide the pillars for the development of
an interdisciplinary, replicable, and scalable research framework that quantifiesthe
broad socioeconomic and environmental implications of adaptation policies and the
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uncertainty involved in the process, so to allow stakeholders to explicitly trade-off
incremental increases in static/dynamic and adaptive robustnesswith expected policy
performance, including policy costs, benefits, and effectiveness.

Beyond its scientific merit, the research agenda above have the potential to
comprehensively test and demonstrate the performance of alternative solutions to
water-related challenges and support decision-making toward the adoption of robust
adaptation policieswith potential to contribute towater policy objectives.Application
of the research framework above will provide new insights for water policy as well as
for the broader sphere of sustainable development. Understanding the implications of
adaptation in terms of water reallocation and rationing, and related uncertainties, is
relevant for policymakers who have committed to the good ecological status of water
bodies, and also in terms of policy planning of related economic sectors (e.g. agricul-
ture, agro-industry, tourism) and overall sustainable development, as substantiated
in SDG 6 (UN 2015). Policymakers in these spheres need to be aware of trade-offs
and distributive implications of adaptation policies in the water sector and below and
will benefit from the methodological and empirical insights provided by the research
agenda above.
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