Skip to main content

Allogeneic Immunity Following Transplantation of Pluripotent Stem Cell-Derived Cardiomyocytes

  • Chapter
  • First Online:
Advanced Technologies in Cardiovascular Bioengineering
  • 525 Accesses

Abstract

Accumulating evidence suggests that transplantation of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) can regenerate the injured heart, which has triggered a wave of clinical trials. Since most preclinical studies were performed in xenogeneic transplantation models, little is known on post-transplant immunity in allogeneic models, as is the case in clinics. The current immunosuppressant protocols following hPSC-CM transplantation in clinical trials are equivalent to those following heart transplantation; however, the optimal protocol for cell transplantation may differ. In this chapter, I will describe the recent efforts to optimize immunosuppressant protocols via allogeneic transplantation models in non-human primates as well as novel approaches to reduce the amount of immunosuppressants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S., et al.: Embryonic stem cell lines derived from human blastocysts. Science. 282(5391), 1145–1147 (1998)

    Article  Google Scholar 

  2. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., et al.: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 131(5), 861–872 (2007)

    Article  Google Scholar 

  3. Minami, I., Yamada, K., Otsuji, T.G., Yamamoto, T., Shen, Y., Otsuka, S., et al.: A small molecule that promotes cardiac differentiation of human pluripotent stem cells under defined, cytokine- and xeno-free conditions. Cell Rep. 2(5), 1448–1460 (2012). https://doi.org/10.1016/j.celrep.2012.09.015

    Article  Google Scholar 

  4. van Laake, L.W., Passier, R., Doevendans, P.A., Mummery, C.L.: Human embryonic stem cell-derived cardiomyocytes and cardiac repair in rodents. Circ. Res. 102(9), 1008–1010 (2008). https://doi.org/10.1161/circresaha.108.175505

    Article  Google Scholar 

  5. Laflamme, M.A., Chen, K.Y., Naumova, A.V., Muskheli, V., Fugate, J.A., Dupras, S.K., et al.: Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat. Biotechnol. 25(9), 1015–1024 (2007)

    Article  Google Scholar 

  6. Shiba, Y., Fernandes, S., Zhu, W.Z., Filice, D., Muskheli, V., Kim, J., et al.: Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature. 489(7415), 322–325 (2012). https://doi.org/10.1038/nature11317

    Article  Google Scholar 

  7. Chong, J.J., Yang, X., Don, C.W., Minami, E., Liu, Y.W., Weyers, J.J., et al.: Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature. 510(7504), 273–277 (2014). https://doi.org/10.1038/nature13233

    Article  Google Scholar 

  8. Shiba, Y., Filice, D., Fernandes, S., Minami, E., Dupras, S.K., Biber, B.V., et al.: Electrical integration of human embryonic stem cell-derived cardiomyocytes in a Guinea pig chronic infarct model. J. Cardiovasc. Pharmacol. Ther. 19(4), 368–381 (2014). https://doi.org/10.1177/1074248413520344

    Article  Google Scholar 

  9. Liu, Y.W., Chen, B., Yang, X., Fugate, J.A., Kalucki, F.A., Futakuchi-Tsuchida, A., et al.: Human embryonic stem cell-derived cardiomyocytes restore function in infarcted hearts of non-human primates. Nat. Biotechnol. 36(7), 597–605 (2018). https://doi.org/10.1038/nbt.4162

    Article  Google Scholar 

  10. Okahara-Narita, J., Umeda, R., Nakamura, S., Mori, T., Noce, T., Torii, R.: Induction of pluripotent stem cells from fetal and adult cynomolgus monkey fibroblasts using four human transcription factors. Primates. 53(2), 205–213 (2012). https://doi.org/10.1007/s10329-011-0283-1

    Article  Google Scholar 

  11. Suemori, H., Tada, T., Torii, R., Hosoi, Y., Kobayashi, K., Imahie, H., et al.: Establishment of embryonic stem cell lines from cynomolgus monkey blastocysts produced by IVF or ICSI. Dev. Dyn. 222(2), 273–279 (2001). https://doi.org/10.1002/dvdy.1191

    Article  Google Scholar 

  12. Ishigaki, H., Shiina, T., Ogasawara, K.: MHC-identical and transgenic cynomolgus macaques for preclinical studies. Inflamm. Regen. 38, 30 (2018). https://doi.org/10.1186/s41232-018-0088-3

    Article  Google Scholar 

  13. Barnard, C.N.: The operation. A human cardiac transplant: an interim report of a successful operation performed at Groote Schuur Hospital, Cape Town. S. Afr. Med. J. 41(48), 1271–1274 (1967)

    Google Scholar 

  14. Chang, D.H., Youn, J.-C., Dilibero, D., Patel, J.K., Kobashigawa, J.A.: Heart transplant immunosuppression strategies at cedars-Sinai medical center. Int. J. Heart Fail. 3(1), 15–30 (2021)

    Article  Google Scholar 

  15. Eisen, H.J., Kobashigawa, J., Keogh, A., Bourge, R., Renlund, D., Mentzer, R., et al.: Three-year results of a randomized, double-blind, controlled trial of mycophenolate mofetil versus azathioprine in cardiac transplant recipients. J. Heart Lung Transplant. 24(5), 517–525 (2005). https://doi.org/10.1016/j.healun.2005.02.002

    Article  Google Scholar 

  16. Kahan, B.D.: Cyclosporine. N. Engl. J. Med. 321(25), 1725–1738 (1989). https://doi.org/10.1056/nejm198912213212507

    Article  Google Scholar 

  17. A comparison of tacrolimus (FK 506) and cyclosporine for immunosuppression in liver transplantation. N. Engl. J. Med. 331(17), 1110–1115 (1994). https://doi.org/10.1056/nejm199410273311702

  18. Penninga, L., Møller, C.H., Gustafsson, F., Steinbrüchel, D.A., Gluud, C.: Tacrolimus versus cyclosporine as primary immunosuppression after heart transplantation: systematic review with meta-analyses and trial sequential analyses of randomised trials. Eur. J. Clin. Pharmacol. 66(12), 1177–1187 (2010). https://doi.org/10.1007/s00228-010-0902-6

    Article  Google Scholar 

  19. Lindenfeld, J., Miller, G.G., Shakar, S.F., Zolty, R., Lowes, B.D., Wolfel, E.E., et al.: Drug therapy in the heart transplant recipient: part II: immunosuppressive drugs. Circulation. 110(25), 3858–3865 (2004). https://doi.org/10.1161/01.cir.0000150332.42276.69

    Article  Google Scholar 

  20. Menasché, P., Vanneaux, V., Hagège, A., Bel, A., Cholley, B., Parouchev, A., et al.: Transplantation of human embryonic stem cell-derived cardiovascular progenitors for severe ischemic left ventricular dysfunction. J. Am. Coll. Cardiol. 71(4), 429–438 (2018). https://doi.org/10.1016/j.jacc.2017.11.047

    Article  Google Scholar 

  21. Cyranoski, D.: ‘Reprogrammed’ stem cells approved to mend human hearts for the first time. Nature. 557(7707), 619–620 (2018). https://doi.org/10.1038/d41586-018-05278-8

    Article  Google Scholar 

  22. Yamada, N., Okano, T., Sakai, H., Karikusa, F., Sawasaki, Y., Sakurai, Y.: Thermo-responsive polymeric surfaces; control of attachment and detachment of cultured cells. Die Makromolekulare Chemie Rapid Commun. 11(11), 571–576 (1990). https://doi.org/10.1002/marc.1990.030111109

    Article  Google Scholar 

  23. Romagnuolo, R., Masoudpour, H., Porta-Sánchez, A., Qiang, B., Barry, J., Laskary, A., et al.: Human embryonic stem cell-derived cardiomyocytes regenerate the infarcted pig heart but induce ventricular Tachyarrhythmias. Stem Cell Rep. 12(5), 967–981 (2019). https://doi.org/10.1016/j.stemcr.2019.04.005

    Article  Google Scholar 

  24. Ogasawara, T., Okano, S., Ichimura, H., Kadota, S., Tanaka, Y., Minami, I., et al.: Impact of extracellular matrix on engraftment and maturation of pluripotent stem cell-derived cardiomyocytes in a rat myocardial infarct model. Sci. Rep. 7(1), 8630 (2017). https://doi.org/10.1038/s41598-017-09217-x

    Article  Google Scholar 

  25. Wunderlich, S., Haase, A., Merkert, S., Beier, J., Schwanke, K., Schambach, A., et al.: Induction of pluripotent stem cells from a cynomolgus monkey using a polycistronic simian immunodeficiency virus-based vector, differentiation toward functional cardiomyocytes, and generation of stably expressing reporter lines. Cell. Reprogram. 14(6), 471–484 (2012). https://doi.org/10.1089/cell.2012.0041

    Article  Google Scholar 

  26. Saito, Y., Naruse, T.K., Akari, H., Matano, T., Kimura, A.: Diversity of MHC class I haplotypes in cynomolgus macaques. Immunogenetics. 64(2), 131–141 (2012). https://doi.org/10.1007/s00251-011-0568-y

    Article  Google Scholar 

  27. Ling, F., Wei, L.Q., Wang, T., Wang, H.B., Zhuo, M., Du, H.L., et al.: Characterization of the major histocompatibility complex class II DOB, DPB1, and DQB1 alleles in cynomolgus macaques of Vietnamese origin. Immunogenetics. 63(3), 155–166 (2011). https://doi.org/10.1007/s00251-010-0498-0

    Article  Google Scholar 

  28. Shiba, Y., Gomibuchi, T., Seto, T., Wada, Y., Ichimura, H., Tanaka, Y., et al.: Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts. Nature. 538(7625), 388–391 (2016). https://doi.org/10.1038/nature19815

    Article  Google Scholar 

  29. Fernandes, S., Naumova, A.V., Zhu, W.Z., Laflamme, M.A., Gold, J., Murry, C.E.: Human embryonic stem cell-derived cardiomyocytes engraft but do not alter cardiac remodeling after chronic infarction in rats. J. Mol. Cell. Cardiol. 49(6), 941–949 (2010). https://doi.org/10.1016/j.yjmcc.2010.09.008

    Article  Google Scholar 

  30. Gornalusse, G.G., Hirata, R.K., Funk, S.E., Riolobos, L., Lopes, V.S., Manske, G., et al.: HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells. Nat. Biotechnol. 35(8), 765–772 (2017). https://doi.org/10.1038/nbt.3860

    Article  Google Scholar 

  31. Xu, H., Wang, B., Ono, M., Kagita, A., Fujii, K., Sasakawa, N., et al.: Targeted disruption of HLA genes via CRISPR-Cas9 generates iPSCs with enhanced immune compatibility. Cell Stem Cell. 24(4), 566–78.e7 (2019). https://doi.org/10.1016/j.stem.2019.02.005

    Article  Google Scholar 

  32. Jaiswal, S., Jamieson, C.H., Pang, W.W., Park, C.Y., Chao, M.P., Majeti, R., et al.: CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell. 138(2), 271–285 (2009). https://doi.org/10.1016/j.cell.2009.05.046

    Article  Google Scholar 

  33. Deuse, T., Hu, X., Gravina, A., Wang, D., Tediashvili, G., De, C., et al.: Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nat. Biotechnol. 37(3), 252–258 (2019). https://doi.org/10.1038/s41587-019-0016-3

    Article  Google Scholar 

  34. Nafady-Hego, H., Li, Y., Ohe, H., Zhao, X., Satoda, N., Sakaguchi, S., et al.: The generation of donor-specific CD4+CD25++CD45RA+ naive regulatory T cells in operationally tolerant patients after pediatric living-donor liver transplantation. Transplantation. 90(12), 1547–1555 (2010). https://doi.org/10.1097/TP.0b013e3181f9960d

    Article  Google Scholar 

  35. Otsuka, R., Wada, H., Tsuji, H., Sasaki, A., Murata, T., Itoh, M., et al.: Efficient generation of thymic epithelium from induced pluripotent stem cells that prolongs allograft survival. Sci. Rep. 10(1), 224 (2020). https://doi.org/10.1038/s41598-019-57088-1

    Article  Google Scholar 

  36. Yoshida, S., Miyagawa, S., Toyofuku, T., Fukushima, S., Kawamura, T., Kawamura, A., et al.: Syngeneic mesenchymal stem cells reduce immune rejection after induced pluripotent stem cell-derived allogeneic cardiomyocyte transplantation. Sci. Rep. 10(1), 4593 (2020). https://doi.org/10.1038/s41598-020-58126-z

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Shiba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shiba, Y. (2022). Allogeneic Immunity Following Transplantation of Pluripotent Stem Cell-Derived Cardiomyocytes. In: Zhang, J., Serpooshan, V. (eds) Advanced Technologies in Cardiovascular Bioengineering. Springer, Cham. https://doi.org/10.1007/978-3-030-86140-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86140-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86139-1

  • Online ISBN: 978-3-030-86140-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics