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1 The Challenge

More than two billion people globally live in smallholder farming households,
comprising a large proportion of the world’s poor. Smallholder farm yields are
estimated to reach only 25-50% of the potential in many parts of the world (Koo,
2014; Das, 2012). Increasing agricultural production is a necessity for meeting the
growing demand for food in decades to come (World Bank, 2007), but the scope
for expanding cropland is limited as ecological risks from deforestation and loss of
biodiversity loom large (Lambin et al., 2013; Zabel et al., 2019). Raising agricultural
productivity is, therefore, a critical component of improving the economic well-
being of millions of people in developing countries. Simple technologies can
significantly increase yields, and an increasing body of evidence suggests that access
to agricultural advice can help farmers to improve their productivity. Yet, a vast
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majority of smallholder farmers do not have access to science-based agricultural
information (Fabregas et al., 2019).

The rapid spread of mobile phones and other digital technologies present new
opportunities to make quality agricultural information accessible at scale to farmers
in developing countries (see Fig. 8.1). This chapter discusses why market failures
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Fig. 8.1 Penetration of mobile phones in developing countries (a) Shows mobile cellular subscrip-
tions in the developing world per 100 inhabitants (2001-2019). (b) Shows the share of population
who reports owning a smartphone. (Source: Financial Inclusion Insights, finclusion.org)
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8 Digital Agricultural Extension for Development

Box 8.1: From Research to Practice at Scale: Precision Agriculture for
Development (https://precisionag.org)
Precision Development (PxD), a global nonprofit that provides actionable
information to enable smallholder farmers to improve their wellbeing, was
conceptualized and formed based on a series of research projects in India and
Kenya conducted by academic researchers. PxD continues to learn, innovate,
and scale its services, using technology, behavioral sciences, human-centered
design, and experimentation (Illustration 8.1).

A Timeline of Precision Development (PxD)

2011 2013 2015

August September studies the first of
Researchers commence a study of Researchers commence a exploring farmers’ valuation of the six trials on SMS-based

an IVR-based advisory service, study of SMS advice to local agricultural advice in Western  information services to promote

called Avaaj Otalo (A0), for cotton
farmers in Gujarat, India
(PxD co-founder Shawn
Cole & Fernando, 2020)

fo@

sugarcane farmers in Kenya
(Casaburi, PxD co-founder
Michael Kremer, Mullainathan,
and Ramrattan, 2019)

2016
April ) Krishi
Launch of Tarang Year End

Krishi Tarang
service (a rebranded version of
AO) in Gujarat, India

August

Research partnership is formed with

One Acre Fund (OAF) in Kenya to
analyse data from past experiments

and design new trials to shed light on

farmer behavior change challenges

27k farmers
reached

PxD initiatives active in two
countries: Kenya and India.
PxD staff hosted by
Innovations for Poverty
Action (IPA) and J-PAL India,
respectively.

2018

March

An experimental study commences
in Gujarat, India to test whether
customized fertilizer
recommendations based

on plot-level soil testing

affect farmer behavior

and outcomes

May

Partnership formed with the Coffee
Board of India to pilot a two-way
digital advisory service (dubbed the
Coffee Krishi Taranga service) with
~ 15,000 farmers in two districts in
Karnataka

July

April

Partnership formed with the
Government of Odisha'’s
Department of Agriculture and
Farmers’ Empowerment to
develop an agricultural advisory
platform for the state’s five
million paddy farmers

Year End 858
858k farmers

reached

PxD initiatives active in six
countries: India, Kenya,
Pakistan, Rwanda, Ethiopia,
and Bangladesh

Kenya MoA-INFO service launched in partnership
with the Kenyan Ministry of Agriculture, Livestock,
and Fisheries (MoALF), international NGO, CABI, and

telecoms company Safaricom

2020

August

Partnership formed with the Inter-
national Fund for Agricultural

Development (IFAD) to deliver digital

services to 1.7 million farmers and
address the impact of COVID-19 in
Kenya, Pakistan, and Nig

to deliver digital services to 100k
farmers in Brazil's Northeast Region

September

India services reach one
million farmers
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ia. Partner-
ship formed with the Brazilian Ministry
of Agriculture and the Inter-American
Institute for Cooperation on Agriculture

December

Nigerian service launched in
partnership with IFAD and
the Nigerian Federal Ministry
of Agriculture and Rural
Development (FMARD)

3.8 million

users reached

Services built by PxD active
in eight countries: India,
Kenya, Pakistan, Rwanda,
Ethiopia, Bangladesh,
Uganda and Zambia.

Year End

Kenya (Fabregas, Kremer,
Schilbach, 2020)

<
2017

June

Launch of pilot service targeting
paddy (rice) farmers in Odisha,
India, testing PxD’s model in a new
geography and with a new crop

July

Partnership formed with Ethiopia’s
Agriculture Transformation Agency
(ATA) to assist ATA to improve the
8028 Farmers Hotline through
analysis of user experience,
optimization of service delivery,
and content development

2019

agricultural lime in Kenya (Fabregas,
Kremer, Lowes, On, and Zane, 2020)
December

Precision Agriculture for
Development is legally incorporated
by co-founders Heiner Baumann,
Dan Bjorkegren, Shawn Cole and
Michael Kremer

September

Krishi Tarang service
reaches 50,000 farmers

Year End

PxD initiatives active in five
countries: India, Kenya, Pakistan,
Rwanda, and Ethiopia. PxD
Pakistan staff hosted by the
Centre for Economic Research in

Pakistan (CERP).

345k farmers
reached

April

Pakistan advisory service
launched in partnership with the
Government of Punjab to
provide cotton and oilseed
farmers with information about
the state government's input
subsidies and advice on
recommended inputs

August

Partnership formed with CABI and
the Zambian Ministry of
Agriculture to provide farmers
with pest management practices

2021

May

Partnership formed with the West
Bengal Accelerated Development
of Minor Irrigation Project
(WBADMIP), a project supported
by the World Bank, to provide
advisory services to farmers
enrolled in water user
associations

Year End m
3.53 million farmers reached
PxD initiatives active in eight
countries: India, Kenya, Pakistan,

Rwanda, Ethiopia, Bangladesh,
Uganda, and Zambia

March

Colombia initiative launched in
partnership with Rare, and with
support from UKPact.

April

Precision Agriculture for
Development (PAD) rebranded and
re-registered as Precision
Development (PxD)

June

PxD wins Brazilian government
tender to deliver a digital agricultural
extension service to 100,000 farmers
in the North East region.

3rd Quarter 2021
5.2 million users reached

Services built by PxD active in ten
countries: India, Kenya, Pakistan,
Rwanda, Ethiopia, Bangladesh,
Uganda, Zambia, Nigeria and
Colombia.

PxD
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and service delivery shortfalls undermine the creation and optimal flow of agri-
cultural information and reviews ways in which digital innovations can overcome
these barriers. We draw insights from existing evidence and use illustrative examples
across geographies to highlight practical considerations and lessons learned through
the iteration of these services. Many of these lessons come from our experience with
Precision Development (PxD), a global nonprofit providing actionable information
to smallholder farmers via mobile phones (see Box 8.1).

1.1 What Limits Access to Agricultural Information?

Many farmers have vast amounts of agricultural knowledge that has been transmit-
ted throughout generations. Yet, the existence of new agricultural technologies and
changes in farm conditions — from soil degradation, to market conditions — require
ongoing learning and experimentation to optimize productivity. Farmers in devel-
oped countries have access to a wide range of technological developments — from
high-density soil testing and moisture sensors to satellite and drone imagining —
capable of gathering precise information about their farms and which enable them
to apply inputs more efficiently. However, an overwhelming majority of smallholder
farmers in developing countries do not have access to these technologies, and many
would find it unprofitable to use them. Even relatively simple technologies, such as
soil chemistry analyses, are well beyond the means of many smallholders. Addi-
tionally, experimenting with inputs in isolation is complicated because individual
results are noisy and farmers may not know which dimensions to prioritize for
experimentation (Hanna et al., 2014).

Several factors explain why the private sector often lacks sufficient incentives to
create and offer appropriate information to farmers at the optimal scale. Information
is generally a non-rival and non-excludable good. Once information is created,
it can be easily shared with others at a very low cost. For example, a buyer of
agricultural advice could share this information with many other farmers. If sellers
of information cannot recover their investment costs, they will be unlikely to create
it. Moreover, uncertainty on the part of buyers regarding the value of a particular
piece of information may limit their demand.

Since many aspects of agricultural extension can be considered a public good,
public provision is common in many countries (Anderson & Feder, 2004). Govern-
ments in developing countries spend millions of dollars every year creating agri-
cultural knowledge and delivering extension services. Typical delivery approaches
involve in-person visits and community events such as “farming workshops” and
“field days” where technologies and input use are demonstrated (BenYishay &
Mobarak, 2019; Emerick & Dar, 2020; Fabregas et al., 2017; Kondylis et al., 2017,
Mueller & Zhu, 2021). However, scaling these services effectively poses a number
of challenges. Foremost, in-person extension is often expensive, severely limiting
its reach. Developing country governments maintain networks of over one million
extension agents (Anderson & Feder, 2007), but ratios of farmers to extension agents
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generally remain high, leaving a majority of smallholders without adequate access
to their services and information. Public extension services may also be affected
by bureaucratic problems that limit the accountability of frontline information
providers. Moreover, there are concerns that the most disadvantaged, including the
poorest and women farmers, are often neglected (Saito et al., 1994; Cunguara &
Moder, 2011). Other oft-used technologies, like radio, can reach farmers at scale,
but these media make it difficult to tailor recommendations to local conditions.

In addition to service delivery challenges, generating agricultural content tailored
to local conditions and the specific needs of individual farmers can be costly to
produce (see Box 8.2). In many instances this leads to extension services providing
blanket recommendations across large geographic areas. Cost-related considerations
may also hamper the regular updating of dynamic conditions: in such cases advisory
content quickly becomes obsolete. Finally, many extension systems focus on
agronomic recommendations developed to maximize crop yields. However, farmers
may optimize adoption decisions to maximize returns to investment (ROI), rather
than crop yields, under real-world constraints, such as liquidity, transportation costs
and expected market conditions, In addition, farmer’s ROI calculation is influenced
by individual characteristics such as risk and taste preferences. These considerations
are rarely accounted for by traditional extension services.

Box 8.2: Why Do Smallholders Lack Weather Information?
Contributed by Hannah Timmis, Precision Development

Smallholders face substantial risk from fluctuations in the weather, and
climate change only increases this risk. Weather unpredictability affects
agricultural incomes directly, by varying the amount and quality of outputs
produced from a given bundle of inputs and, indirectly, by compelling farmers
to adopt costly risk mitigation strategies such as intercropping (Cole & Xiong,
2017). Accurate weather forecasts reduce this risk by enabling farmers to
optimize their production based on future meteorological conditions. In India,
for example, smallholders that live in areas with better seasonal forecasts
calibrate their planting-stage investments to predicted rainfall and have higher
profits on average (Rosenzweig & Udry, 2019). Despite these benefits,
accurate forecasts are frequently unavailable in developing countries due to
a combination of market and institutional failures. Producing a high-quality
forecast involves large fixed costs. Global weather prediction models, which
are operated by specialized meteorological centers, run many times a day and
generate vast quantities of data. Forecast providers must access, assimilate,
analyze, and disseminate this information, and some also deploy limited area
models. The process is capital-intensive: high-performance computing, rapid
data transmission systems, and highly skilled staff are all required. Yet, once
the forecast is created, anyone can access and use the information at near-
zero marginal cost. These production characteristics mean that basic weather
forecasts are under-supplied by the market.

(continued)
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Box 8.2 (continued)

Hence, by international agreement, national governments are responsible
for weather forecasting. Members of the UN World Meteorological Organ-
isation, which comprise 193 countries and territories, maintain dedicated
public providers called National Meteorological and Hydrological Services
(NMHS). The problem is that the capability of NMHS varies enormously.
Many public agencies in developing countries frequently suffer from under-
funding, failing infrastructure, outdated equipment, and inadequate expertise
(Webster, 2013). The result is that valuable weather information does not
reach the right people at the right time.

A case study from Pakistan illustrates the issue. In 2010, northern Pak-
istan suffered devastating floods, which killed 2000 people and destroyed
$US500M in agricultural output. Researchers at Georgia Tech subsequently
showed that the floods were predictable 8—10 days in advance if available data
had been analyzed at the time (Webster et al., 2011). Yet, Pakistan’s NMHS
issued no warning.

1.2 The Potential of Digital Agriculture

The widespread adoption of mobile phones, combined with the advances in agri-
cultural measurement and computational technologies presents new opportunities
to address the barriers to making relevant information available for smallholder
farmers. Information and communication technologies (ICT) and mobile phones, in
particular, allow for low-cost, timely, and customized information delivery at scale.
This medium can be particularly useful for the delivery of dynamic information
which requires continuous updates, for example, weather information and market
prices. Digital technologies also present comparative advantages for delivering
information to farmers in remote areas with poor infrastructure, conflict-affected
areas beyond the reach of in-person extension services, and in contexts affected by
natural disasters in which the delivery of time-sensitive information can be life-
saving.

Two features in particular make digital extension a promising area of innovation.
First, ICT and other digital technologies allow for two-way communication with
farmers. This can be leveraged to collect information about local conditions,
farmers’ backgrounds, and experiences with inputs. For most smallholder farm-
ers, deploying hardware/sensor-based precision agriculture technologies would be
prohibitively expensive. Mobile phone communication can facilitate information
transmission in which farmers can ask specific questions and request information
valuable to them. Even with recent technological efforts to reduce the cost of
delivering precision agriculture in developing countries (Jain et al., 2019), there
are many potential gains from collecting information directly from farmers. For
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instance, if data is collected at sufficient scale, it would enable extension systems to
aggregate information more effectively, which in turn would allow for the generation
of better recommendations to be made available to everyone in the system. Once
aggregated, the information about individual’s farm conditions could also be used
to solve other informational frictions in supply markets. For example, it could be
used to identify pest-prone areas or improve understanding of demand for inputs.

Second, digital extension can exercise large economies of scale to generate
analytical insights and improve customization. In turn, the iteration of these insights
and improvements can progressively increase impacts over time. Digital platforms
generate large volumes of user data which can be utilized for constant experimen-
tation and adjustments at low cost. The addition of more users and generation of
more data allow for faster experimentation and advanced analytics — for example,
through the use of machine learning — leading to faster improvements in the quality
of customization and the magnitude of potential impacts. The progressive increase
in returns to scale implicit in digital systems suggests that systems operating at scale,
and leveraging data for constant learning, will likely derive the largest impacts.

Despite the potential of digital extension services many implementation chal-
lenges remain. For instance, many existing agricultural mobile-based systems are
based on one-way, “push-only” approaches that focus on broadcasting one specific
type of information (e.g., prices, specific recommendations for a crop, etc.). Not all
information is useful, actionable, or accessible. The value of information depends on
context. For example, advice on basic agronomic techniques is likely to be irrelevant
for experienced farmers. Similarly, farmers who confront markets with constraints
in the supply of labor may not adopt labor-intensive technologies. Operationalizing
active two-way communication with farmers in a way that allows systems to learn
about their needs could vastly improve the usefulness of the recommendations
farmers receive. Moreover, relevant information uploaded to a digital platform may
still not reach many smallholder populations in the absence of a user-centered design
that facilitates access and comprehension for farmers across linguistic groups and
takes into account low levels of literacy.

Similarly, cheap information delivery tools do not solve constraints in creating
local and dynamic agricultural information. Few systems leverage experimentation
or information created by farmers themselves or have mechanisms capable of
facilitating local information creation. Finally, the current landscape of mobile-
based agricultural information platforms is diverse, fragmented, and uneven in
quality. Most ICT-based services only reach a few thousand farmers, and there has
been little coordination to avoid duplication of information creation or to maximize
gains from sharing. There are high fixed costs in setting up these systems —
particularly with regard to information generation, software creation, establishing
trust with farmers — which suggests that small-scale approaches are likely to be
suboptimal.

Fully realizing the potential of digital agricultural extension will require address-
ing these issues through concerted efforts to develop and test a range of approaches.
Successfully addressing these challenges will require interdisciplinary collaboration
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that incorporates lessons and insights from behavioral and data sciences, agriculture,
economics, and engineering.

2 Implementing Mobile Phone-Based Agricultural Extension
Services

Mobile-phone based agricultural extension services vary in the complexity of the
design and the types of technologies used. In this section, we briefly discuss existing
evidence on the impacts of current ICT-based extension approaches (see existing
reviews for a more detailed scan of the literature, e.g., Aker, 2011; Nakasone et al.,
2014; Aker et al., 2016; Fabregas et al., 2019). We then discuss selected aspects of
implementation that are key to successful deployment.

2.1 Current Approaches via Mobile Devices
2.1.1 Services That Rely on Text Messages

Basic mobile devices with call and texting capabilities only are still the most
common type of phone handset used in developing countries, and text messaging is
still the cheapest way to reach people in many parts of the world. Text messages, or
short message services (SMS), allow for written messages of 160 characters, which
can be sent in bulk and broadcast in near real time to hundreds of thousands of
people. This ability to reach farmers in resource-poor areas at very low cost makes
text messaging an attractive option for closing information gaps.

This simple text messaging technology, however, has a number of limitations.
First, there is limited scope for communicating complex information sending too
many messages can annoy farmers (IDinsight, 2019) or overload cognitive capacity,
potentially leading farmers to pay little attention to message content. Even in
instances where farmers are eager to receive messages, illiteracy may limit the
effectiveness of written information. Second, poorer farmers with low mobile
literacy may find a significant barrier to direct two-way communication, especially
in contexts where users pay for outgoing text messages. In particular, collecting
accurate location data from farmers via text messaging, and tailoring information
accordingly, poses a big challenge (see Box 8.3).

Existing evidence suggests that text messages can have modest, but positive
effects on the likelihood of a farmer adopting recommended agricultural technolo-
gies. A text-message extension program offered to sugar cane farmers in Kenya
found positive yield impacts in one trial but no effects in a second trial (Casaburi
et al., 2019b). In Ecuador, text messages to potato farmers increased knowledge
and self-reported adoption of integrated soil management practices (Larochelle et
al., 2019). Similarly, delivering price information via SMS resulted in better farmer
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outcomes in Peru and India (Nakasone, 2013; Courtois & Subervie, 2015), but did
not affect average crop prices obtained by farmers in Colombia and India (Camacho
& Conover, 2011; Fafchamps & Minten, 2012). The existing evidence base offers
limited insights on the heterogeneity of treatment effects. Are effects sensitive to
the local conditions and the specific design features, or varying findings across
studies are merely driven by sampling variation and imprecise impact estimates due
to small samples? A meta-analysis of six experimental evaluations of text message
services encouraging farmers to adopt an input to reduce soil acidity, implemented
by three different organizations with thousands of smallholder maize farmers in
Kenya and Rwanda, found that farmers who received texts were 19% more likely to
follow the agricultural advice (Fabregas et al., 2021). While some of the individual
experiments had statistically significant impacts and others did not, one cannot
reject the hypothesis that the effects were the same across contexts. These results
also suggest that one needs to be cautious when interpreting sources of impact
heterogeneity across different studies.

Another key consideration for policy is how impacts compare to the costs of the
programs. Since the marginal costs of sending an SMS is extremely low, even small
effects can be cost-effective. While SMS is a well-known and simple technology
widely used for digital extension, there are a number of opportunities that deserve
further exploration. First, it is important to understand the extent to which more
effective message design can increase impacts. Here, insights from marketing and
behavioral economics could be useful. Second, when and how frequently messages
should be targeted. Third, how to develop systems to collect farmer information
through text message. All of these approaches require more experimentation.

Box 8.3: Customizing Advice to Farmers’ Location via Text Message

A group of researchers working in Kenya, including several of the authors of
this case study, partnered with a public entity, a social enterprise and an NGO
to evaluate SMS-based agricultural services that recommended a specific type
of input for acidic soils (Fabregas et al., 2021).

The government-run program recommended farmers first to test their soils
to learn about the soil acidity of their plot before following the advice.
However, individual soil testing can be prohibitively expensive for most
smallholder farmers (approximately $20USD at the time of the study). Even
though local recommendations could be generated using the available data on
local soil tests in the region and shared directly with farmers through their
phones, such customization required information about a farmer’s location.

Establishing user locations faced a number of challenges. First, most
smallholder farmers in rural Kenya do not have GPS-enabled smartphones.
Therefore, potential users had to be people for whom information on location
already existed (e.g., because they had already participated in other programs,

(continued)
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Box 8.3 (continued)

and this had already been collected), or information about their location
had to be collected through text message questionnaires. Second, many
developing countries lack precisely defined physical addresses (Union, 2012).
Collecting precise location information about specific farmers seemed almost
impossible. In this particular case, the smallest unit that farmers could
report uniformly was their village. However, village name spellings were not
consistent and user text entry was often error-prone. Moreover, no GIS maps
existed at the village level. At the end, data could only be reliably collected at
a higher level of aggregation like the ward or sublocation.

The research team experimented with a number of solutions. In one
project, farmers were recruited through partner organizations that already
had information about farmers’ locations. In a second project, participants
were recruited through agricultural shops. Clients of these shops were invited
to enroll into the agricultural extension program, and shopkeepers provided
support in filling out a text-message questionnaire that asked farmers about
their physical location.

These models have trade-offs. Recruiting through a partner organization
lowers the cost of user acquisition, but the scale and the target farmer
population are determined by the partner’s reach. In contrast, coordinating
a recruitment process through local agents can be costly and limited in
scalability. A more scalable approach may be to partner with mobile network
operators and use the data on cell tower locations. However, as discussed
in the next subsection, there is often a large fixed cost in negotiating
these agreements. As the adoption of GPS-enabled devices increases, more
opportunities to gather farmers’ locations at low cost and at scale will likely
emerge.

2.1.2 Services That Rely on Interactive Voice Responses (IVR)

A second technology operating in basic phones which we highlight is interactive
voice responses (IVR). This technology allows computers to interact with humans
through voice. Several developing countries, including India, Madagascar, and
Ethiopia already operate IVR phone-based government extension systems. These
systems usually allow farmers to listen to prerecorded information and to record
new questions (Fig. 8.2). This approach is likely to be more inclusive of users with
low levels of literacy, though it requires users to listen to audio-recorded messages.
It can also be more expensive to operate than text-based systems. Cole and Fernando
(2021) evaluate an IVR mobile advisory system that provides agricultural advice to
cotton and cumin farmers in India. The intervention increased self-reported adoption
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of recommended seeds, though it had no impact on the adoption of other inputs like
pesticides or fertilizers.

2.1.3 More Advanced Technologies: Smartphones and Tablets

Smartphones and tablets offer new possibilities for sharing information and learn-
ing. For example, farmers could watch videos demonstrating new agricultural
techniques or take pictures of pests affecting their crops and either request automatic
identification and recommendations or raise questions with agronomists (Olson,
2018). Farmers could play with apps to better understand the risks associated with
certain crops (Tjernstrom et al., 2019). However, access to smartphones and tablet
devices is still limited in some parts of the world, and it may require innovative
delivery approaches to reach scale, including engaging agricultural extension
officers, agrodealers, and other local agents with familiarity with smartphones.

To date, a number of video-based interventions for farmers have also been found
to have positive impacts at changing knowledge and self-reported farmer practices
(Gandhi et al., 2007; Fu & Akter, 2016; Van Campenhout et al., 2018). Measured
impacts on crop yields have been mixed, with some projects documenting null
effects (Udry, 2019; Van Campenhout et al., 2019) and others documenting positive
impacts (Van Campenhout et al., 2018; Arouna et al., 2019). However, a recent
meta-analysis combining the effects of these existing projects suggests that, on
average, yields increased by 4% as a result of these types of programs (Fabregas
etal., 2019).

2.2 Implementation: Technological Considerations

Deploying mobile phone-based solutions requires coordination with a number of
stakeholders including government, agricultural agencies, communications regula-
tory bodies, and local telco companies. In this section, we discuss key technological
considerations for setting up and scaling a digital agricultural extension service.

2.2.1 Technology Infrastructure

Several options for technology infrastructure are available in most countries. These
options include working directly with mobile network operators (MNOs), working
through a mobile aggregator, or working with an existing mobile solutions provider.
Negotiating individually with each MNO can be time-consuming and difficult. In
contrast, many aggregators have an infrastructure and partnerships that allow them
to send messages to subscribers across MNOs within a country, but regulations
on mobile communications and the nascent market environment for aggregators
vary across countries. Finally, mobile solutions providers may offer additional
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IVR System Call Flow

Start Call

NO—»| Play Welcome Message in
Language of Caller.

First Time
Caller?
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End Call

Fig. 8.2 An example call flow of an existing [VR-based agricultural information service. This
figure illustrates the IVR menu structure for an existing IVR-based agricultural information
service. A caller is first asked to select a language and answer a few profiling questions before
being taken to the menu of agricultural content organized by irrigation access. (Source: PxD)
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services such as dashboards for easy monitoring and a team of engineers to build
customized service features. Below are some key considerations when considering
these different options.

User Protection Mobile phone subscribers receive many spam messages and calls.
In some countries, unsolicited messaging in the absence of a user opting in to a
service is prohibited or regulated. Noncompliance can result in the service being
shut down or penalized. Even in the absence of such regulations, the opt-out right
needs be considered as part of the user protection measure. A simple process
that allows users to choose whether and when to opt out can reduce annoyance.
Telecommunications authorities can also decide whether certain emergencies — such
as severe pest outbreaks — warrant sending unsolicited messages.

Data Security and Privacy Two-way digital agricultural extension systems can
accumulate a large volume of private data about smallholder farmers. This often
includes phone numbers, as well as more detailed information about a farmer’s
location, crop selection, and input usage, and may include sensitive information
such as exact plot locations, agricultural sales, and credit history. Privacy protection
for service users needs to be handled carefully. Some countries have data protection
and security regulations that restrict how and where data about individual citizens
can be stored and accessed. One must also consider obtaining consent from farmers
to use their data for analysis or to share their information with third parties. It may
be practical in some cases to obtain consent from users as they register into the
service. However, with low mobile literacy among smallholder farmers, providing
sufficient information and obtaining informed consent via digital messages can be
difficult.

Access to Mobile Data Mobile communications data owned by MNOs contain
rich information about farmers, which can be used to improve the quality of
a digital advisory service. For example, cell tower data provides user location
information; call and message logs can be used to identify social networks or predict
mobile literacy (Bjorkegren, 2019); and user profile and phone settings reveal user
preference. Aggregators often do not have access to this kind of granular user-level
data. More importantly, when a digital agricultural extension service is launched,
usage data provides real-time feedback about demand for service and information.
Whether working with MNOs or through aggregators, access to the basic usage
data (e.g., whether the message was received, why it was not received, etc.) can
contribute to building a robust monitoring and evaluation system as well as capacity
to engage in rapid testing and iterative development.

2.2.2 Implementation Model: Product Considerations
A host of operational decisions need to be considered in setting up a digital

agricultural extension service. How does one optimally recruit farmers? What types
of implementing organizations make good partners? What are adequate revenue



200 R. Fabregas et al.

180000 . The effelct of radio campaigns

— old_callers
— new_callers []

160000 |

140000 |

120000 |

100000 +

80000

unique callers

60000

40000

1

1
20000 1
[} ]
[} 1

0 L 1 i L 1 I
(2014, 6) (2014, 11) (2015,4) (2015,9) (2016,2) (2016,7) (2016,12) (2017,5)
(year, month); radio campaigns shaded

1
1
I
I
o

Fig. 8.3 Trends in access to a national agricultural hotline service. This graph illustrates how a
mass radio campaign generated spikes in calls to a large public agricultural hotline service, serving
as an effective tool to recruit farmers to digital agricultural advisory services. (Source: PxD)

models and financial paths to scale? Not all of these questions need to be answered
right away, and implementation models may evolve as questions are answered
through piloting and incremental scaling.

Customer Acquisition Farmer recruitment and partner selection are key design
elements in the implementation of a digital agricultural advisory service. These deci-
sions will affect the scale, density, and target farmer population as well as the scope
of feasible customization and the cost of service delivery per farmer. Databases
of farmer phone numbers may be available through — among others — government
agencies, NGOs, and farmer associations. Some implementers already have valuable
and detailed information about farmers (e.g., location, gender, primary crops, etc.),
although they might work with a limited number of individuals. Alternatively, mass
campaigns via radio advertisements and posters in village centers may be feasible.
For example, a large public agricultural hotline service saw spikes in call volumes
immediately after hotline numbers were broadcast via radio programs (Fig. 8.3).
The cost per user acquisition through radio campaigns in this setting was $0.29/user
in 2019.

Agronomic Content A vast body of agronomic sciences research and crop mod-
eling informs evolving insights on new productivity-enhancing technologies and
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practices. However, the rigor of evidence supporting the use and impact of new tech-
nologies varies widely. Institutional willingness to take risks with recommendations
and relative openness to incorporating new technologies into extension services
may vary widely by implementing agency. For instance, government agencies might
provide agricultural information that is agronomically correct but too technical to be
adequately used by target farmers (Cole & Sharma, 2017; Fabregas et al., 2021). In
vetting agricultural content, we emphasize the importance of considering farmer’s
profitability calculations in real-farm settings, and the potential risks associated with
any technology. For example, customized advice generated by complex crop models
may benefit from an empirical validation to corroborate whether customization, in
fact, improves profitability among targeted farmers.

Costs and Financing of Digital Agricultural Systems Mobile phones offer a low-
cost means to reach smallholder farmers with information at scale. Moreover, the
low marginal costs of distribution suggest that there can be high returns to scale.
For instance, PxD’s average cost of service has dramatically decreased from $5.20
per farmer per year in 2017 (serving approximately 345 K farmers) to $1.55 in
2019 (serving 3.53 M farmers).! Despite the very low marginal cost of scaling the
service, however, setting up a digital agricultural system in a new setting might
require nontrivial upfront capital.

There are several potential financing models for digital agricultural services.
Many for-profit service providers in digital agriculture charge farmers a subscription
fee. However, economic theory suggests that markets for information will often
perform poorly and, therefore, financing models that solely rely on charging fees
directly to farmers are likely to exclude a large proportion of smallholders who
might still find these services valuable (Fabregas et al., 2019). Market failures arise
because information differs from most other goods: it is non-rival (e.g., once created
many people can benefit from it at minimal marginal distribution costs), it is non-
excludable or partly excludable (e.g., once an individual has access they can share
with many others), and there often exists asymmetric information in the market
(e.g., buyers do not know the value of information sold to them). These features
might suppress farmers’ willingness to pay for information services and also make
it difficult for service providers to recoup their costs, limiting their incentives to
invest in generating informational products.

Limited empirical data suggests that farmer’s willingness to pay varies widely
across settings, but farmers are sensitive to prices. The IVR service in India studied
by Cole and Fernando (2021) found that, despite a high rate of engagement, the
average price which farmers were willing to pay was $2 when the cost of provision
for a 9-month subscription for that particular service was $7. The percentage of
farmers who took an offer at a randomly selected price varied from 6.7% at $4.13
to 85% at $0.68. In a study in rural Ghana, most farmers were willing to pay a low

! These estimates are based on PAD’s total operating cost and the total number of farmers served
across all initiatives, and the initiative-specific cost per farmer varies widely by the design of the
service, partnership arrangement, and the scale at which it is operating.
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price for digital information service ($0.10/month), but they were highly sensitive to
price increases (Hidrobo et al., 2020). In a study of willingness to pay for local soil
information in western Kenya, farmers were not willing to pay the full cost of local
soil tests, but the aggregate valuation of all farmers for a given soil test in an area
exceeded the cost of soil testing and distributing this information. This potentially
makes investment in this information worthwhile from a social standpoint (Fabregas
etal., 2017).

Other commercial models might help address some of these issues. A freemium
model in which users receive free access to a basic service and pay for advanced
features may increase access while still generating revenues. Alternatively, revenues
may be raised from value-chain players with an aligned incentive to increase farmer
productivity (e.g., contract farming companies, large agricultural corporations
with corporate social responsibility). Overall, the above market failures provide
a rationale for some public sector involvement in financially supporting these
services.

Other Costs to Farmers Even in the absence of direct fees to use a digital
agricultural service, farmers may face indirect (pecuniary and nonpecuniary) costs
of accessing these services. For instance, phone signals can be weak and unreliable
in remote areas; farmers may incur transportation costs to access electricity for
charging phones; and some MNOs require a minimum phone credit to receive calls.
In addition, challenges with mobile phone access and digital literacy may present
greater barriers for marginalized populations, such as women and the poorest.
Expanding digital agricultural services among those who may face high costs and
barriers to access them will require a deliberate effort for the developer to address
their specific barriers and meet their specific needs.

3 Iterative Development

Developing a user-centered service requires an iterative process guided by frequent
user feedback. A variety of methods and approaches can be used to test, evaluate,
and iterate the design of digital agricultural extension services to improve service
delivery and impact (see Box 8.4).

3.1 Approaches

Human-Centered Design Approach Agricultural recommendations developed
by scientists and experts are often technical and difficult to understand. Given
the limited volume of content which a typical digital message can deliver at
one time, the comprehensibility and actionability of a message are likely to be
a critical driver of impact. The exact content of messages can be tested and
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iterated with target farmers through in-person or telephonic focus group discussions,
interviews, and observations, before launching rigorous testing. For instance, one
could share the messages with a small number of farmers and ask them to explain the
recommendation to ensure that agricultural words used in the message are locally
appropriate; farmers may be asked to call into an IVR service and interact with the
system so that the developer team can observe the pain points in the interface.

Monitoring Implementation quality can be assessed by monitoring key per-
formance metrics, such as user engagement, user satisfaction, or perceptions.
Monitoring these outcomes can provide valuable information about program’s
aspects that may or may not be working well. For example, low user engagement
suggests that the system might be failing to deliver agricultural information to a large
number of farmers. Similarly, low user satisfaction can indicate that farmers are
unlikely to utilize the service and the agricultural information it provides. Obtaining
feedback from farmers and iterating on design may help identify and reduce any
potential barriers. However, merely monitoring engagement and satisfaction does
not tell us whether the service impacts farmer behavior and outcomes.

Box 8.4: Iterative Development of Customized Fertilizer Advice, PxD
India

The Government of India invests a large amount of resources in soil testing
of farmers’ fields and distributing Soil Health Cards (SHCs). SHCs are
physical soil report cards which provide detailed soil nutrient information and
customized fertilizer recommendations. However, information presented in
SHC:s is highly technical and difficult for farmers to understand. For instance,
previous research in Bihar shows that nearly 70% of farmers with sufficiently
nutrient soils wrongly believed that SHCs recommended relevant fertilizer
application (Fishman et al., 2016).

To address this challenge, in 2017 a research team set out to develop a
digital support tool for SHCs. The team conducted a series of focus group
discussions in Gujarat, India, followed by a “lab-in-the-field” experiment to
develop and test supplemental materials including an audio aid for SHCs.
Approximately 600 farmers across 12 villages were randomly assigned to be
presented with (i) a (hypothetical) SHC only, (ii) a SHC with an audio aid,
(iii) a SHC with a video clip, or (iv) a SHC with an agronomist on hand to
explain the SHC. The SHC was presented as something for a farmer’s friend.
Farmers in groups (ii)—(iv) were also given a simplified SHC with fertilizer
recommendations converted into a familiar local unit. The field team visited
farmers door to door and administered short surveys at the beginning of the
visit, after the SHC was presented, and after the supplementary materials
were presented. The team found that all of the supplementary materials
dramatically increased the proportion of farmers who understood the SHC

(continued)
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Box 8.4 (continued)
content from 8 to over 40% and the level of trust in SHC recommendations
by 5-7 percentage points (Cole & Sharma, 2017).

In the following season, researchers evaluated the impact of customized
fertilizer recommendations on fertilizer application and yields among 1585
cotton farmers in Gujarat. Half of the farmers received a basic digital advisory
service with weekly push calls on topics including planting, weeding, and
pesticides, while the other half of treated farmers also received customized
fertilizer recommendations via visual aids and weekly push calls. At the
end of the first season, treated farmers reported more than two- to five-fold
increases in the likelihood of using profitability-enhancing fertilizers, when
compared to farmers in the control group (Cole et al., 2020). On aggregate,
this intervention narrowed the gap between recommended and actual fertilizer
use by 0.08 standard deviations.

The positive effects on fertilizer application, where previous efforts had
failed, attest to the importance of an iterative approach. Despite the large
impact on fertilizer adoption, the study observed no impact on self-reported
cotton yields or satellite-based yields. Unfortunately, in the year of the
trial, Gujarat had a historically low rainfall, potentially suppressing returns
to fertilizers. This confounding factor highlights challenges associated with
rigorously measuring agricultural impacts.

Continuous Experimentation Continuous A/B tests can be designed to answer
a range of operational and product design questions. For example, one can use
insights from behavioral sciences to experiment with different ways of framing a
particular message or message contents to test influences on farmer behavior or the
timing and frequency of messages to optimize user engagement (Fabregas et al.,
2021). These rapid experiments on systems and tweaks in message design often
focus on intermediate outcomes that are easy to measure: administrative data on
system usage or self-reported outcomes on adoption, knowledge, comprehension,
information sharing, and trust in the system. These outcomes can be used to
optimize user experience. Experimenting with large sample sizes is necessary for
detecting small effects and for harnessing the benefits of economies of scale in
learning. For example, one could compare several experimental arms at once or
use big data analysis to draw insights on heterogeneity or uncover other patterns
in the data to inform service design, impact, and scope for improvements. We
note that these design improvements may not add up linearly: user experience
may drastically improve and lead to better outcomes when a number of tweaks
remove major pain points at once. Therefore, testing the aggregate effect of many
design improvements together, rather than individually, can be an effective way to
approach product improvement. The effectiveness and targeting of messages might
be significantly improved over time, when feedback loops and iterative learning
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tools are integrated into operations at scale (see Box 8.5). Indeed, evaluating too
early may underestimate long-run impacts.

Impact Evaluations Because impact can vary significantly by context and product
design, building local evidence on the impact of a service can be important. How-
ever, implementing experimental evaluations to measure impact on downstream
outcomes, such as yields and profits, can be complex and costly. In many instances,
the effect sizes that would make these types of programs cost-effective are small,
and detecting these effects in a study might require large sample sizes. Evaluations
that have low statistical power are unlikely to detect effects that would still be
considered cost-effective. Hence, large-scale evaluations may be suited to settings
in which access to behavior and yield outcomes for a large number of farmers is
accessible at low cost. For instance, in Kenya and Mozambique researchers worked
with agribusinesses that regularly buy crops from farmers. Therefore, they could use
a large sample of size of administrative data on yields (crop sales collected by these
companies) to determine impacts on productivity (Axmann et al., 2018; Casaburi et
al., 2019b).

Localization vs. Generalizability Experiments designed to understand the impact
mechanism of an intervention — why the intervention works — can often generate
more generalizable insights than experiments that only assess whether or not an
intervention works. Understanding why helps us formulate a broader conceptual
model about conditions and constraints under which a particular intervention is
likely to be effective. We iterate and refine the conceptual model and our under-
standing about farmer behaviors as we gather observations from similar experiments
across multiple contexts with varying constraints. These broader lessons constitute
global public goods that can inform policy and practice. In this sense, there is likely
a large social value in experimenting and making results widely available.

3.2 Data and Measurement Issues

An effective feedback and iteration system leverages administrative outcome data
while supplementing it with additional data collection. In addition, available
advanced technologies, such as remote sensing, might be used to improve the cost-
efficiency of outcome measurements over time.

Administrative Data on Usage System usage data can provide reliable informa-
tion about user engagement: however, not all systems offer this option. Pickup and
listening rates for a push call service can offer insights on the amount of information
each user accessed. However, it is often difficult for a service provider to obtain data
on whether SMS advisory messages were opened by recipients.
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Measurement on Input Adoption and Agricultural Practices Phone surveys,
delivered via voice calls or text messages, allow for high-frequency data collection
at a much lower cost than traditional in-person methods. However, low response
rates and selection in attrition are common. For example, farmers who are more
satisfied with the service might be more likely to provide feedback or more likely to
respond to a phone survey. These biases in outcome data would make it difficult to
draw appropriate inferences in A/B tests.

Simply measuring increases in farmers’ knowledge or self-reported adoption
of inputs or practices has a number of limitations. For instance, knowledge may
not necessarily translate into any behavior change. Self-reports on whether farmers
followed recommendations could lead to a biased estimation of effects. For example,
farmers who received the service might overreport using suggested practices
because of experimenter demand effects, or farmers’ might fail to report using
inputs if they believe that it might make them more likely to receive a program.
A comparison of self-reported and administrative data use for four studies in Kenya
found that the measured impact of mobile phone messages using self-reported data
exceeded the impacts measured through administrative data (Fabregas et al., 2021).

To address concerns around experimenter demand effects, administrative data
on purchases from input sellers could be used to measure farmer behavior. For
instance, the text message program that encouraged farmers in East Africa to use
locally appropriate inputs used both administrative data from input sellers and data
from redemption of electronic discount coupons to understand whether farmers were
more likely to purchase recommended inputs (Fabregas et al., 2021).

Yield Measurement Researchers might be most interested in estimating effects
on farm profits or yields. However, the measurement of profits requires detailed
data and assumptions about input and labor use and costs. Impacts on yields are
often imprecisely estimated since it is often difficult for farmers to report yields
precisely, and yields are dependent on a number of other environmental factors,
such as seasonal rainfall. Moreover, small impacts on farmer behavior are likely to
translate to modest improvements in yields, which might be difficult to detect.

A potentially promising approach for obtaining multiple seasons of yield data at
limited cost (outside of contract farming settings) would be to obtain GPS location
information for farmers’ plots and then assess yields over multiple years using
satellite data. Recent studies demonstrate a strong correlation between satellite
yield measurements, crop cut data, and full plot harvests (Burke & Lobell, 2017;
Lambert et al., 2018). An ongoing evaluation in India suggests that satellite yield
measurements can reduce standard errors in estimates of treatment effects by
over 50% when compared to farmer-reported data (Cole et al., 2020). This can
substantially improve statistical power to detect impact (Fig. 8.4).
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Fig. 8.4 Satellite-based yield measurement (a) Plot boundary data collected via Garmin; (b)
Satellite-based (reNDVI) vs. self-reported yields. Cole et al. (2020) use satellite-based yield
measures to evaluate the effect of customized fertilizer recommendations among cotton farmers
in Gujarat, India. They collected plot boundary data using a Garmin GPS hand device (Panel
a). Panel b illustrates the positive correlation between vegetation index and self-reported yield
measurements. They calculate vegetation index values “by taking the median value of each VI pixel
contained in each sample plot for 5 Sentinel-2 images from 2018 ... [and taking] the maximum
value across the 5 satellite images”
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Box 8.5: Learning Through Feedback and Experimentation in a Govern-
ment Agency

The use of mobile technologies in the public sector is usually discussed in
the context of addressing traditional government failures, such as limited
accountability and incentives for public-sector workers (Dal B6 et al., 2021;
Callen et al., 2020; Muralidharan et al., 2020). To date, most mobile phone-
based agricultural extension services rarely rely on public sector workers for
delivery. Instead, the potential of these services lies in the large volume of user
feedback data for rapid assessment, experimentation, and iterations. However,
the government may face a new type of capacity constraints in leveraging the
available data to monitor and improve the design of technology-based ser-
vices. The example described in this box demonstrates that these constraints
exist, but that they can be overcome.

An (anonymous) government agency has been operating an IVR-based
agricultural information service for several years. When a farmer calls into the
system through a toll-free number, the automated hotline service starts with a
language selection and questions on farmer location and other characteristics
for the first-time users. Only after this is completed, it takes farmers to the
menu selection with a variety of agricultural topics for more than 20 crops.
The system had been accessed by nearly three million farmers by mid-2017,
but only a small fraction of farmers called back after the first try.

A research team conducted a diagnostic assessment of the system in 2017,
in which they analyzed the existing administrative data on system usage
to understand usage patterns and identify potential issues with the system
(PxD, 2018). This exercise was followed by a series of in-person design
sessions with farmers, where researchers observed farmers calling navigating
the system in real to identify pain points. Additionally, a phone survey of
users was conducted to assess the accuracy of farmer profiling data collected
by the IVR service. This assessment revealed that the service was losing a
nontrivial number of farmers in every required menu selection. The insights
from the diagnostic assessment led to a number of ideas for system design
improvements. The research team and the government agency started regular
meetings to brainstorm ideas and agreed to implement A/B tests to experiment
with different solutions. Over the following 2 years, 13 A/B tests were
implemented, 6 of which have shown to significantly increase the likelihood
of farmers successfully accessing agricultural content.

Selected insights from the diagnostic assessment and system tweaks for
A/B testing

(continued)



8 Digital Agricultural Extension for Development

Box 8.5 (continued)

Observation

Majority of first-time callers do not
complete the registration and drop

from the call
Majority of users select the menu

option by pressing #1 on the keypad

Many users do not press any key

after a question; the system hangs up

if no response

Most farmers don’t access
agricultural content

Recommended system tweaks

Remove registration questions for
the first-time callers and postpone
them to a later call

Rotate the menu option seasonally
to keep the most relevant topic as
the first option

Add menu replay twice if no option
is selected, before the application
hangs up

Add pause in between options for
language menu

Slow down the speed of recording
Add push call explaining how to
use IVR service

4 Innovations to Improve Impacts

209

In this section, we discuss selected areas of innovation that offer significant potential

for improving impacts for farmers.

4.1 Customization

Agricultural information can be customized across a range of dimensions. First,
optimal agricultural practices vary widely in line with local conditions. For example,
several field experiments have demonstrated a large spatial variation in yields and
yield responses to inputs (Zingore et al., 2007; Seo et al., 2009; Suri, 2011; Tittonell
& Giller, 2013), and agronomic research provides strong evidence that the nutrient
composition in a particular soil informs which set of fertilizers, and quantities,
thereof, will be optimal for maximizing yields (Sapkota et al., 2014). Second,
the benefits farmers derive from advice are, in part, based on the applicability of
the advice relative to real-time changes in the local environment, such as weather
and pest outbreaks. Studies suggest that weather forecasts affect farmer investment
decisions (Pandey, 1998; Chisadza et al., 2020) and that accurate forecasts increase
farm profitability (Rosenzweig & Udry, 2019). Third, both the appropriateness of
agricultural content and optimal message design may vary by farmer characteristics,
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such as land size and access to storage, as well as gender, age, and other individual
characteristics.

The key challenge, across different types of customization, is to generate and
gather relevant local data at scale (see Box 8.6 for some resources). In some
cases, there is insufficient coordination and poor incentives among stakeholders to
direct resources toward data generation. In other cases, the cost of collecting and
aggregating local data and/or packaging it in a way that is accessible and easy to
understand may act as barriers to scaling up.

Box 8.6: Examples of Publicly Available Remote Sensing Data Sources
Global Precipitation Measurement (GPM) Data — https://gpm.nasa.gov/data

The global precipitation measurement (GPM) mission, initiated by NASA
and the Japan Aerospace Exploration Agency (JAXA), is an international
network of satellites that provide global data on rain and snow fall. In the
agricultural context, this data can be applied to analyze and forecast changes
in water resources and, thereby, food security.

Sentinel-2 — https://sentinel.esa.int/web/sentinel/missions/sentinel-2

Sentinel-2 is an imaging mission dedicated to Europe’s Copernicus pro-
gram. The mission aims at monitoring variability in land surface conditions,
including vegetation and soil and water cover, while also observing inland
waterways and coastal areas. Publicly available data includes coverage of all
continental land surfaces (including inland waters) between latitudes 84°N
and 56°S, all coastal waters up to at least 20 km from the shore, all islands
greater than 100 km?2, all EU islands, the Mediterranean Sea, and all closed
seas (e.g., the Caspian Sea).

Google Earth Engine — https://developers.google.com/earth-engine/
datasets/

Google Earth Engine combines a massive catalog of more than 40 years of
historical imagery and scientific datasets with APIs and other analysis tools.
The data catalog is organized into three categories, each with their own sub-
categories: climate and weather (surface temperature, climate, atmospheric,
weather); imagery (Landsat, sentinel, MODIS, high-resolution imagery); and
geophysical (terrain, land cover, cropland, other geophysical data).

Landsat — https://landsat.gsfc.nasa.gov/

The Landsat series of earth observation satellites is a joint NASA/US
geological survey program that has continuously acquired images of the
Earth’s land surface since 1972. Landsat 8 is the latest mission with moderate-
resolution (15-100 m, depending on spectral frequency) measurements of the
Earth’s terrestrial and polar regions in the visible, near-infrared, short wave
infrared, and thermal infrared going back to 2013.

MODIS - https://modis.gsfc.nasa.gov/

(continued)


https://gpm.nasa.gov/data
https://sentinel.esa.int/web/sentinel/missions/sentinel-2
https://developers.google.com/earth-engine/datasets/
https://developers.google.com/earth-engine/datasets/
https://landsat.gsfc.nasa.gov/
https://modis.gsfc.nasa.gov/

8 Digital Agricultural Extension for Development 211

Box 8.6 (continued)

MODIS (Moderate Resolution Imaging Spectroradiometer) is an instru-
ment that has been launched on the Terra (1999) and Aqua (2002) NASA
satellites. It has a good temporal resolution, imaging the whole earth every
1 or 2 days. This makes it suitable to track large scale trends over time.
For agriculture in particular, NDVI (normalized difference vegetation index)
products can be useful, providing insight into vegetation changes over time.
One MODIS-based NDVI product is MOD13A1.

The European Centre for Medium-Range Weather Forecasts (ECMWF) —
https://www.ecmwf.int/en/forecasts/datasets

ECMWEF is a European intergovernmental organization which generates
medium, extended, and long-range forecasts using its own comprehensive
earth system model and conducts research to improve forecasting skills.

Radiant MLHub — https://www.mlhub.earth/#home

Radiant MLHub is an open library for geospatial training data to advance
machine learning applications on earth observations. It aims to be a repository
of data and trained models for development. Currently, it has smallholder crop
classification data but plans to add global land cover in the future.

Consultative Group on International Agricultural Research (CGIAR) Data
Resources — https://bigdata.cgiar.org/wp-content/uploads/2020/05/Webinar-
Slides-_-Secondary-Data-for-Crop-Modeling-2020-_-Presented.pdf

These slides for the CGIAR webinar: Secondary data for crop modeling:
Filling data gaps under lockdowns include links to various data resources.
Dataset topics include weather, soil properties, cropping calendar, man-
agement practices, evaluation data, phone surveys, household surveys, and
satellite remote sensing.

Crowdsourcing The two-way nature of digital communication presents opportu-
nities for aggregating relevant, real-time information through crowdsourcing. For
example, a pest hotline can be used to identify pest outbreaks at an early stage,
allowing faster detection of local outbreaks and alerting farmers in at-risk areas
about pest prevention and management recommendations. Moreover, a “Yelp”-
like system of customer service ratings could reduce information asymmetry in
input markets (Hasanain et al., 2019). A small but growing literature suggests that
crowdsourcing can be used successfully to reduce information scarcity in a variety
of settings (Bailard & Livingston, 2014; Jame et al., 2016). However, evidence of
its use and utility among smallholder farmer populations is scarce.

The relative advantage of using crowdsourcing to collect information is depen-
dent in large part on whether a sufficiently large number of farmers contribute
information with sufficient accuracy. There is ample room for research in this space
to advance our understanding of technology design and (financial and nonfinancial)
incentives for farmers to contribute high-quality information. A risk linked to
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crowdsourcing that requires attention in the design process is a potential data gap for
less technology-adept farmers. If the needs and preferences of less technologically
proficient or literate farmers are different from those who contribute information
to the system, the resulting customization may result in making the information
provided less relevant.

Data-Driven Customization A key advantage of digital agriculture is its ability
to improve the quality of customized advice by using the data it generates. For
example, in settings in which extensive data on farmer characteristics is available,
analysis of large platform data may reveal differential patterns in system usage by
farmer characteristics. These patterns could then be tested in A/B tests to inform
systems and service iteration and improvements (see Box 8.5). Furthermore, when
agricultural outcome data is available at large scale, customized recommendations
based on agronomic trials or a crop model can be empirically validated in real farm
settings and improved through subsequent experiments.

4.2 Using Digital Technology to Facilitate Social Learning

A large volume of literature suggests that social learning — learning from the expe-
rience of other farmers — is key to facilitating optimal technology adoption among
farmers (Munshi, 2004; Bandiera & Rasul, 2006; Conley & Udry, 2010). Existing
evidence suggests that mobile phone-based agricultural information services can
generate information spillovers. For instance, in India, farmers who had not received
the piloted services in the trial increased interactions with, and learned from others,
who had (Cole & Fernando, 2021). Furthermore, directing the flow of information
via mobiles phones can also affect existing dynamics of information networks
(Fernando, 2021).

Beyond the diffusion of agricultural information through existing mechanisms,
advanced communications technologies offer scope for increasing and directing the
flow of information among farmers to facilitate more efficient learning. First, digital
messages can be designed to spur conversations about agricultural practices and
inputs within existing networks. Moreover, a farmer’s beliefs about a particular
input or practice may be influenced by the experience and beliefs of others. With
or without novel information, increasing conversations about a particular input
can potentially accelerate learning among farmers. Second, the two-way character
of digital communications technology allows farmers to exchange information
and learn from experts and other farmers beyond their networks of friends and
neighbors. It is common in a radio program to solicit questions from listeners and
broadcast responses as a way of facilitating learning. With digital technology, this
type of learning can happen much more locally and in real time.

An important consideration when using digital tools to accelerate learning among
farmers is the potential presence of behavioral factors in learning. Existing literature
suggests that individuals confront a range of barriers when communicating factual
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information, experience, and perceptions and in interpreting information shared by
others (e.g., Benjamin et al., 2016; Breza et al., 2018; Eyster et al., 2018). For
example, if farmers who have had a bad experience with a new input talk more about
their experience than those who had successful experiences with the same input,
there may be convergence on an inaccurate belief that the input is ineffective. Given
the nascent nature of these innovations, rigorous experimentation, assessment, and
iteration — as discussed in the earlier section — will be critical for advancing the
development of digital social learning tools capable of amplifying the impact of
digital agricultural extension.

4.3 Digital Support for Existing Extension Systems

Digital agricultural extension can complement traditional extension systems. While
many governments in developing countries maintain a network of extension work-
ers, the evidence base on their impact on farmer outcomes is limited. (Anderson &
Feder, 2004). Agricultural extension workers are difficult to monitor and incentivize:
many tasks involve working independently, often in remote communities, with
limited supervision. In addition, a lack of resources and poor institutional capacity
limits the availability of training and technical support to extension workers. There
are three broad mechanisms through which digital technology can potentially
improve in-person extension services.

Extension for Extensionists Extension workers could be supported with better
resources made available through digital devices. For example, extension agents
could access detailed localized information through smartphones and could receive
reminders to use appropriate messages for farmers based on the stage of the
local agricultural season or to communicate important developments such as pest
outbreaks, adverse weather conditions, or market disruptions. In a recent meta-
analysis which estimated a positive impact of digital agricultural extension on
farmer yields (Fabregas et al., 2019), four of the seven impact estimates were
derived from an “indirect” model in which digital advice was delivered to farmers
via extension agents or field officers.

Communication Between Farmers and Extension Workers Digital technology
can facilitate communication between farmers and extension workers. An IVR
system could aggregate local information to service commonly asked questions
and equip extension workers with relevant information and recommendations. This
could help extension workers determine which content is relevant for farmers in
their area. Extension workers could also notify farmers about activities such as
farmer field days or demonstration plots. Many extension workers already use digital
communication channels, such as WhatsApp, to exchange information among
themselves. However, these are nascent developments, and a dearth of rigorous
evidence makes this a fertile area for future research.
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Performance Management There is growing evidence on the use of mobile
phones to help improve motivation and accountability of public-sector workers
in developing countries, and a number of new initiatives have been successful at
scaling up (e.g., Dimagi’s CommCare, a data collection platform for frontline health
workers). A study in Paraguay showed that increased monitoring of agricultural
extension workers through the use of GPS-equipped mobile phones resulted in a
22% increase in the likelihood of visiting a given farmer over 7 days (Dal B6 et
al., 2021). Calling beneficiaries to verify the delivery of cash transfers to farmers in
Telangana, India, reduced nondelivery of the transfer by 8% (Muralidharan et al.,
2020). In Pakistan, a smart-phone app to track activities of health facility inspectors
increased the likelihood of rural health clinic inspection by 74% (Callen et al.,
2020). In addition to increasing the effectiveness of monitoring, a mobile phone-
based app that allows self-tracking has been shown to harness intrinsic motivation,
and was associated with a 24% increase in performance (Lee, 2018).

5 Lessons Learned

In this chapter we discuss a number of issues that practitioners and researchers
would need to consider when working with digital agricultural extension technolo-
gies. We provided insights from our work with several initiatives, implemented in
different countries by a variety of organizations. While existing evidence suggests
that these approaches can have positive impacts, delivering on the full promise of
digital agriculture will require sustained iteration and testing. Moreover, as more
sophisticated mobile technologies improve and are adopted over time, several more
opportunities will open up.

While we identified a number of promising areas for future study throughout the
chapter, we failed to discuss other important topics in digital agricultural extension.
First, digital technologies can also help improve supply chains more widely. For
instance, a hotline offered by a sugar company that contracted with sugarcane
farmers led to an improvement in the delivery of inputs because farmers could
report problems (Casaburi et al., 2019a). A system for agricultural supply dealers
could be used to give better recommendations to farmers and gather data on which
items to stock while facilitating price comparisons for farmers. Second, digital
approaches might be particularly important during emergencies. Information could
quickly get out (e.g., pests or weather shocks), but they could also help governments
and other agencies gather information directly from farmers about critical needs.
Third, crowdsourced information can be useful for a variety of purposes beyond
agriculture. There might be complementarities with other sectors, or new ways of
generating impacts, where data are responsibly shared for a variety of purposes.

We conclude by encouraging readers to actively engage with user needs and the
constraints people face on the ground but also by having clear conceptual models or
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theories of change that can help guide the development and implementation of these
technologies.

Discussion Questions

1. What are the trade-offs between improving customization and reaching scale in
digital agricultural extension? What drives the trade-offs?

2. How could farmers who do not own a mobile device or do not own smartphones
benefit from digital extension approaches?

3. Many development interventions follow the three-stage process — pilot, evaluate,
and scale — but digital interventions may benefit from scaling quickly. What are
the potential benefits and costs of this strategy? How do you ensure that the
service delivers impacts to farmers?

4. Should digital agricultural extension services focus on solutions for basic phones
because they would generate large benefits for the majority of poor smallholder
farmers now or leverage the power of smartphones to create solutions that would
generate large benefits in the future?

5. What are the potential distributional implications of digital agricultural exten-
sion?

6. Oftentimes agricultural information requires sending information about proba-
bilities (e.g., the likelihood of rainfall) or potential risks. What are strategies to
convey this information in an intuitive way to populations with low levels of
education?
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