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Abstract. Schematic diagrams are used in graph-based engineering systems.
They focus mainly on the structure of the design object. Graph-based engineer-
ing systems help to solve a concrete design task. This is primarily realized by
the application of domain-specific languages. The layout of schematic diagrams
is of particular importance, and a neat representation is desirable. But automat-
ically generated layouts cannot always fully match the intention of a modeler.
To improve automatic layouts and enable a user-specific representation, an algo-
rithm that allows interactive changes of the orthogonal hyperedge geometry was
implemented. In this paper, we present this algorithm and give an overview of
such interactions. Additionally, several reductions of the hyperedge geometry are
shown. Furthermore, a local, automatic routing considering interactions on the
hyperedge geometry is presented. The consideration of domain-specific seman-
tics and the possibility of interactive changes is a new approach. All algorithms
were implemented in a self-developed software framework.
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1 Introduction

Schematic diagrams are used in graph-based engineering systems (GES). They focus
mainly on the structure of the design object. GES help to solve a specific design task. This
is primarily realized by the application of domain-specific languages. A GES is model-
centered and uses a meta-model. The design model contains real or abstract objects. It
is graphically represented in the GES and allows interactive editing.

The interactive treatment of these models, i.e., the design process, is a major concern
of our research. We developed procedures that support the modeler in the design process,
and we implemented these procedures in a framework for GES [1]. Graphical languages,
i.e., schematic diagrams, and their layout are of particular importance. Principles for
designing effective visual notation [2] for the depiction of vertices and edges are used
to reach a neat representation. Furthermore, common methods of graph drawing like the
placement of vertices and the routing of edges are applied. These representations need to
be embedded in their specific problem domain to acquire good readability, i.e., semantic
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transparency. This greatly improves the clarity, recognizability, and interpretability of
complex models.

In the past, automatic routing algorithms were developed [3] to fulfill domain-specific
requirements. But automatically generated layouts cannot always fully match the mod-
eler’s intention. Therefore, automatic layouts, e.g., activated by the movement, mirroring,
or rotating of vertices, should consider interactive changes made by the modeler on the
hyperedge geometry, while simultaneously preserving a neat layout.

The consideration of domain-specific semantics and the possibility of interactive
changes is a novel approach. In this paper, we focus on an orthogonal hyperedge repre-
sentation to ensure good readability, and we describe automatic routings that consider
manual changes.

In the following sections, we refer to the internal data structure ELADO (Extended
Layout Data Model) [1] to describe hypergraphs. In this data structure, vertices and
hyperedges are not immediately connected, they are connected via so-called pins. The
hyperedge geometry contains branch points and segments, while segments contain bends
and (horizontal or vertical) segment parts. To avoid redundant information, segments con-
tain no transit points. Transit points are pseudo-bends connecting two adjacent segment
parts with the same orientation: either horizontal or vertical. Additionally, hyperedges
are connected and acyclic, i.e., the hyperedge geometry is a tree. The vertices of this tree
are bends, branch points, and pins; the edges of this tree are segment parts.

Section 3 describes and classifies possible, interactive changes of hyperedges by
moving horizontal and vertical segment parts. This results in reductions of unwanted
states. In Sect. 4, we explain how automatic routings executed after the movement of
vertices consider the interactive changes mentioned in Sect. 3. Therefore we improved
the geometrically stable routing PartRoute [4], which is a modification of the automatic
routing OrthoRoute presented in [3]. Section 5 concludes the paper.

2 Related Work

Fundamental algorithms for drawing graphs were shown in [5], which is widely consid-
ered as a standard reference for graph drawing. A common set of aesthetic criteria was
defined to improve the readability of diagrams: the minimization of crossings, bends,
the length of the edges, or the area occupied by a drawing [6]. In [7] metrics were pro-
posed to quantify the aesthetic quality of diagrams. In [8] the authors show an algorithm
minimizing the number of hyperedge crossings. Additionally, in [9] the authors show an
approach that dynamically reorders the vertices within the layers to further reduce the
number of crossings. In [10] two crossing counting algorithms that predict the number of
crossings between orthogonally routed hyperedges are presented. But besides that, there
are only a few procedures for orthogonal hyperedge routing. An example is [11], where
two automatic routings are given, and one semi-automatic routing, which improves the
layout by local transformations, is added. A routing for directed hypergraphs with layers
is shown by Sander [12].
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3 Interactive Routing of Hyperedges

We now observe interactive changes of the hyperedge geometry. It is allowed only to
move horizontal segment parts vertically and vertical segment parts horizontally. There
are interactions that change the geometry of a hyperedge but not its structure. We call
them trivial interactions (Fig. 1 (a)). These change only the length of segment parts, i.e.,
segment parts can contract or expand. There are also nontrivial interactions that are char-
acterized by the transformation, genesis, or removal of bends, branch points, or segment
parts (Fig. 1 (b)). Therefore, it is necessary to classify all the possible interactions.

First of all, we denote by sp the moved segment part, or more precisely the segment
part that is about to be moved. Furthermore, we define the satellites s; and s, of sp.
These are the vertices incident to sp. Satellites can be bends, branch points, or pins. We
call the line segment between a satellite before an interaction and the same satellite after
an interaction the satellite’s trajectory.

We now study two kinds of interactions: interactions not causing collisions and inter-
actions causing collisions with adjacent segment parts (Fig. 1 (a), (b)). These interactions
depend completely on the satellites and the segment parts that are adjacent to sp. The
type of a satellite is then given by the triple (11, n2, n3) € {0, 1} where n is the number
of adjacent segment parts in the direction of movement of sp, n, is the number of adjacent
segment parts in the opposite direction of movement, and 73 is the number of adjacent
segment parts parallel to sp. It follows that there are 7 types of satellites. According to
ELADO, the type (0, 0, 1) (transit point) is not permitted.
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Fig. 1. (a) The right satellite collides with an adjacent segment part (trivial interaction). (b) The
left satellite is a pin. Two bend points and a segment part are generated (nontrivial interaction). The
right satellite collides with an adjacent segment part. (c) The left satellite collides with a branch
point, sp collides with a bend. (d) The left satellite collides with a branch point. The right satellite
collides with a segment part.
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A segment part sp can also be moved so that sp or the satellites collide with other
bends, branch points, or segment parts that are not adjacent to satellites (Fig. 1 (c), (d)).
The following types of collisions are then allowed: a satellite collides with a bend or a
branch point, a satellite collides with a segment part, or sp itself collides with a bend or
a branch point.
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First, we classify the bends or branch points colliding with a satellite depending on
the segment parts that are incident to those bends or branch points. We define the type of
such a colliding bend or branch point as the quadruplet (ny, nz, n3, ns) € {0, 1}* where
np is the number of incident segment parts in the direction of movement of sp, n, is
the number of incident segment parts in the opposite direction of movement, n3 is the
number of incident segment parts colliding with sp, and n4 is the number of incident
segment parts that are parallel to a potentially colliding segment part. There are 9 possible
types of colliding bends or branch points. According to ELADO, the types (0, 0, 0, 0)
(isolated point); (1, 0, 0, 0), (0, 1, 0, 0), (0,0, 1, 0), (0,0, 0, 1) (pins); and (1, 1, 0, 0),
(0,0, 1, 1) (transit points) are not permitted.

Second, we describe the bends or branch points colliding with sp itself depending on
the segment parts that are incident to them. The type of such a colliding bend or branch
point is then given by the triple (n1, nz, n3) € {0, 1} x {0, 1, 2} where n; is the number
of incident segment parts in the direction of movement of sp, ny is the number of incident
segment parts in the opposite direction of movement, and n3 is the number of incident
segment parts colliding with sp. There are 6 possible types. According to ELADO, the
types (0, 0, 0) (isolated point); (1, 0, 0), (0, 1, 0), (0, 0, 1) (pins); and (1, 1, 0), (0, 0, 2)
(transit points) are not permitted. If a bend or branch point collides with sp, we call it
an explicit collision. A bend or branch point that is located on a satellite’s trajectory can
also collide with a segment part. We then call it an implicit collision.

Third, we class the segment parts colliding with a satellite depending on their position
relative to sp. It is easy to see that there are only three cases. A colliding segment part
and sp can be parallel or orthogonal. In a special case, a satellite can also be moved
exactly onto a crossing.

Without a grid, it is not easy for users to force collisions, because it is nearly impos-
sible to move a segment part exactly onto an object. In this case, the position of sp is
automatically corrected if the distance between sp and a colliding object is smaller than
adefined parameter ¢. It is possible that multiple collisions appear simultaneously. Then
the collision with the smallest distance to the original position of sp is chosen to correct
sp.

In the first phase of the algorithm, the observation phase, the types of the satellites
are determined. According to the aforementioned classification, the colliding objects
and the bends and branch points on the trajectories of the satellites are determined. In
the second phase, a canonical form is created. The first aim is to reduce the types of
collisions so that satellites can only collide with bends, branch points, or temporary
transit points. If a satellite collides with a segment part (Fig. 1 (d)), then a temporary
transit point is generated on this segment part, and this segment part is divided into
two. If a satellite is moved onto a crossing, then a branch point is generated on this
crossing, and the two involved segment parts are divided into four. The position of these
generated transit points and branch points equals that of the satellite. The second aim
of this phase is to connect sp with bends or temporary transit points. If a satellite has
the type (0, 0, 0), i.e., the satellite is a pin (Fig. 1 (b)), a transit point is generated on
sp depending on the exact position of the mouse click and the length of sp. This transit
point divides sp into two segment parts. If the type is not (1, 0, 0) or (0, 1, 0), i.e., the
satellite is not a bend, a transit point is generated on the satellite including a segment
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part with length O to maintain the orthogonal layout. In the next phase, the satellites are
moved in the direction of movement, and the segment parts originally generated with
length O are expanded. The aim of this phase is to consider and handle collisions. If a
bend or branch point b is located on a satellite’s trajectory (i.e., implicit collision), and
there is a segment part in the opposite direction of movement, then b is transformed into
a branch point. In addition, the colliding segment part is divided into two segment parts,
and these are connected with b. If a satellite collides with a bend, a branch point (Fig. 1
(¢), (d)), or a temporary transit point b (Fig. 1 (a), (b), (d)), then b is connected with sp.
If the satellite is connected with a segment part in the opposite direction of movement,
then this segment part is connected with b, too. If sp collides with a bend or branch point
b (Fig. 1 (c)), then b is transformed to a branch point. In addition, the colliding segment
part is divided into two segment parts, and these are connected with b. At the end of this
phase, the unwanted structures in the hyperedge geometry are removed: Transit points,
geometrically identical segment parts (to avoid interfering lines), and segment parts with
length 0 are removed; branch points with valence 2 are transformed into bends.
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Fig. 2. (a) Automatic reduction of a cycle. (b) Automatic reduction of a stump.

In rare cases, some interactions can cause collisions that result in further unwanted
states in the hyperedge geometry: cycles and stumps', which have to be removed auto-
matically (Fig. 2). Of course, it is not predetermined how to reduce a cycle. The algorithm
prefers to remove new, implicitly generated connections.

4 Automatic Routing Considering Manual Changes

In Sect. 3, we observed interactive changes of the hyperedge geometry to improve auto-
matic routings. If another local, automatic routing is executed, e.g., by moving a vertex,
users expect it to consider interactive changes. Otherwise, all interactive changes are
lost. We improved the PartRoute method [4] to solve this task and explain the algorithm
in the following.

1A stump is defined as a leaf, which is not a pin.
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First, the PartRoute method is improved by choosing a flexible docking object; see
Fig. 3. We define the critical segments as those segments that are incident to the pins of
the moved vertex v, and we call the pins of v critical pins. The algorithm removes the
critical segments and resulting transit points, while the rest of the hyperedge geometry
remains. To find a suitable docking object, we search for the bend or branch point with
the minimal Euclidean distance to the critical pin, and we denote it by b. Then a routing
is executed in every cardinal direction. The type of the routing depends on the free
directions of b. In the free directions, b is a potential docking object. But if a segment
part is incident, i.e., this is not a free direction, a movable branch point is added on this
segment part. This branch point is another potential docking object. Horizontal segment
parts require two routings starting in this branch point with a northern or a southern
segment part, and vertical segment parts require two routings starting in this branch
point with an eastern or a western segment part. Therefore, there are up to 8 routings
and 4 potential docking objects if b has degree 4 and no free directions. From these
routings, the best one is chosen depending on the number of bends, the length of the
critical segment, and the distance to other vertices. The segment part with the minimal
Euclidean distance to the critical pin may also have a smaller distance to the critical pin
than the nearest bend or branch point b, though this segment part is not incident to b. In
this case, this segment part is an additional, potential docking object.

0o 0 0

Fig. 3. PartRoute with flexible docking objects. The nearest bend or branch point is b. It has
two free directions (east and south), in each of which a routing is performed. Additionally, two

routings are executed on the western and northern segment part each time. The best routing is the
one starting in b with an eastern segment part.

Having improved the PartRoute method by choosing flexible docking objects, the
next task was to improve it in such a way that interactive changes of the hyperedge
geometry are considered when a moved segment part sp is located on a critical segment.
W.l.o.g., spis vertical. If sp is horizontal the procedure is equivalent. The x-coordinate of
sp should be fixed, while the length of sp is still flexible (Fig. 4 (a), (b)). The locked state
of sp is dissolved when the routing is unsatisfying in terms of the length and the number
of bends (Fig. 4 (c)). The specific approach depends on the position of the critical pin
relative to sp.

We denote by s; the satellite with a smaller distance (in the tree) to the critical pin.
The other satellite is denoted by s2. Because sp is vertical the x-coordinate of s is fixed,
but the y-coordinate of s is flexible. The coordinates of s, are also fixed. After a vertex
v is moved, the critical pin is connected with s1 in a way that this path minimizes the
number of bends and the length of the path. This determines the y-coordinate of s7. If the
order of the y-coordinates of s; and s does not change, then sp contracts, expands, or



26 S. Helmke et al.

does not change its length (Fig. 4 (a), (b)). Otherwise, the locked state of sp is dissolved,
and the improved PartRoute method is used (Fig. 4 (c)).
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Fig. 4. PartRoute considering moved segment part sp. (a) sp expands. (b) sp contracts. (c) The
locked state of sp is dissolved. The y-coordinate of s would be smaller than the y-coordinate of
57, while the order before the movement of v was reversed.

5 Conclusion

In Sect. 3, we show several possibilities of how users can manipulate an automatic routing
by interactively changing the hyperedge geometry. A result of these manual changes is
the automatic reduction of a hyperedge geometry to avoid unwanted states. In Sect. 4,
we give several improvements to the PartRoute method for a more aesthetic routing
minimizing the length and the number of bends. Furthermore, we present a modification
of the PartRoute algorithm that considers manual interactions.

One challenge is that the PartRoute method and the OrthoRoute method differ signifi-
cantly in the degree of geometric flexibility. Therefore, we want to improve the PartRoute
algorithm so that it can automatically determine how geometrically flexible a routing
can be depending on the specific situation. A future task is to create a geometrically
flexible, automatic routing considering interactive changes—a dynamic, partial routing.
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