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Abstract Reinforcement Learning (RL) has emerged as an effective approach to
address a variety of complex control tasks. In a typical RL problem, an agent interacts
with the environment by perceiving observations and performing actions, with the
ultimate goal of maximizing the cumulative reward. In the traditional formulation,
the environment is assumed to be a fixed entity that cannot be externally controlled.
However, there exist several real-world scenarios in which the environment offers
the opportunity to configure some of its parameters, with diverse effects on the
agent’s learning process. In this contribution, we provide an overview of the main
aspects of environment configurability. We start by introducing the formalism of
the Configurable Markov Decision Processes (Conf-MDPs) and we illustrate the
solutions concepts. Then, we revise the algorithms for solving the learning problem
in Conf-MDPs. Finally, we present two applications of Conf-MDPs: policy space
identification and control frequency adaptation.

1 Introduction

Artificial Intelligence (Al) [32] and Machine Learning (ML) [23] are becoming
terms widespread in our daily life. The progressive increase of the amount of avail-
able data and the evolution of the computing systems have enabled ML to become
a powerful and effective decision-making tool. The traditional taxonomy of ML
paradigms includes supervised, unsupervised, and reinforcement learning. Nowa-
days, the former two have reached an almost mature level of development, having also
achieved marvelous results, especially in image classification [16], hand-written text
recognition [29], and recommendation systems [1]. Instead, Reinforcement Learn-
ing (RL) [36] has only recently emerged, beyond the research field, as a valuable
approach for several real-world applications. RL can be thought of as the most com-
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plete and general ML paradigm, to which supervised and unsupervised learning can
be reduced. Furthermore, it can be considered the paradigm closest to the intuitive
idea of the learning process, typical of biological entities.

The term reinforcement was introduced by Burrhus F. Skinner in behavioral psy-
chology to denote the attitude of organisms to strengthen a behavior if associated to
some desirable consequence [35]. Consider, for instance, a baby, an example of a
biological agent, learning how to walk. She will interact with the surrounding envi-
ronment in a trial and error fashion, receiving positive and negative feedback. Pro-
gressively, she will learn the proper movements in order to stay upright and, finally,
effectively walk. In the context of Al, RL refers to the computational approach to
learning for artificial agents, in which the inferaction between the agent and the
environment plays a central role.

The RL setting is composed of an (artificial) agent and an environment interacting
with one another [36]. The agent senses the state of the environment and performs
actions. Every action causes a transition of the environment to a new state, governed
by its dynamics (or transition model) P. The agent also receives from the envi-
ronment a reward signal R. The agent-environment interaction proceeds in several
(possibly infinite) epochs. The ultimate goal of the agent consists in determining
a policy m, i.e., a prescription (possibly stochastic) telling which action to play in
every state. This form of interaction encodes a sequential decision-making problem,
typically modeled with the mathematical formalism of the Markov Decision Pro-
cesses (MDPs) [30] (Fig. 1). The distinctive feature of RL, compared to the other
ML paradigms (supervised and unsupervised), is that the agent has to plan over a
possibly long horizon since the reward can be delayed. As a consequence, it might
be beneficial to sacrifice some reward achievable in the immediate future in order
to reach a more profitable region in the far future [36]. In the last decades, RL has
obtained remarkable success in several fields, including autonomous driving [13],
robotic locomotion [11], and video games [24], to mention a few.

Most of the RL literature considers the environment as a fixed entity, out of
any control. However, there exist several real-world scenarios in which a partial
intervention on the environment dynamics is allowed. Consider, for instance, the
task of learning how to drive a Formula 1 vehicle. The vehicle is a portion of the
environment and the driver has at her disposal several vehicle settings that can be
configured, while other parts of the environment are immutable. We call environment
configuration the activity of altering some environmental parameters.
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In this contribution, we provide a summary of the Ph.D. dissertation entitled
“Exploiting Environment Configurability in Reinforcement Learning” [18],' focused
on studying the different aspects of environment configurability. The structure of
the present contribution reflects the subdivision in parts of the dissertation. After
having introduced, in Sect.?2, the idea of “environment configuration” and having
provided some motivational examples, we outline the main results of the dissertation.
In Sect.3, we present the formalization of environment configurability, based on
the novel Configurable Markov Decision Process (Conf-MDP) framework. Then, in
Sect. 4, we briefly outline the approaches for learning in cooperative Conf-MDPs and
focus on the experiment of car configuration based on TORCS. Finally, in Sect.5,
we present two applications of the Conf-MDP framework. We conclude, in Sect. 6,
summarizing the results and discussing some future research directions.

2 Configurable Environments

As we mentioned in Sect. 1, the majority of the RL literature disregards the oppor-
tunity of configuring the environment, even when possible in the specific case of
application. Indeed, traditionally, the modification of the environment dynamics dur-
ing learning is considered the effect of a non-stationary process [2], i.e., a natural
evolution of the environment. Instead, the possibility to strategically act on the envi-
ronmental dynamics is studied in a limited number of works only. Some approaches
belonging to the planning area [12, 38], some are constrained to specific forms of
environment configurability [8, 9, 34], and others based on the curriculum learning
framework [4, 7]. The goal of the dissertation [18] is to provide a uniform treatment
of environment configurability in its diverse aspects. Before moving to the sum-
mary of the contributions, we present three motivational examples of environment
configuration.

Example 1 (Car Configuration) Consider a Formula 1 driver that has to learn how to
drive a Formula 1 car. The driver is the agent and the vehicle is a part of the environ-
ment, which is composed of other elements, like the road. The vehicle represents a
configurable part of the environment since it is possible to change some of its settings
(e.g., the wing orientation, the kind of tiers, and the brake repartition), whereas other
parts of the environment are not configurable, such as psychical laws. The goals of
the configuration may be different. First, we might want to find the vehicle settings
that best fit the agent’s needs, and allow she to learn the best performing policy.
Second, we might want to train the agent with different vehicle configurations in
order to speed up the learning process in a curriculum learning fashion. Notice that
the vehicle configuration can be carried out by the agent itself, i.e., the driver can
change some settings from its driving console, or by an external configurator, like a
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track engineer. Finally, both the agent and the external configurator share the same
goals: improve the agent’s learning experience, i.e., they act in what we denote as
cooperative setting.

Example 2 (Teacher-Student) Another example of cooperative behavior is the inter-
action between a student and a teacher. They both aim at maximizing the knowledge
acquired by the student, i.e., the agent. We can think of the teacher as either a physical
person or an online teaching platform. In both cases, from the student’s viewpoint,
the reaching style is part of the environment and can be configured and should be
tailored to the peculiarities of the student. Therefore, to select a suitable configura-
tion, the teacher has to be aware of the student’s capabilities that are to be inferred
by interaction with the student herself.

Example 3 (Supermarket) We now consider an example in which agent and con-
figurator no longer interact in a cooperative way. Suppose we are the owner of a
supermarket and we have to configure the placement of the goods on the shelves in
order to maximize our profit, so inducing customers to buy more. The customers,
i.e., the agents, might have a different interest compared to that of the supermarket
owner. Maybe they want to find the products they are interested in, in the smallest
amount of time or buy certain goods only. This is an example in which the agents, the
customers, and the configurator, the supermarket owner, show diverging interests.
Thus, we are in what we denote as non-cooperative setting [31]. Moreover, we can
distinguish between whether the agents are either aware or not of the configurator
presence, leading to different levels of strategical behavior.

3 Modeling Environment Configurability

In this section, we outline the main contributions related to the modelization of
configurable environments and the proposal of the corresponding solution concepts
(Part I of [18]).
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3.1 Configurable Markov Decision Processes

In order to represent the configuration opportunities the environment offers, we intro-
duce an extension of the MDP framework: the Configurable Markov Decision Pro-
cess (Conf-MDP) [22]. The main modification, compared to the traditional MDP, is
that we no longer have a transition model P, governing the dynamics of the environ-
ment since environment configuration has the precise effect of changing it. Instead,
we look at P just like the policy m, as an element that has to be determined as an
output of the learning process. In the following, we will refer to P as environment
configuration, instead of transition model, to highlight the features of the considered
setting. Furthermore, to account for the possibly different interests of agent and con-
figurator, we consider two reward functions Rag and Rcont for agent and configurator,
respectively (Fig. 2). With these two reward functions, we can define the performance
indexes: the expected returns J Z\’ép and Jg(’)‘;f, i.e., the expected discounted sum of
the rewards collected during the interaction with the environment:

(o] oo
w,P w,P t w,P P t
JAg = IE:Ag Z Y Rag.i+1 and Jgi = Econf Z Y Rconfr+1 |
t=0 t=0

where y € [0, 1] is the discount factor that provides the relative importance between
the reward collected in the present and those that will be collected in the future.
The general goal in a Conf-MDP consists in finding an optimal policy 7* together
with an optimal configuration P*. These tasks are carried out by the agent and the
configurator respectively. However, the notion of optimality strictly depends on the
kind of interaction taking place between the agent and the configurator, as we discuss
in the following section.

3.2 Solution Concepts

As we have illustrated in the examples presented in Sect. 2, the interaction between
the agent and the configurator can take place in different forms. In particular, we
distinguish between cooperative and non-cooperative Conf-MDPs.

In the cooperative setting, like in Examples 1 and 2, agent and configurator share
the same objectives. In other words, they have the same reward function R := Rag =
Rcont- In such a case, defining a suitable solution concept is straightforward, as we
look for an optimal policy 7 * and an optimal configuration P* they jointly maximize
the expected return J 7P defined in terms of the unique reward function R:

(", P*) € argmax(z, pyenxp {J”’P} . (1)

It is worth noting that the search of the optimal policy 7 * and the optimal configura-
tion P* is constrained in specific policy IT and configuration P spaces. The choice of
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these elements is highly relevant since it defines the actuations and the configuration
possibilities. Indeed, while in a large body of the RL literature, it is assumed that the
agent can play any policy (restriction are enforced for safety constraints in indus-
trial applications [10]), it is in general unreasonable that the configurator can change
arbitrarily the transition model. Indeed, in many real-world scenarios, the transition
model groups portions of the environment that are immutable, like physical laws,
and some that are mutable and, therefore, configurable (Example 1).

In the non-cooperative setting, like in Example 3, the agent and configurator
reward functions Rag and Rconf are kept distinct, to model situations in which the
two entities have diverging interests. In this setting, in order to define suitable solution
concepts, we have to resort to game-theoretic equilibria [33]. Moreover, the most
suitable solution concept depends on the degree of awareness of the two entities
about the presence of the other. While it is reasonable to assume that the configurator
is always aware of the agent presence, the reverse might not be the case. The simplest
situation is when the agent is unaware of the configurator presence. In such a case,
it will react to any modification of the environment, perceived as a non-stationary
evolution, with its optimal policy, that we call best-response policy, according to the
game-theoretic terminology. Thus, we can map this setting to a leader-follower game
in which the configurator (leader) wants to find the best configuration according to
its reward function Rconf, assuming that the agent (follower) will react with a best-
response policy. The solution concept suitable for this setting is the Stackelberg
equilibrium [37]:

Conf

P),P
P* € argmaxpep {JﬂAg( ) } ,

where Bag(P) € argmaxyen {JXQ’]P} is a best-response function that maps every

configuration P to a an optimal policy Bag(P) € IT under P2 Differently, when the
agent is aware of the configurator presence, we are in a more symmetric setting that
can be mapped to a simultaneous game. In such a case, it is reasonable to consider
the Nash equilibrium as a solution concept [26], in which we look for a policy-
configuration pair such that neither the agent nor the configurator has an interest in
unilaterally diverge from the equilibrium:

¥ € argmax,en {JXéP } and P* € argmaxpep {Jé’o,}f} .

2 The need for defining such a function derives from the fact that multiple best responses might
generate different expected returns when evaluated with the configurator reward. In the game theory
literature, common approaches consist in breaking ties in favor of the leader (strong Stackelberg
equilibrium) or in favor of the follower (weak Stackelberg equilibrium) [5].
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4 Learning in the Cooperative Configurable Markov
Decision Processes

In this section, we provide a brief outline of the learning algorithms for cooperative
Conf-MDPs, with particular reference to a car configuration example based on the
TORCS simulator (Part II of [18]).

In the context of cooperative Conf-MDPs, the learning problem consists in finding
an optimal policy 7 * together with an optimal environment configuration P* so
that they jointly maximize the expected return, as in Equation (1). In [18], two
algorithms are presented to tackle this problem. In the dissertation, we first focus
on Conf-MDPs with finite state-action spaces and we propose a safe algorithm, Safe
Policy Model Iteration (SPMI) [22], endowed with strong theoretical guarantees on
the performance improvement. However, despite being the first attempt to solve the
learning problem in Conf-MDPs, SPMI displays some limitations. First, it can be
employed in finite Conf-MDPs only. Second, it requires the full knowledge of the
environment dynamics, i.e., the configurator has to know not only the configurable
parameters but also their effect on the transition dynamics. In order to overcome these
limitations, we introduce a new algorithm, Relative Entropy Model Policy Search
(REMPS) [19]. REMPS applies to continuous state-actions and no longer requires
the knowledge of the transition model. The only assumption is that the configurator
must know which are the configurable environmental parameters, while their effect
on the transition model is learned from samples.

We tested REMPS on a simulated car configuration task based on the TORCS
simulator [15]. The agent has access to a low-dimensional state representation based
on the cars sensors (e.g., speed, focus, wheel speeds) and it can act on low-level
controllers (acceleration, braking, and steering). The agent’s goal consists of driving
the car minimizing the lap time. The configurator, instead, is allowed to modify three
configurable environmental parameters: rear wing orientation, front wing orientation,
and front-rear brake repartition. In Fig. 3, we show the expected return and the average
lap duration comparing REMPS, REPS (Relative Entropy Policy Search) [28], in
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Fig.3 Expected return and episode duration as a function of the number of iterations in the TORCS
experiment (10 runs, 80% c.i.)
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which the car is not configured and the initial configuration is kept fixed, and a
bot baseline. We can see that REMPS is able to outperform both REPS and the
bot in terms of final policy performance and in terms of learning speed, showing
that environment configuration can be beneficial also for speeding up the learning
process.

S Applications of Configurable Markov Decision Processes

In this section, we outline two cases of applications of Conf-MDPs in which the
environment configuration opportunities can play a relevant role (Part III of [18]):
policy space identification (Sect.5.1) and control frequency adaptation (Sect.5.2).

5.1 Policy Space Identification

In Example 2, about the teacher-student interaction, we have illustrated that in order to
wisely choose the environment configuration, i.e., the teaching style, the configurator
(teacher) has to be aware of the agent’s (student) capabilities. More formally, the
agent’s capabilities are related to its perceptions, actuations, and ability to map states
into actions. These three elements define the space of policies the agent can play,
i.e., the agent’s policy space. In this part of the dissertation [20], we study how to
identify the agent’s policy space by observing its behavior. Besides configurable
MDPs, knowing the policy space of an expert agent might be of interest also in
the imitation learning field [27] in order to prevent possible overfitting/underfitting
phenomena.

We assume that the agent’s policy is parametric, i.e., the policy my depends on a
parameter vector # € ®. Among the # parameters, the agent controls just a subset
of them, where “controls” means that the agent can change their value, while the
others are conventionally set to a fixed value. This represents a way of restricting
the agent’s policy space. For instance, suppose the agent is equipped with a neural
network policy and does not perceive a state variable. This can be represented by
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setting to zero the weights related to that state variable. A similar construction can be
performed to represent limitations in the agent’s actuation and ability to map states
to actions (Fig.4).

In the dissertation [18], we propose an approach based on generalized likelihood
ratio tests [3] to identify the set of parameters that the agent controls. Furthermore,
we provide guarantees in terms of the probability of misidentification and numerical
simulations on benchmark domains.

5.2 Control Frequency Adaptation

The typical RL setting deals with discrete-time problems that are obtained from the
time discretization of a continuous-time problem [17]. Time discretization requires
selecting a control frequency that is a design choice and represents, in all regards,
configurable environmental parameter. This problem arises in several real-world
domains, including robot control [14] and trading [25]. On one hand, we might be
tempted to prefer high frequencies because they provide better control opportunities,
leading to possibly more performing policies. However, in such a case, actions will
last for a small time interval, thus, their effect on the environment will not be very
clear. On the contrary, low frequencies sacrifice some control opportunities, but each
action will last longer, making its effect more visible, with a possible benefit on the
sample complexity. The question we address in this part of the dissertation [18] is
whether we can exploit this trade-off to define a notion of optimal control frequency.

We propose to model the adaptation of the control frequency by means of action
persistence [21], which consists in the repetition of each action for multiple k con-
secutive time steps. We focus on the trade-off in the choice of the persistence k. We
first show that by increasing k, we give up control opportunities and, consequently,
the optimal policy performance decreases. To visualize the beneficial effect of a
large k on the sample complexity, we propose a novel algorithm, Persistent Fitted
Q-Iterations (PFQI) [21]. PFQI is a batch RL algorithm and extends the classical
Fitted Q-Iterations (FQI) [6] to account for action persistence. PFQI enjoys a sample
complexity that decreases with the persistence k. Therefore, we observe that the opti-
mal value of k depends on the number of samples (batch size) available for learning.
Intuitively, when the batch size is large, we can afford a small value of k, whereas
with few samples, we benefit from the regularization effect of using a high persis-
tence. Furthermore, we propose a heuristic approach to suggest an approximately
optimal value of k.

We tested PFQI on a simple forex trading simulator. In Fig.5, we show the per-
formance of the policy learned with PFQI for different batch sizes and different
persistence values. First of all, we notice a generally improving trend as the batch
size increases. If we look at small batch sizes, we observe that the best performance is
obtained with high values of persistence (k = 4 or k = 8), whereas as the batch size
increases, the best performance is attained by small values of persistence, namely
k =1 for batch size 400.
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Fig. 5 Expected return as a
function of the batch size in
the forex experiment (10
runs, 95% c.i.)
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6 Conclusions

In this contribution, we summarized the results of the Ph.D. dissertation [18]. We
started by introducing the novel framework of the Conf-MDPs to model several
real-world situations in which agent interacts with a configurator, entitled to mod-
ifying some environmental parameters. Then, we provided learning algorithms for
the cooperative setting, showing that environment configuration can be beneficial
for the performance of the agent’s policy. We have seen that knowing the agent’s
policy space is important for suitably choosing an environment configuration and
we presented an approach for identifying it from samples. Finally, we have stud-
ied the effects on the learning performance of a specific configurable environmental
parameter, namely the control frequency.

We hope, with this dissertation, to have shed light on a novel topic of interest
in the RL community. Numerous directions could be further explored. From the
modelization standpoint, it would be worth considering the possibility of having
multiple agents interacting with multiple configutators acting in the same environ-
ment. Concerning the learning problem, online approaches for searching for the best
configuration in the cooperative setting should be investigated, while the learning
problem for the non-cooperative setting has to be further deepened. Finally, con-
cerning action persistence, our approach is limited to a fixed persistence. It would be
interesting studying the possibility of having a control frequency that dynamically
changes during the learning process.
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International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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