Skip to main content

Extended-Spectrum β-Lactamase and AmpC β -Lactamase-Producing Bacteria in Livestock Animals

  • Living reference work entry
  • First Online:
Zoonoses: Infections Affecting Humans and Animals
  • 38 Accesses

Abstract

In the past decades, we faced a rapid increase in human infections caused by third-generation cephalosporin-resistant bacteria, e.g., Escherichia (E.) coli, Klebsiella (K.) pneumoniae, and Salmonella, mainly due to the plasmid-encoded production of extended-spectrum β-lactamases (ESBLs) and AmpC β-lactamases. The primary reservoirs of ESBL/AmpC-producing bacteria are still contentious. However, it is believed that livestock animal- and food-related sources play a possible but yet not quantifiable role in the spread of such bacteria. The use of large quantities of antibiotics in this sector, but also in the medical field, undoubtedly contributes to the global rise of antimicrobial resistant (AMR) bacteria. Entry of multidrug-resistant microorganisms early in the livestock production cycle, as well as their frequent occurrence in healthy animals and food products, together with the finding of common molecular characteristics suggests that a livestock animal-to-human transmission could occur. However, links between ESBL/AmpC-producing bacteria from these two sources have been drawn mainly from observational epidemiological data while studies providing unquestionable proofs for transfer directionality and quantifying the risk for human health are limited. In any case, food animal production should be regarded a major player in the expansion of the global resistome. Therefore, efforts need to be further directed toward reducing reliance on antimicrobials in this sector wherever possible. More than ever, good veterinary and farming practices, including responsible use of antibiotics and implementation of biosecurity, hygiene, and disease prevention, e.g., by vaccination or by improving the animals’ gut health, are regarded essential in the containment of AMR. Many fields, including medicine, veterinary medicine, animal husbandry, environment, and trade, are involved in this complex issue. Thus, isolated, sectorial efforts in the food animal production field will not be that efficient unless concerted efforts from all those involved are applied on a global scale, following a One Health approach.

ESBLs in livestock – How big is the piece in the complex puzzle on antimicrobial resistance?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Aarestrup FM (2005) Veterinary drug usage and antimicrobial resistance in bacteria of animal origin. Basic Clin Pharmacol Toxicol 96(4):271–281

    Article  CAS  PubMed  Google Scholar 

  • Aarestrup FM et al (2001) Effect of abolishment of the use of antimicrobial agents for growth promotion on occurrence of antimicrobial resistance in fecal enterococci from food animals in Denmark. Antimicrob Agents Chemother 45(7):2054–2059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • AbuOun M et al (2021) A genomic epidemiological study shows that prevalence of antimicrobial resistance in Enterobacterales is associated with the livestock host, as well as antimicrobial usage. Microb Genom 7(10):000630

    CAS  PubMed  PubMed Central  Google Scholar 

  • Agerso Y, Aarestrup FM (2013) Voluntary ban on cephalosporin use in Danish pig production has effectively reduced extended-spectrum cephalosporinase-producing Escherichia coli in slaughter pigs. J Antimicrob Chemother 68(3):569–572

    Article  CAS  PubMed  Google Scholar 

  • Anonymous (2007) Joint FAO/WHO/OIE expert meeting on critically important antimicrobials. Report of the FAO/WHO/OIE expert meeting, 26–30 Nov 2007. FAO, Rome

    Google Scholar 

  • Apostolakos I et al (2020) High-resolution characterisation of ESBL/pAmpC-producing Escherichia coli isolated from the broiler production pyramid. Sci Rep 10(1):11123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arcilla MS et al (2017) Import and spread of extended-spectrum beta-lactamase-producing Enterobacteriaceae by international travellers (COMBAT study): a prospective, multicentre cohort study. Lancet Infect Dis 17(1):78–85

    Article  PubMed  Google Scholar 

  • Bai L et al (2015) Prevalence of Salmonella isolates from chicken and pig slaughterhouses and emergence of ciprofloxacin and cefotaxime co-resistant S. enterica Serovar Indiana in Henan, China. PLoS One 10(12):e0144532

    Article  PubMed  PubMed Central  Google Scholar 

  • Bergenholtz RD et al (2009) Characterization of genetic determinants of extended-spectrum cephalosporinases (ESCs) in Escherichia coli isolates from Danish and imported poultry meat. J Antimicrob Chemother 64(1):207–209

    Article  CAS  PubMed  Google Scholar 

  • Bergspica I et al (2020) Extended-spectrum beta-lactamase (ESBL) producing Escherichia coli in pigs and pork meat in the European Union. Antibiotics (Basel) 9(10):678

    Article  CAS  PubMed  Google Scholar 

  • Bevan ER et al (2017) Global epidemiology of CTX-M beta-lactamases: temporal and geographical shifts in genotype. J Antimicrob Chemother 72(8):2145–2155

    Article  CAS  PubMed  Google Scholar 

  • Borjesson S et al (2013) Characterization of plasmid-mediated AmpC-producing E. coli from Swedish broilers and association with human clinical isolates. Clin Microbiol Infect 19(7):E309–E311

    Article  CAS  PubMed  Google Scholar 

  • Bortolaia V et al (2010) Escherichia coli producing CTX-M-1, -2, and -9 group beta-lactamases in organic chicken egg production. Antimicrob Agents Chemother 54(8):3527–3528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bortolaia V et al (2011) Potential pathogenicity and host range of extended-spectrum beta-lactamase-producing Escherichia coli isolates from healthy poultry. Appl Environ Microbiol 77(16):5830–5833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brinas L et al (2003) Beta-lactamase characterization in Escherichia coli isolates with diminished susceptibility or resistance to extended-spectrum cephalosporins recovered from sick animals in Spain. Microb Drug Resist 9(2):201–209

    Article  CAS  PubMed  Google Scholar 

  • BTK-AGTAM (2015) Leitlinien für den sorgfältigen Umgang mit antibakteriell wirksamen Tierarzneitmitteln. https://www.bundestieraerztekammer.de/tieraerzte/leitlinien/. Accessed 03 Aug 2022

  • Burch DGS et al (2008) Guidelines for antimicrobial use in swine. In: Guardabassi L, Jensen LB, Kruse H (eds) Guide to antimicrobial use in animals. Blackwell Publishing, Ames, pp 102–125

    Chapter  Google Scholar 

  • Bush K, Bradford PA (2016) Beta-lactams and beta-lactamase inhibitors: an overview. Cold Spring Harb Perspect Med 6(8):a025247

    Article  PubMed  PubMed Central  Google Scholar 

  • Bush K, Bradford PA (2020) Epidemiology of beta-lactamase-producing pathogens. Clin Microbiol Rev 33(2):e00047–e00019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bush K, Fisher JF (2011) Epidemiological expansion, structural studies, and clinical challenges of new beta-lactamases from gram-negative bacteria. Annu Rev Microbiol 65:455–478

    Article  CAS  PubMed  Google Scholar 

  • Calbo E et al (2011) Foodborne nosocomial outbreak of SHV-1 and CTX-M-15-producing Klebsiella pneumoniae: epidemiology and control. Clin Infect Dis 52(6):743–749

    Article  PubMed  Google Scholar 

  • Canton R et al (2008) Prevalence and spread of extended-spectrum beta-lactamase-producing Enterobacteriaceae in Europe. Clin Microbiol Infect 14(Suppl 1):144–153

    Article  CAS  PubMed  Google Scholar 

  • Carattoli A (2008) Animal reservoirs for extended spectrum beta lactamase producers. Clin Microbiol Infect 14:117–123

    Article  PubMed  Google Scholar 

  • Carattoli A (2009) Resistance plasmid families in Enterobacteriaceae. Antimicrob Agents Chemother 53(6):2227–2238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carattoli A (2011) Plasmids in gram negatives: molecular typing of resistance plasmids. Int J Med Microbiol 301(8):654–658

    Article  CAS  PubMed  Google Scholar 

  • Carattoli A (2013) Plasmids and the spread of resistance. Int J Med Microbiol 303(6–7):298–304

    Article  CAS  PubMed  Google Scholar 

  • Casella T et al (2017) High prevalence of ESBLs in retail chicken meat despite reduced use of antimicrobials in chicken production, France. Int J Food Microbiol 257:271–275

    Article  CAS  PubMed  Google Scholar 

  • Cavaco LM et al (2008) Selection and persistence of CTX-M-producing Escherichia coli in the intestinal flora of pigs treated with amoxicillin, ceftiofur, or cefquinome. Antimicrob Agents Chemother 52(10):3612–3616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chantziaras I et al (2014) Correlation between veterinary antimicrobial use and antimicrobial resistance in food-producing animals: a report on seven countries. J Antimicrob Chemother 69(3):827–834

    Article  CAS  PubMed  Google Scholar 

  • Chenouf NS et al (2021) Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae from broiler liver in the center of Algeria, with detection of CTX-M-55 and B2/ST131-CTX-M-15 in Escherichia coli. Microb Drug Resist 27(2):268–276

    Article  CAS  PubMed  Google Scholar 

  • CIPARS (2002–2021) Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS) reports. https://www.canada.ca/en/public-health/services/surveillance/canadian-integrated-program-antimicrobial-resistance-surveillance-cipars.html. Accessed 03 Aug 2022

  • Cohen Stuart J et al (2012) Comparison of ESBL contamination in organic and conventional retail chicken meat. Int J Food Microbiol 154(3):212–214

    Article  PubMed  Google Scholar 

  • Constable PD et al (2008) Guidelines for antimicrobial use in cattle. In: Guardabassi L, Jensen LB, Kruse H (eds) Guide to antimicrobial use in animals. Blackwell Publishing, Ames, pp 143–160

    Chapter  Google Scholar 

  • Cortes P et al (2010) Isolation and characterization of potentially pathogenic antimicrobial-resistant Escherichia coli strains from chicken and pig farms in Spain. Appl Environ Microbiol 76(9):2799–2805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Andrea MM et al (2013) CTX-M-type beta-lactamases: a successful story of antibiotic resistance. Int J Med Microbiol 303(6–7):305–317

    Article  PubMed  Google Scholar 

  • D’Costa VM et al (2011) Antibiotic resistance is ancient. Nature 477(7365):457–461

    Article  PubMed  Google Scholar 

  • da Costa PM et al (2013) Transfer of multidrug-resistant bacteria between intermingled ecological niches: the interface between humans, animals and the environment. Int J Environ Res Public Health 10(1):278–294

    Article  PubMed  PubMed Central  Google Scholar 

  • Dahms C et al (2015) Occurrence of ESBL-producing Escherichia coli in livestock and farm workers in Mecklenburg-Western Pomerania, Germany. PLoS One 10(11):e0143326

    Article  PubMed  PubMed Central  Google Scholar 

  • DANMAP (2003–2021) Danish Integrated Antimicrobial Resistance Monitoring and Research Programme (DANMAP) Reports. https://www.danmap.org. Accessed 03 Aug 2022

  • de Been M et al (2014) Dissemination of cephalosporin resistance genes between Escherichia coli strains from farm animals and humans by specific plasmid lineages. PLoS Genet 10(12):e1004776

    Article  PubMed  PubMed Central  Google Scholar 

  • de Jong A et al (2013) Pan-European resistance monitoring programmes encompassing food-borne bacteria and target pathogens of food-producing and companion animals. Int J Antimicrob Agents 41(5):403–409

    Article  PubMed  Google Scholar 

  • De Koster S et al (2021) ESBL-producing, carbapenem- and ciprofloxacin-resistant Escherichia coli in Belgian and Dutch broiler and pig farms: a cross-sectional and cross-border study. Antibiotics (Basel) 10(8):945

    Article  PubMed  Google Scholar 

  • De Lucia A et al (2021) Reduction in antimicrobial resistance prevalence in Escherichia coli from a pig farm following withdrawal of group antimicrobial treatment. Vet Microbiol 258:109125

    Article  PubMed  Google Scholar 

  • Dheilly A et al (2012) Resistance gene transfer during treatments for experimental avian colibacillosis. Antimicrob Agents Chemother 56(1):189–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diab M et al (2017) High prevalence of non-ST131 CTX-M-15-producing Escherichia coli in healthy cattle in Lebanon. Microb Drug Resist 23(2):261–266

    Article  CAS  PubMed  Google Scholar 

  • Dierikx CM et al (2012) Occurrence and characteristics of extended-spectrum-beta-lactamase- and AmpC-producing clinical isolates derived from companion animals and horses. J Antimicrob Chemother 67(6):1368–1374

    Article  CAS  PubMed  Google Scholar 

  • Dierikx C et al (2013) Extended-spectrum beta-lactamase- and AmpC-beta-lactamase-producing Escherichia coli in Dutch broilers and broiler farmers. J Antimicrob Chemother 68(1):60–67

    Article  CAS  PubMed  Google Scholar 

  • Djeffal S et al (2017) Prevalence and clonal relationship of ESBL-producing Salmonella strains from humans and poultry in northeastern Algeria. BMC Vet Res 13(1):132

    Article  PubMed  PubMed Central  Google Scholar 

  • Dohmen W et al (2015) Carriage of extended-spectrum beta-lactamases in pig farmers is associated with occurrence in pigs. Clin Microbiol Infect 21(10):917–923

    Article  CAS  PubMed  Google Scholar 

  • Dohmen W et al (2017) Risk factors for ESBL-producing Escherichia coli on pig farms: a longitudinal study in the context of reduced use of antimicrobials. PLoS One 12(3):e0174094

    Article  PubMed  PubMed Central  Google Scholar 

  • Doi Y et al (2010) Extended-spectrum and CMY-type beta-lactamase-producing Escherichia coli in clinical samples and retail meat from Pittsburgh, USA and Seville, Spain. Clin Microbiol Infect 16(1):33–38

    Article  CAS  PubMed  Google Scholar 

  • Dropa M, Daoud Z (2022) Editorial: the global threat of carbapenem-resistant gram-negative bacteria. Front Cell Infect Microbiol 12:974268

    Article  PubMed  PubMed Central  Google Scholar 

  • Duprilot M et al (2020) Success of Escherichia coli O25b:H4 sequence type 131 clade C associated with a decrease in virulence. Infect Immun 88(12):e00576–e00520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duse A et al (2015) Risk factors for antimicrobial resistance in fecal Escherichia coli from preweaned dairy calves. J Dairy Sci 98(1):500–516

    Article  CAS  PubMed  Google Scholar 

  • Dutil L et al (2010) Ceftiofur resistance in Salmonella enterica serovar Heidelberg from chicken meat and humans, Canada. Emerg Infect Dis 16(1):48–54

    Article  PubMed  PubMed Central  Google Scholar 

  • EC (2019) Regulation (EU) 2019/6 of the European Parliament and of the Council of 11 December 2018 on Veterinary Medicinal Products and Repealing Directive 2001/82/EC

    Google Scholar 

  • Egea P et al (2012) Increased raw poultry meat colonization by extended spectrum beta-lactamase-producing Escherichia coli in the south of Spain. Int J Food Microbiol 159(2):69–73

    Article  CAS  PubMed  Google Scholar 

  • European Centre for Disease Prevention and Control (ECDC), European Food Safety Authority (EFSA) and European Medicines Agency (EMA) (2021) Third joint inter-agency report on integrated analysis of consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals in the EU/EEA, JIACRA III. 2016–2018. ESCD/EFSA/EMA, Stockholm/Parma/Amsterdam, 2021. https://doi.org/10.2903/j.efsa.2021.6712

  • European Food Safety Authority (EFSA) (2012) Technical specifications on the harmonised monitoring and reporting of antimicrobial resistance in Salmonella, Campylobacter and indicator Escherichia coli and Enterococcus spp. bacteria transmitted through food. EFSA J 10(6):2742

    Google Scholar 

  • European Food Safety Authority (EFSA)/European Centre for Disease Prevention and Control (ECDC) (2013) EU summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food 2011. EFSA J 11(5):3196

    Google Scholar 

  • European Food Safety Authority (EFSA)/European Centre for Disease Prevention and Control (ECDC) (2022) The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2019–2020. EFSA J 20(3:7209):197

    Google Scholar 

  • European Medicines Agency (EMA) (2019) Reflection paper on the prophylactic use of antimicrobials in animals in the context of Article 107(3) of Regulation (EU) 2019/6

    Google Scholar 

  • European Medicines Agency (EMA), European Surveillance of Veterinary Antimicrobial Consumption (ESVAC) (2021) Sales of Veterinary Antimicrobial Agents in 31 European Countries in 2019 and 2020; (EMA/58183/2021)

    Google Scholar 

  • Ewers C et al (2010) Emergence of human pandemic O25:H4-ST131 CTX-M-15 extended-spectrum beta-lactamase-producing Escherichia coli among companion animals. J Antimicrob Chemother 65:651–660

    Article  CAS  PubMed  Google Scholar 

  • Ewers C et al (2011) Extended-spectrum beta-lactamases-producing gram-negative bacteria in companion animals: action is clearly warranted! Berl Munch Tierarztl Wochenschr 124(3–4):94–101

    PubMed  Google Scholar 

  • Ewers C et al (2012) Extended-spectrum beta-lactamase-producing and AmpC-producing Escherichia coli from livestock and companion animals, and their putative impact on public health: a global perspective. Clin Microbiol Infect 18(7):646–655

    Article  CAS  PubMed  Google Scholar 

  • Ewers C et al (2014) CTX-M-15-D-ST648 Escherichia coli from companion animals and horses: another pandemic clone combining multiresistance and extraintestinal virulence? J Antimicrob Chemother 69(5):1224–1230

    Article  CAS  PubMed  Google Scholar 

  • Ewers C et al (2016) Genome sequence of OXA-23 producing Acinetobacter baumannii IHIT7853, a carbapenem-resistant strain from a cat belonging to international clone IC1. Gut Pathog 8:37

    Article  PubMed  PubMed Central  Google Scholar 

  • Ewers C et al (2021) Genomic diversity and virulence potential of ESBL- and AmpC-beta-lactamase-producing Escherichia coli strains from healthy food animals across Europe. Front Microbiol 12:626774

    Article  PubMed  PubMed Central  Google Scholar 

  • Fey PD et al (2000) Ceftriaxone-resistant salmonella infection acquired by a child from cattle. N Engl J Med 342(17):1242–1249

    Google Scholar 

  • Fischer J et al (2012) Escherichia coli producing VIM-1 carbapenemase isolated on a pig farm. J Antimicrob Chemother 67(7):1793–1795

    Article  CAS  PubMed  Google Scholar 

  • Fischer J et al (2014) blaCTX-M-15-carrying Escherichia coli and Salmonella isolates from livestock and food in Germany. J Antimicrob Chemother 69(11):2951–2958

    Article  CAS  PubMed  Google Scholar 

  • Fischer J et al (2017) Simultaneous occurrence of MRSA and ESBL-producing Enterobacteriaceae on pig farms and in nasal and stool samples from farmers. Vet Microbiol 200:107–113

    Article  PubMed  Google Scholar 

  • Food and Drug Administration Center for Veterinary Medicine FaDACfV (2017) FDA announces implementation of GFI#213, outlines continuing efforts to address antimicrobial resistance CVM update 3 January 2017. https://www.aasv.org/news/story.php?id=9531. Accessed 03 Aug 2022

  • Fournier C et al (2020) Occurrence of CTX-M-15- and MCR-1-producing Enterobacterales in pigs in Portugal: evidence of direct links with antibiotic selective pressure. Int J Antimicrob Agents 55(2):105802

    Article  CAS  PubMed  Google Scholar 

  • Friese A et al (2013) Faecal occurrence and emissions of livestock-associated methicillin-resistant Staphylococcus aureus (laMRSA) and ESBL/AmpC-producing E. coli from animal farms in Germany. Berl Munch Tierarztl Wochenschr 126(3–4):175–180

    PubMed  Google Scholar 

  • Frye JG et al (2008) Analysis of Salmonella enterica with reduced susceptibility to the third-generation cephalosporin ceftriaxone isolated from U.S. cattle during 2000–2004. Microb Drug Resist 14(4):251–258

    Article  CAS  PubMed  Google Scholar 

  • Gaire TN et al (2020) Age dependence of antimicrobial resistance among fecal bacteria in animals: a scoping review. Front Vet Sci 7:622495

    Article  PubMed  Google Scholar 

  • Gazal LES et al (2020) Detection of ESBL/AmpC-producing and fosfomycin-resistant Escherichia coli from different sources in poultry production in Southern Brazil. Front Microbiol 11:604544

    Article  PubMed  Google Scholar 

  • Gelalcha BD, Kerro Dego O (2022) Extended-spectrum beta-lactamases producing Enterobacteriaceae in the USA dairy cattle farms and implications for public health. Antibiotics (Basel) 11(10):1313

    Article  CAS  PubMed  Google Scholar 

  • Geser N et al (2012a) Occurrence and characteristics of extended-spectrum beta-lactamase (ESBL) producing Enterobacteriaceae in food producing animals, minced meat and raw milk. BMC Vet Res 8:21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geser N et al (2012b) Molecular identification of extended-spectrum-beta-lactamase genes from Enterobacteriaceae isolated from healthy human carriers in Switzerland. Antimicrob Agents Chemother 56(3):1609–1612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert N (2012) Rules tighten on use of antibiotics on farms. Nature 481(7380):125

    Article  CAS  PubMed  Google Scholar 

  • Girlich D et al (2007) Extended-spectrum beta-lactamase CTX-M-1 in Escherichia coli isolates from healthy poultry in France. Appl Environ Microbiol 73(14):4681–4685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guardabassi L, Kruse H (2008) Principles of prudent and rational use of antimicrobials in animals. In: Guardabassi L, Jensen LB, Kruse H (eds) Guide to antimicrobial use in animals. Blackwell Publishing, Ames, pp 1–12

    Chapter  Google Scholar 

  • Guardabassi L et al (2018) Optimization of antimicrobial treatment to minimize resistance selection. Microbiol Spectr 6(3):ARBA-0018-2017

    Article  Google Scholar 

  • Guenther S et al (2011) Extended-spectrum beta-lactamases producing E. coli in wildlife, yet another form of environmental pollution? Front Microbiol 2:246

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta A et al (2003) Emergence of multidrug-resistant Salmonella enterica serotype Newport infections resistant to expanded-spectrum cephalosporins in the United States. J Infect Dis 188(11):1707–1716

    Article  CAS  PubMed  Google Scholar 

  • Hammerum AM et al (2012) Characterization of CTX-M-14- and CTX-M-15-producing Escherichia coli of porcine origin. J Antimicrob Chemother 67(8):2047–2049

    Article  CAS  PubMed  Google Scholar 

  • Hammerum AM et al (2014) Characterization of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli obtained from Danish pigs, pig farmers and their families from farms with high or no consumption of third- or fourth-generation cephalosporins. J Antimicrob Chemother 69(10):2650–2657

    Article  CAS  PubMed  Google Scholar 

  • Hansen KH et al (2014) Strain diversity of CTX-M-producing Enterobacteriaceae in individual pigs: insights into the dynamics of shedding during the production cycle. Appl Environ Microbiol 80(21):6620–6626

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasman H et al (2005) Beta-lactamases among extended-spectrum beta-lactamase (ESBL)-resistant Salmonella from poultry, poultry products and human patients in The Netherlands. J Antimicrob Chemother 56(1):115–121

    Article  CAS  PubMed  Google Scholar 

  • Hering J et al (2014) Prevalence and potential risk factors for the occurrence of cefotaxime resistant Escherichia coli in German fattening pig farms--a cross-sectional study. Prev Vet Med 116(1–2):129–137

    Article  PubMed  Google Scholar 

  • Hiki M et al (2015) Decreased resistance to broad-spectrum cephalosporin in Escherichia coli from healthy broilers at farms in Japan after voluntary withdrawal of ceftiofur. Foodborne Pathog Dis 12(7):639–643

    Article  CAS  PubMed  Google Scholar 

  • Hille K et al (2017) Cefotaxime-resistant E. coli in dairy and beef cattle farms-joint analyses of two cross-sectional investigations in Germany. Prev Vet Med 142:39–45

    Article  PubMed  Google Scholar 

  • Hordijk J et al (2013) Within-farm dynamics of ESBL/AmpC-producing Escherichia coli in veal calves: a longitudinal approach. J Antimicrob Chemother 68(11):2468–2476

    Article  CAS  PubMed  Google Scholar 

  • Huijbers PM et al (2015) Methicillin-resistant Staphylococcus aureus and extended-spectrum and AmpC beta-lactamase-producing Escherichia coli in broilers and in people living and/or working on organic broiler farms. Vet Microbiol 176(1–2):120–125

    Article  PubMed  Google Scholar 

  • Huizinga P et al (2019) Decreasing prevalence of contamination with extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBL-E) in retail chicken meat in The Netherlands. PLoS One 14(12):e0226828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter PA et al (2010) Antimicrobial-resistant pathogens in animals and man: prescribing, practices and policies. J Antimicrob Chemother 65:i3–i17

    Article  CAS  PubMed  Google Scholar 

  • Jacoby GA (2009) AmpC beta-lactamases. Clin Microbiol Rev 22(1):161–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen LB et al (2006) First description of an oxyimino-cephalosporin-resistant, ESBL-carrying Escherichia coli isolated from meat sold in Denmark. J Antimicrob Chemother 57(4):793–794

    Article  CAS  PubMed  Google Scholar 

  • Jerab J et al (2022) Real-world data on antibiotic group treatment in European livestock: drivers, conditions, and alternatives. Antibiotics (Basel) 11(8):1046

    Article  PubMed  Google Scholar 

  • Jouini A et al (2007) Characterization of CTX-M and SHV extended-spectrum beta-lactamases and associated resistance genes in Escherichia coli strains of food samples in Tunisia. J Antimicrob Chemother 60(5):1137–1141

    Article  CAS  PubMed  Google Scholar 

  • Jouini A et al (2021) First detection of human ST131-CTX-M-15-O25-B2 clone and high-risk clonal lineages of ESBL/pAmpC-producing E. coli isolates from diarrheic poultry in Tunisia. Antibiotics (Basel) 10(6):670

    Article  CAS  PubMed  Google Scholar 

  • JVARM (2000–2017) Japanese Veterinary Antimicrobial Resistance Monitoring System (JVARM) reports. https://www.maff.go.jp/nval/english/AMR/Monitoring/index.html. Accessed 03 Aug 2022

  • Kaesbohrer A et al (2019) Diversity in prevalence and characteristics of ESBL/pAmpC producing E. coli in food in Germany. Vet Microbiol 233:52–60

    Article  CAS  PubMed  Google Scholar 

  • Kakooza S et al (2021) Epidemiological dynamics of extended-spectrum beta-lactamase- or AmpC beta-lactamase-producing Escherichia coli screened in apparently healthy chickens in Uganda. Scientifica (Cairo) 2021:3258059

    PubMed  Google Scholar 

  • Kasabova S et al (2021) Antibiotic usage pattern in broiler chicken flocks in Germany. Front Vet Sci 8:673809

    Article  PubMed  PubMed Central  Google Scholar 

  • Kluytmans JA et al (2013) Extended-spectrum beta-lactamase-producing Escherichia coli from retail chicken meat and humans: comparison of strains, plasmids, resistance genes, and virulence factors. Clin Infect Dis 56(4):478–487

    Article  CAS  PubMed  Google Scholar 

  • Koeck R et al (2018) Carbapenem-resistant Enterobacteriaceae in wildlife, food-producing, and companion animals: a systematic review. Clin Microbiol Infect 24(12):1241–1250

    Article  Google Scholar 

  • Kojima A et al (2005) Extended-spectrum-beta-lactamase-producing Escherichia coli strains isolated from farm animals from 1999 to 2002: report from the Japanese Veterinary Antimicrobial Resistance Monitoring Program. Antimicrob Agents Chemother 49(8):3533–3537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kola A et al (2012) High prevalence of extended-spectrum-beta-lactamase-producing Enterobacteriaceae in organic and conventional retail chicken meat, Germany. J Antimicrob Chemother 67(11):2631–2634

    Article  CAS  PubMed  Google Scholar 

  • Kraemer JG et al (2017) Prevalence of extended-spectrum beta-lactamase-producing Enterobacteriaceae and Methicillin-resistant Staphylococcus aureus in pig farms in Switzerland. Sci Total Environ 603-604:401–405

    Article  CAS  PubMed  Google Scholar 

  • Kuenzli E et al (2014) High colonization rates of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli in Swiss travellers to South Asia- a prospective observational multicentre cohort study looking at epidemiology, microbiology and risk factors. BMC Infect Dis 14:528

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuhnke D et al (2020) Occurrence of ESBL-producing Escherichia coli in healthy, living food-producing animals in Europe: a systematic review. CAB Rev 15:1–13

    Google Scholar 

  • Laube H et al (2013) Longitudinal monitoring of extended-spectrum beta-lactamase/AmpC-producing Escherichia coli at German broiler chicken fattening farms. Appl Environ Microbiol 79(16):4815–4820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lavilla S et al (2008) Dissemination of extended-spectrum beta-lactamase-producing bacteria: the food-borne outbreak lesson. J Antimicrob Chemother 61(6):1244–1251

    Article  CAS  PubMed  Google Scholar 

  • Lay KK et al (2021) Colistin resistance and ESBL production in Salmonella and Escherichia coli from pigs and pork in the Thailand, Cambodia, Lao PDR, and Myanmar Border Area. Antibiotics (Basel) 10(6):657

    Article  CAS  PubMed  Google Scholar 

  • Lee S et al (2020) Prevalence of extended-spectrum beta-lactamases in the local farm environment and livestock: challenges to mitigate antimicrobial resistance. Crit Rev Microbiol 46(1):1–14

    Article  PubMed  Google Scholar 

  • Leverstein-van Hall MA et al (2011) Dutch patients, retail chicken meat and poultry share the same ESBL genes, plasmids and strains. Clin Microbiol Infect 17(6):873–880

    Article  CAS  PubMed  Google Scholar 

  • Liakopoulos A et al (2016) A review of SHV extended-spectrum beta-lactamases: neglected yet ubiquitous. Front Microbiol 7:1374

    Article  PubMed  PubMed Central  Google Scholar 

  • Liebana E et al (2006) Longitudinal farm study of extended-spectrum beta-lactamase-mediated resistance. J Clin Microbiol 44(5):1630–1634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liebana E et al (2013) Public health risks of enterobacterial isolates producing extended-spectrum beta-lactamases or AmpC beta-lactamases in food and food-producing animals: an EU perspective of epidemiology, analytical methods, risk factors, and control options. Clin Infect Dis 56(7):1030–1037

    Article  PubMed  Google Scholar 

  • Literak I et al (2010) Antimicrobial-resistant faecal Escherichia coli in wild mammals in Central Europe: multiresistant Escherichia coli producing extended-spectrum beta-lactamases in wild boars. J Appl Microbiol 108(5):1702–1711

    Article  CAS  PubMed  Google Scholar 

  • Liu X et al (2018) Molecular characterization of extended-spectrum beta-lactamase-producing multidrug resistant Escherichia coli from swine in Northwest China. Front Microbiol 9:1756

    Article  PubMed  PubMed Central  Google Scholar 

  • Livermore DM et al (2007) CTX-M: changing the face of ESBLs in Europe. J Antimicrob Chemother 59(2):165–174

    Article  CAS  PubMed  Google Scholar 

  • Lubbert C et al (2015) Colonization with extended-spectrum beta-lactamase-producing and carbapenemase-producing Enterobacteriaceae in international travelers returning to Germany. Int J Med Microbiol 305(1):148–156

    Article  PubMed  Google Scholar 

  • Ludden C et al (2019) One health genomic surveillance of Escherichia coli demonstrates distinct lineages and mobile genetic elements in isolates from humans versus livestock. mBio 10(1):02693–02618

    Article  Google Scholar 

  • Ma T et al (2021) A review of the resistome within the digestive tract of livestock. J Anim Sci Biotechnol 12(1):121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madec JY et al (2012) Non-ST131 Escherichia coli from cattle harbouring human-like bla(CTX-M-15)-carrying plasmids. J Antimicrob Chemother 67(3):578–581

    Article  CAS  PubMed  Google Scholar 

  • Mader R et al (2022) Review and analysis of national monitoring systems for antimicrobial resistance in animal bacterial pathogens in Europe: a basis for the development of the European Antimicrobial Resistance Surveillance Network in Veterinary Medicine (EARS-Vet). Front Microbiol 13:838490

    Article  PubMed  PubMed Central  Google Scholar 

  • MARAN (2003–2022) Monitoring of Antimicrobial Resistance and antibiotic usage in Animals in the Netherlands (MARAN) reports. https://www.wur.nl/en/Research-Results/Research-Institutes/Bioveterinary-Research/In-the-spotlight/Antibiotic-resistance/MARAN-reports.htm. Accessed 03 Aug 2022

  • MARAN (2022) Monitoring of Antimicrobial Resistance and Antibiotic Usage in Animals in the Netherlands in 2021. https://www.wur.nl/en/research-results/research-institutes/bioveterinary-research/show-bvr/less-antibiotic-resistance-in-animal-husbandry.htm. Accessed 03 Aug 2022

  • Mather AE et al (2013) Distinguishable epidemics of multidrug-resistant Salmonella Typhimurium DT104 in different hosts. Science 341(6153):1514–1517

    Google Scholar 

  • Meini S et al (2019) AmpC beta-lactamase-producing Enterobacterales: what a clinician should know. Infection 47(3):363–375

    Article  CAS  PubMed  Google Scholar 

  • Meissner K et al (2022) Extended-spectrum beta-lactamase-producing Escherichia coli in conventional and organic pig fattening farms. Microorganisms 10(3):603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mesa RJ et al (2006) Extended-spectrum beta-lactamase-producing Enterobacteriaceae in different environments (humans, food, animal farms and sewage). J Antimicrob Chemother 58(1):211–215

    Article  CAS  PubMed  Google Scholar 

  • Meunier D et al (2010) Plasmid-borne florfenicol and ceftiofur resistance encoded by the floR and blaCMY-2 genes in Escherichia coli isolates from diseased cattle in France. J Med Microbiol 59(4):467–471

    Article  CAS  PubMed  Google Scholar 

  • Mollenkopf DF et al (2014) Organic or antibiotic-free labeling does not impact the recovery of enteric pathogens and antimicrobial-resistant Escherichia coli from fresh retail chicken. Foodborne Pathog Dis 11(12):920–929

    Article  CAS  PubMed  Google Scholar 

  • Moodley A, Guardabassi L (2009) Transmission of IncN plasmids carrying blaCTX-M-1 between commensal Escherichia coli in pigs and farm workers. Antimicrob Agents Chemother 53(4):1709–1711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mora A et al (2010) Recent emergence of clonal group O25b:K1:H4-B2-ST131 ibeA strains among Escherichia coli poultry isolates, including CTX-M-9-producing strains, and comparison with clinical human isolates. Appl Environ Microbiol 76(21):6991–6997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moyaert H et al (2014) Antimicrobial resistance monitoring projects for zoonotic and indicator bacteria of animal origin: common aspects and differences between EASSA and EFSA. Vet Microbiol 171(3–4):279–283

    Article  PubMed  Google Scholar 

  • Musa L et al (2020) Antimicrobial susceptibility of Escherichia coli and ESBL-producing Escherichia coli diffusion in conventional, organic and antibiotic-free meat chickens at slaughter. Animals (Basel) 10(7):1215

    Article  PubMed  Google Scholar 

  • NARMS (2003–2018) National Antimicrobial Resistance Monitoring System (NARMS) Integrated Reports. https://www.cdc.gov/narms/reports/index.html. Accessed 03 Aug 2022

  • Nguyen VT et al (2019) Limited contribution of non-intensive chicken farming to ESBL-producing Escherichia coli colonization in humans in Vietnam: an epidemiological and genomic analysis. J Antimicrob Chemother 74(3):561–570

    Article  PubMed  PubMed Central  Google Scholar 

  • Nicolas-Chanoine MH et al (2013) 10-fold increase (2006–11) in the rate of healthy subjects with extended-spectrum beta-lactamase-producing Escherichia coli faecal carriage in a Parisian check-up centre. J Antimicrob Chemother 68(3):562–568

    Article  CAS  PubMed  Google Scholar 

  • Nicolas-Chanoine MH et al (2014) Escherichia coli ST131, an intriguing clonal group. Clin Microbiol Rev 27(3):543–574

    Article  PubMed  PubMed Central  Google Scholar 

  • Nordmann P (2013) Carbapenemase-producing Enterobacteriaceae: overview of a major public health challenge. Med Mal Infect 44(2):51–56

    Article  PubMed  Google Scholar 

  • Oteo J et al (2009) Extended-spectrum beta-lactamase-producing Escherichia coli in Spain belong to a large variety of multilocus sequence typing types, including ST10 complex/A, ST23 complex/A and ST131/B2. Int J Antimicrob Agents 34(2):173–176

    Article  CAS  PubMed  Google Scholar 

  • Overdevest I et al (2011) Extended-spectrum beta-lactamase genes of Escherichia coli in chicken meat and humans, The Netherlands. Emerg Infect Dis 17(7):1216–1222

    Article  PubMed  PubMed Central  Google Scholar 

  • Palmeira JD, Ferreira HMN (2020) Extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae in cattle production - a threat around the world. Heliyon 6(1):e03206

    Article  Google Scholar 

  • Palmeira JD et al (2021) Emergence and spread of cephalosporinases in wildlife: a review. Animals (Basel) 11(6):1765

    Article  PubMed  Google Scholar 

  • Persoons D et al (2011) Risk factors for ceftiofur resistance in Escherichia coli from Belgian broilers. Epidemiol Infect 139(5):765–771

    Article  CAS  PubMed  Google Scholar 

  • Pitout JD, DeVinney R (2017) Escherichia coli ST131: a multidrug-resistant clone primed for global domination. F1000Res 6

    Google Scholar 

  • Pitout JD et al (2009) Molecular characteristics of travel-related extended-spectrum-beta-lactamase-producing Escherichia coli isolates from the Calgary Health Region. Antimicrob Agents Chemother 53(6):2539–2543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poirel L et al (2012) Carbapenemase-producing Acinetobacter spp. in Cattle, France. Emerg Infect Dis 18(3):523–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poirel L et al (2018) Antimicrobial resistance in Escherichia coli. Microbiol Spectr 6(4):ARBA-0026-2017

    Article  Google Scholar 

  • Pomba C et al (2014) Within-lineage variability of ST131 Escherichia coli isolates from humans and companion animals in the south of Europe. J Antimicrob Chemother 69(1):271–273

    Article  CAS  PubMed  Google Scholar 

  • Pomba C et al (2018) Licensing and approval of antimicrobial agents for use in animals. Microbiol Spectr 6(4):ARBA-0016-2017

    Article  Google Scholar 

  • Potron A et al (2015) Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: mechanisms and epidemiology. Int J Antimicrob Agents 45(6):568–585

    Article  CAS  PubMed  Google Scholar 

  • Projahn M et al (2019) Contamination of chicken meat with extended-spectrum beta-lactamase producing Klebsiella pneumoniae and Escherichia coli during scalding and defeathering of broiler carcasses. Food Microbiol 77:185–191

    Article  PubMed  Google Scholar 

  • Ramos S et al (2020) Escherichia coli as commensal and pathogenic bacteria among food-producing animals: health implications of extended spectrum beta-lactamase (ESBL) production. Animals (Basel) 10(12):2239

    Article  PubMed  Google Scholar 

  • Randall LP et al (2011) Prevalence of Escherichia coli carrying extended-spectrum beta-lactamases (CTX-M and TEM-52) from broiler chickens and turkeys in Great Britain between 2006 and 2009. J Antimicrob Chemother 66(1):86–95

    Article  CAS  PubMed  Google Scholar 

  • Randall L et al (2014) Detection of antibiotic residues and association of cefquinome residues with the occurrence of extended-spectrum beta-lactamase (ESBL)-producing bacteria in waste milk samples from dairy farms in England and Wales in 2011. Res Vet Sci 96(1):15–24

    Article  CAS  PubMed  Google Scholar 

  • Reist M et al (2013) ESBL-producing Enterobacteriaceae: occurrence, risk factors for fecal carriage and strain traits in the Swiss slaughter cattle population younger than 2 years sampled at abattoir level. PLoS One 8(8):e71725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riano I et al (2006) Detection and characterization of extended-spectrum beta-lactamases in Salmonella enterica strains of healthy food animals in Spain. J Antimicrob Chemother 58(4):844–847

    Article  CAS  PubMed  Google Scholar 

  • Sabry MA et al (2020) Extended-spectrum beta-lactamase-producing Salmonella serovars among healthy and diseased chickens and their public health implication. J Glob Antimicrob Resist 22:742–748

    Article  PubMed  Google Scholar 

  • Saliu EM et al (2017) Types and prevalence of extended-spectrum beta-lactamase producing Enterobacteriaceae in poultry. Anim Health Res Rev 18(1):46–57

    Article  PubMed  Google Scholar 

  • Sanders P et al (2020) Monitoring of farm-level antimicrobial use to guide stewardship: overview of existing systems and analysis of key components and processes. Front Vet Sci 7:540

    Article  PubMed  PubMed Central  Google Scholar 

  • Schaekel F et al (2017) Antibiotic drug usage in pigs in Germany-are the class profiles changing? PLoS One 12(8):e0182661

    Article  PubMed  PubMed Central  Google Scholar 

  • Schrijver R et al (2018) Review of antimicrobial resistance surveillance programmes in livestock and meat in EU with focus on humans. Clin Microbiol Infect 24(6):577–590

    Article  CAS  PubMed  Google Scholar 

  • Scott AM et al (2018) Is antimicrobial administration to food animals a direct threat to human health? A rapid systematic review. Int J Antimicrob Agents 52(3):316–323

    Article  CAS  PubMed  Google Scholar 

  • Seiffert SN et al (2013) Extended-spectrum cephalosporin-resistant gram-negative organisms in livestock: an emerging problem for human health? Drug Resist Updat 16(1–2):22–45

    Article  PubMed  Google Scholar 

  • Smet A et al (2008) Diversity of extended-spectrum beta-lactamases and class C beta-lactamases among cloacal Escherichia coli isolates in Belgian broiler farms. Antimicrob Agents Chemother 52(4):1238–1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smet A et al (2010) Broad-spectrum beta-lactamases among Enterobacteriaceae of animal origin: molecular aspects, mobility and impact on public health. FEMS Microbiol Rev 34(3):295–316

    Article  CAS  PubMed  Google Scholar 

  • Smet A et al (2011) In situ ESBL conjugation from avian to human Escherichia coli during cefotaxime administration. J Appl Microbiol 110(2):541–549

    Article  CAS  PubMed  Google Scholar 

  • Stefani S et al (2014) Prevalence and characterization of extended-spectrum beta-lactamase-producing Enterobacteriaceae in food-producing animals in Northern Italy. New Microbiol 37(4):551–555

    CAS  PubMed  Google Scholar 

  • Stolle I et al (2013) Emergence of OXA-48 carbapenemase-producing Escherichia coli and Klebsiella pneumoniae in dogs. J Antimicrob Chemother 68(12):2802–2808

    Article  CAS  PubMed  Google Scholar 

  • Subbiah M et al (2012) Urine from treated cattle drives selection for cephalosporin resistant Escherichia coli in soil. PLoS One 7(11):e48919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • SVARM (2003–2021) Swedish Veterinary Antibiotic Resistance Monitoring (SVARM) Reports. https://www.sva.se/en/our-topics/antibiotics/svarm-resistance-monitoring/swedres-svarm-reports/. Accessed 03 Aug 2022

  • Tamma PD et al (2019) A primer on AmpC beta-lactamases: necessary knowledge for an increasingly multidrug-resistant world. Clin Infect Dis 69(8):1446–1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang KL et al (2017) Restricting the use of antibiotics in food-producing animals and its associations with antibiotic resistance in food-producing animals and human beings: a systematic review and meta-analysis. Lancet Planet Health 1(8):e316–e327

    Article  PubMed  PubMed Central  Google Scholar 

  • Tragesser LA et al (2006) Association between ceftiofur use and isolation of Escherichia coli with reduced susceptibility to ceftriaxone from fecal samples of dairy cows. Am J Vet Res 67(10):1696–1700

    Article  CAS  PubMed  Google Scholar 

  • Uyanik T et al (2021) Characterization of extended-spectrum beta-lactamase-producing Enterobacterales from organic and conventional chicken meats. Lett Appl Microbiol 72(6):783–790

    Article  CAS  PubMed  Google Scholar 

  • Valverde A et al (2004) Dramatic increase in prevalence of fecal carriage of extended-spectrum beta-lactamase-producing Enterobacteriaceae during nonoutbreak situations in Spain. J Clin Microbiol 42(10):4769–4775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Hoek A et al (2020) Transmission of ESBL-producing Escherichia coli between broilers and humans on broiler farms. J Antimicrob Chemother 75(3):543–549

    Article  PubMed  Google Scholar 

  • Vidovic N, Vidovic S (2020) Antimicrobial resistance and food animals: influence of livestock environment on the emergence and dissemination of antimicrobial resistance. Antibiotics (Basel) 9(2):52

    Article  CAS  PubMed  Google Scholar 

  • Volkova VV et al (2012) Mathematical model of plasmid-mediated resistance to ceftiofur in commensal enteric Escherichia coli of cattle. PLoS One 7(5):e36738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Salviati C et al (2014) Extended-spectrum beta-lactamases (ESBL)/AmpC beta-lactamases-producing Escherichia coli in German fattening pig farms: a longitudinal study. Berl Munch Tierarztl Wochenschr 127(9–10):412–419

    Google Scholar 

  • Weber LP et al (2021) Prevalence and risk factors for ESBL/AmpC-E. coli in pre-weaned dairy calves on dairy farms in Germany. Microorganisms 9(10):2135

    Article  PubMed  PubMed Central  Google Scholar 

  • Werner N et al (2018) Monitoring antimicrobial drug usage in animals: methods and applications. Microbiol Spectr 6(4). https://doi.org/10.1128/microbiolspec.ARBA-0015-2017

  • Widodo A et al (2020) Extended-spectrum beta-lactamase (ESBL)-producing Eschericia coli from livestock. Syst Rev Pharm 11:382–392

    CAS  Google Scholar 

  • Wieler LH et al (2011) No evidence of the Shiga toxin-producing E. coli O104:H4 outbreak strain or enteroaggregative E. coli (EAEC) found in cattle faeces in northern Germany, the hotspot of the 2011 HUS outbreak area. Gut Pathog 3(1):17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winokur PL et al (2000) Animal and human multidrug-resistant, cephalosporin-resistant salmonella isolates expressing a plasmid-mediated CMY-2 AmpC beta-lactamase. Antimicrob Agents Chemother 44(10):2777–2783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • World Health Organization (WHO) (2018a) WHO Critically Important Antimicrobials for Human Medicine 6th revision. https://apps.who.int/iris/bitstream/handle/10665/325036/WHO-NMH-FOS-FZD-19.1-eng.pdf?ua=1. Accessed 03 Aug 2022

  • World Health Organization (WHO) (2018b) WHO report on surveillance of antibiotic consumption: 2016–2018 early implementation. World Health Organization, Geneva. https://www.who.int/publications/i/item/who-report-on-surveillance-of-antibiotic-consumption. Accessed 03 Aug 2022

    Google Scholar 

  • World Health Organization (WHO) (2021) Global Antimicrobial Restistance and Use Surveillance Systems (GLASS). https://www.who.int/initiatives/glass. Accessed 03 Aug 2022

  • Wu S et al (2008) Detection of a single isolate of CTX-M-1-producing Escherichia coli from healthy pigs in Denmark. J Antimicrob Chemother 61(3):747–749

    Article  CAS  PubMed  Google Scholar 

  • Wu G et al (2013) Comparative analysis of ESBL-positive Escherichia coli isolates from animals and humans from the UK, The Netherlands and Germany. PLoS One 8(9):e75392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H et al (2016) Characterization of antimicrobial resistance in Klebsiella species isolated from chicken broilers. Int J Food Microbiol 232:95–102

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christa Ewers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ewers, C. (2023). Extended-Spectrum β-Lactamase and AmpC β -Lactamase-Producing Bacteria in Livestock Animals. In: Sing, A. (eds) Zoonoses: Infections Affecting Humans and Animals. Springer, Cham. https://doi.org/10.1007/978-3-030-85877-3_15-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85877-3_15-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85877-3

  • Online ISBN: 978-3-030-85877-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics