Skip to main content

Physical Decontamination and Degradation of Aflatoxins

  • Chapter
  • First Online:
Aflatoxins in Food

Abstract

Aflatoxins are significant mycotoxins produced by numerous fungi, particularly Aspergillus flavus, A. parasiticus, and A. nomius. Nuts, maize, dried fruits and spices, and meat and milk products are the significant sources of aflatoxins. Aflatoxins are potential human carcinogen agents with teratogenic, immunogenic, nephrotoxic, and genotoxic features. Aflatoxin decontamination has been an ongoing challenge for the food industry. However, their complete degradation and decontamination required further investigations. The present chapter delivers the roles of physical techniques used for aflatoxin degradation and decontamination in foodstuffs. Some aflatoxin decontamination physical techniques, including adsorption, thermal processing, radiations, cold plasma, electrolyzed water, ozonation, and pulsed electric field, are reviewed in detail. Decontamination mechanisms, degradation competence, advantages, and limitations of these physical techniques have been reviewed in this chapter. While thermal techniques cause aflatoxin degradation, they are not sufficient for comprehensive degradation in foodstuffs. Electrolyzed water, pulsed light, some radiations, and cold plasma techniques harbored higher aflatoxin degradation. However, further research should perform to evaluate degradant toxicology and its interaction with food components. It seems novel technologies, such as radiations, cold plasma, electron beam, pulsed light, electrolyzed water, ozonation, and pulsed electric field, have the significant potential for future applications in aflatoxin decontamination and degradation in the food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aboud SA, Altemimi AB, Al-HiIphy ARS, Yi-Chen L, Cacciola F (2019) A comprehensive review on infrared heating applications in food processing. Molecules 24:4125

    Article  CAS  PubMed Central  Google Scholar 

  • Abuagela MO, Iqdiam BM, Baker GL, Macintosh AJ (2018) Temperature-controlled pulsed light treatment: impact on aflatoxin level and quality parameters of peanut oil. Food Bioprocess Technol 11:1350–1358

    Article  CAS  Google Scholar 

  • Abuagela MO, Iqdiam BM, Mostafa H, Marshall SM, Yagiz Y, MarshalL MR, Gu L, Sarnoski P (2019) Combined effects of citric acid and pulsed light treatments to degrade B-aflatoxins in peanut. Food Bioprod Process 117:396–403

    Article  CAS  Google Scholar 

  • AlkadI H, Altal J (2019) Effect of microwave oven processing treatments on reduction of aflatoxin B1 and ochratoxin A in maize flour. Eur J Chem 10:224–227

    Article  CAS  Google Scholar 

  • Amiri S, Aghamirzaei M, Mostashari P, Sarbazi M, Tizchan S, Madahi H (2020) The impact of biotechnology on dairy industry. Elsevier, Microbial biotechnology in food and health

    Google Scholar 

  • Arak H, Torshizi MAK, Hedayati M, Rahimi S (2019) The first in vivo application of synthetic polymers based on methacrylic acid as an aflatoxin sorbent in an animal model. Mycotoxin Res 35:293–307

    Article  CAS  PubMed  Google Scholar 

  • Asadi M (2020) Separation and quantification of aflatoxins in grains using modified dispersive liquid–liquid microextraction combined with high-performance liquid chromatography. J Food Measure Characteriz 14:925–930

    Article  Google Scholar 

  • Assuncao E, Reis TA, Baquiao AC, Correa B (2015) Effects of gamma and electron beam radiation on Brazil nuts artificially inoculated with Aspergillus flavus. J food Protect 78:1397–1401

    Article  CAS  Google Scholar 

  • Bakherad Z, Feizy J (2018) Preliminary survey of aflatoxins in mashhad’s roasted red skin peanut kernels during February to May 2016. J Commun Health Res 7:112–118

    Google Scholar 

  • Benkerroum N (2019) Retrospective and prospective look at aflatoxin research and development from a practical standpoint. Int J Environ Res Public Health 16:3633

    Article  CAS  PubMed Central  Google Scholar 

  • Brodowska AJ, Nowak A, Śmigielski K (2018) Ozone in the food industry: principles of ozone treatment, mechanisms of action, and applications: an overview. Crit Rev Food Sci Nutr 58:2176–2201

    Article  CAS  PubMed  Google Scholar 

  • Bulut N, Atmaca B, Akdemir Evrendilek G, Uzuner S (2020) Potential of pulsed electric field to control Aspergillus parasiticus, aflatoxin and mutagenicity levels: sesame seed quality. J Food Saf 40:12855

    Article  Google Scholar 

  • Byun K-H, Cho M-J, Park S-Y, Chun HS, Ha S-D (2019) Effects of gamma ray, electron beam, and X-ray on the reduction of Aspergillus flavus on red pepper powder (Capsicum annuum L.) and gochujang (red pepper paste). Food Sci Technol Int 25:649–658

    Article  PubMed  Google Scholar 

  • Campagnollo FB, Khaneghah AM, Borges LL, Bonato MA, FakhrI Y, Barbalho CB, Barbalho RL, Corassin CH, Oliveira CA (2020) In vitro and in vivo capacity of yeast-based products to bind to aflatoxins B1 and M1 in media and foodstuffs: a systematic review and meta-analysis. Food Res Int 137:109505

    Article  CAS  PubMed  Google Scholar 

  • Carraro A, De Giacomo A, Giannossi M, Medici L, Muscarella M, Palazzo L, Quaranta V, Summa V, Tateo F (2014) Clay minerals as adsorbents of aflatoxin M1 from contaminated milk and effects on milk quality. Appl Clay Sci 88:92–99

    Article  Google Scholar 

  • Castells M, Marin S, Sanchis V, Ramos A (2005) Fate of mycotoxins in cereals during extrusion cooking: a review. Food Addit Contam 22:150–157

    Article  CAS  PubMed  Google Scholar 

  • Čolović R, Puvača N, Cheli F, Avantaggiato G, Greco D, Đuragić O, Kos J, Pinotti L (2019) Decontamination of mycotoxin-contaminated feedstuffs and compound feed. Toxins 11:617

    Article  PubMed Central  Google Scholar 

  • Dai Y, Sun Q, Wang W, Lu L, Liu M, Li J, Yang S, Sun Y, Zhang K, Xu J (2018) Utilizations of agricultural waste as adsorbent for the removal of contaminants: a review. Chemosphere 211:235–253

    Article  CAS  PubMed  Google Scholar 

  • Das I, Das S (2014) Infrared in food preservation and processing. Convent Adv Food Process Technol:471–500

    Google Scholar 

  • Delorme MM, Guimarães JT, Coutinho NM, Balthazar CF, Rocha RS, Silva R, Margalho LP, Pimentel TC, Silva MC, Freitas MQ (2020) Ultraviolet radiation: an interesting technology to preserve quality and safety of milk and dairy foods. Trends Food Sci Technol 102:146–154

    Article  CAS  Google Scholar 

  • Devi Y, Thirumdas R, Sarangapani C, Deshmukh R, Annapure U (2017) Influence of cold plasma on fungal growth and aflatoxins production on groundnuts. Food Control 77:187–191

    Article  CAS  Google Scholar 

  • Di Gregorio MC, Neeff DVD, Jager AV, Corassin CH, Carão ÁCDP, Albuquerque RD, Azevedo ACD, Oliveira CAF (2014) Mineral adsorbents for prevention of mycotoxins in animal feeds. Toxin Rev 33:125–135

    Article  Google Scholar 

  • Diao E, Ho H, Chen B, Shan C, Dong H (2013) Ozonolysis efficiency and safety evaluation of aflatoxin B1 in peanuts. Food Chem Toxicol 55:519–525

    Article  CAS  PubMed  Google Scholar 

  • Diao E, Li X, Zhang Z, Ma W, Ji N, Dong H (2015) Ultraviolet irradiation detoxification of aflatoxins. Trends Food Sci Technol 42:64–69

    Article  CAS  Google Scholar 

  • Dogan OB, Onal-Ulusoy B, Bozoglu F, Sagdicoglu-Celep AG, Cekmecelioglu D (2017) Detoxification of groundnut cake naturally contaminated with aflatoxin B1 using Rhodococcus erythropolis in shake flask bioreactors. Waste Biomass Valorization 8:721–731

    Article  CAS  Google Scholar 

  • Elliott CT, Connolly L, Kolawole O (2020) Potential adverse effects on animal health and performance caused by the addition of mineral adsorbents to feeds to reduce mycotoxin exposure. Mycotoxin Res 36:115–126

    Article  CAS  PubMed  Google Scholar 

  • Endre G, Hegedus Z, Turbat A, Škrbić B, Vágvölgyi C, Szekeres A (2019) Separation and purification of aflatoxins by centrifugal partition chromatography. Toxins 11:309

    Article  CAS  PubMed Central  Google Scholar 

  • Escobedo-González R, Mendez-Albores A, Villarreal-Barajas T, Aceves-Hernández JM, Miranda-Ruvalcaba R, Nicolás-Vázquez I (2016) A theoretical study of 8-chloro-9-hydroxy-aflatoxin B1, the conversion product of aflatoxin B1 by neutral electrolyzed water. Toxins 8:225

    Article  PubMed Central  Google Scholar 

  • Fan X, Huang R, Chen H (2017) Application of ultraviolet C technology for surface decontamination of fresh produce. Trends Food Sci Technol 70:9–19

    Article  CAS  Google Scholar 

  • Gabrić D, Barba F, Roohinejad S, Gharibzahedi SMT, Radojčin M, Putnik P, Bursać Kovačević D (2018) Pulsed electric fields as an alternative to thermal processing for preservation of nutritive and physicochemical properties of beverages: a review. J Food Process Engin 41:12638

    Article  Google Scholar 

  • Gavahian M, Khaneghah AM (2020) Cold plasma as a tool for the elimination of food contaminants: recent advances and future trends. Crit Rev Food Sci Nutr 60:1581–1592

    Article  CAS  PubMed  Google Scholar 

  • Ghanem I, Orfi M, Shamma M (2008) Effect of gamma radiation on the inactivation of aflatoxin B1 in food and feed crops. Brazil J Microbiol 39:787–791

    Article  CAS  Google Scholar 

  • Ghanghro AB, Channa MJ, Sheikh A, Nizamani SM, Ghanghro IH (2016) Assessment of aflatoxin level in stored wheat of godowns of Hyderabad division and decontamination by uv radiation. Int J Biosci 8:8–16

    Article  CAS  Google Scholar 

  • Ghofrani Tabari D, Kermanshahi H, Golian A, Majidzadeh Heravi R (2018) In vitro binding potentials of bentonite, yeast cell wall and lactic acid bacteria for aflatoxin B1 and ochratoxin A. Iran J Toxicol 12:7–13

    Article  Google Scholar 

  • Gómez-Espinosa D, Cervantes-Aguilar FJ, Río-García D, Carlos J, Villarreal-Barajas T, Vázquez-Durán A, Mendez-Albores A (2017) Ameliorative effects of neutral electrolyzed water on growth performance, biochemical constituents, and histopathological changes in Turkey poults during aflatoxicosis. Toxins 9:104

    Article  PubMed Central  Google Scholar 

  • Guo Q, Sun D-W, Cheng J-H, Han Z (2017) Microwave processing techniques and their recent applications in the food industry. Trends Food Sci Technol 67:236–247

    Article  CAS  Google Scholar 

  • Guo Y, Zhao L, Ma Q, Ji C (2020) Novel strategies for degradation of aflatoxins in food and feed: a review. Food Res Int 109878

    Google Scholar 

  • Hassanpour M, Rezaie MR, Baghizadeh A (2019) Practical analysis of aflatoxin M1 reduction in pasteurized milk using low dose gamma irradiation. J Environ Health Sci Engin 17:863–872

    Article  CAS  Google Scholar 

  • Hertwig C, Meneses N, Mathys A (2018) Cold atmospheric pressure plasma and low energy electron beam as alternative nonthermal decontamination technologies for dry food surfaces: a review. Trends Food Sci Technol 77:131–142

    Article  CAS  Google Scholar 

  • HeshmatI A, Ghadimi S, Ranjbar A, Khaneghah AM (2019) Changes in aflatoxins content during processing of pekmez as a traditional product of grape. LWT 103:178–185

    Article  CAS  Google Scholar 

  • Ianni A, Grotta L, Martino G (2019) Feeding influences the oxidative stability of poultry meat treated with ozone. Asian-Australas J Anim Sci 32:874

    Article  CAS  PubMed  Google Scholar 

  • Iqbal SZ, Bhatti IA, Asi MR, Zuber M, Shahid M, Parveen I (2013) Effect of γ irradiation on fungal load and aflatoxins reduction in red chillies. Radiat Phys Chem 82:80–84

    Article  CAS  Google Scholar 

  • Jalili M (2016) A review on aflatoxins reduction in food. Iran J Health Saf Environ 3:445–459

    Google Scholar 

  • Jalili M, Jinap S, Noranizan M (2012) Aflatoxins and ochratoxin a reduction in black and white pepper by gamma radiation. Radiat Phys Chem 81:1786–1788

    Article  CAS  Google Scholar 

  • Jardon-Xicotencatl S, Díaz-Torres R, Marroquín-Cardona A, Villarreal-Barajas T, Mendez-Albores A (2015) Detoxification of aflatoxin-contaminated maize by neutral electrolyzed oxidizing water. Toxins 7:4294–4314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jun S, Irudayaraj J (2003) A dynamic fungal inactivation approach using selective infrared heating. Trans ASAE 46:1407

    Google Scholar 

  • Kanapitsas A, Batrinou A, Aravantinos A, Markaki P (2015) Effect of γ-radiation on the production of aflatoxin B1 by Aspergillus parasiticus in raisins (Vitis vinifera L.). Radiat Phy Chem 106:327–332

    Article  CAS  Google Scholar 

  • Karlovsky P, Suman M, Berthiller F, De Meester J, Eisenbrand G, Perrin I, Oswald IP, Speijers G, Chiodini A, Recker T (2016) Impact of food processing and detoxification treatments on mycotoxin contamination. Mycotoxin Res 32:179–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khaneghah AM, Chaves RD, Akbarirad H (2017) Detoxification of aflatoxin M1 (AFM1) in dairy base beverages (acidophilus milk) by using different types of lactic acid bacteria-mini review. Curr Nutr Food Sci 13:78–81

    Article  CAS  Google Scholar 

  • Khaneghah AM, Moosavi MH, Oliveira CA, Vanin F, Sant'ana AS (2020) Electron beam irradiation to reduce the mycotoxin and microbial contaminations of cereal-based products: an overview. Food Chem Toxicol:111557

    Google Scholar 

  • Khazaeli P, Mehrabani M, Heidari MR, Asadikaram G, Najafi ML (2017) Prevalence of aflatoxin contamination in herbs and spices in different regions of Iran. Iran J Public Health 46:1540

    PubMed  PubMed Central  Google Scholar 

  • Khiavi NMN, Khiabani MS, Mokarram RR, Kafil HS (2020) Reduction of aflatoxin M1 using mixture of Saccharomyces cerevisiae and Candida albicans cell walls immobilized on silica nanoparticles entrapped in alginate gel. J Environ Chem Eng 8:103635

    Article  Google Scholar 

  • Khoori E, Hakimzadeh V, Mohammadi Sani A, Rashidi H (2020) Effect of ozonation, UV light radiation, and pulsed electric field processes on the reduction of total aflatoxin and aflatoxin M1 in acidophilus milk. J Food Process Preserv 44:14729

    Article  Google Scholar 

  • Krishnamurthy K, Khurana HK, Soojin J, Irudayaraj J, Demirci A (2008) Infrared heating in food processing: an overview. CRFSFS 7:2–13

    Google Scholar 

  • Kumar VV (2018) Aflatoxins: properties, toxicity and detoxification. IJFNS 6

    Google Scholar 

  • Li M, Sommerer M, Werner E, Lampenscherf S, Steinkopff T, Wolfrum P, You J-H (2015) Experimental and computational study of damage behavior of tungsten under high energy electron beam irradiation. Eng Fract Mech 135:64–80

    Article  Google Scholar 

  • Li Y, Liu D, Zhu C, Shen X, Liu Y, You T (2020) Sensitivity programmable ratiometric electrochemical aptasensor based on signal engineering for the detection of aflatoxin B1 in peanut. J Hazard 387:122001

    Google Scholar 

  • Liao X, Muhammad AI, Chen S, Hu Y, Ye X, Liu D, Ding T (2019) Bacterial spore inactivation induced by cold plasma. Crit Rev Food Sci Nutr 59:2562–2572

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Jin Q, Huang J, Liu Y, Wang X, Mao W, Wang S (2011) Photodegradation of aflatoxin B 1 in peanut oil. Eur Food Res Technol 232:843–849

    Article  CAS  Google Scholar 

  • Liu R, Wang R, Lu J, Chang M, Jin Q, Du Z, Wang S, Li Q, Wang X (2016) Degradation of AFB1 in aqueous medium by electron beam irradiation: Kinetics, pathway and toxicology. Food Control 66:151–157

    Article  CAS  Google Scholar 

  • Liu R, Lu M, Wang R, Wang S, Chang M, Jin Q, Wang X (2018) Degradation of aflatoxin B1 in peanut meal by electron beam irradiation. Int J Food Prop 21:892–901

    Article  Google Scholar 

  • Mao J, He B, Zhang L, Li P, Zhang Q, Ding X, Zhang W (2016) A structure identification and toxicity assessment of the degradation products of aflatoxin B1 in peanut oil under UV irradiation. Toxins 8:332

    Article  PubMed Central  Google Scholar 

  • Markov K, Mihaljević B, Domijan A-M, Pleadin J, Delaš F, Frece J (2015) Inactivation of aflatoxigenic fungi and the reduction of aflatoxin B1 in vitro and in situ using gamma irradiation. Food Control 54:79–85

    Article  CAS  Google Scholar 

  • Martinez-Miranda MM, Rosero-Moreano M, Taborda-Ocampo G (2019) Occurrence, dietary exposure and risk assessment of aflatoxins in arepa, bread and rice. Food Control 98:359–366

    Article  CAS  Google Scholar 

  • Martins LM, Sant'ana AS, Iamanaka BT, Berto MI, Pitt JI, Taniwaki MH (2017) Kinetics of aflatoxin degradation during peanut roasting. Food Res Int 97:178–183

    Article  CAS  PubMed  Google Scholar 

  • Menon A, Stojceska V, Tassou S (2020) A systematic review on the recent advances of the energy efficiency improvements in non-conventional food drying technologies. Trends Food Sci Technol

    Google Scholar 

  • Milani J, Seyed Nazari SS, Bamyar E, Maleki G (2018) Effect of bread making process on aflatoxin level changes. J Chem Health Risks 4

    Google Scholar 

  • Misra N, Martynenko A, Chemat F, Paniwnyk L, Barba FJ, Jambrak AR (2018) Thermodynamics, transport phenomena, and electrochemistry of external field-assisted nonthermal food technologies. Crit Rev Food Sci Nutr 58:1832–1863

    Article  CAS  PubMed  Google Scholar 

  • Misra N, Yadav B, Roopesh M, Jo C (2019) Cold plasma for effective fungal and mycotoxin control in foods: mechanisms, inactivation effects, and applications. Comp Rev Food Sci Food Saf 18:106–120

    Article  CAS  Google Scholar 

  • Molla A, Zegeye A (2014) Effect of extrusion conditions on aflatoxin content of corn–peanut flakes. Zede J 32:47–56

    Google Scholar 

  • Moreau M, Lescure G, Agoulon A, Svinareff P, Orange N, Feuilloley M (2013) Application of the pulsed light technology to mycotoxin degradation and inactivation. J Appl Toxicol 33:357–363

    Article  CAS  PubMed  Google Scholar 

  • Muhialdin BJ, Saari N, Meor Hussin AS (2020) Review on the biological detoxification of mycotoxins using lactic acid bacteria to enhance the sustainability of foods supply. Molecules 25:2655

    Article  CAS  PubMed Central  Google Scholar 

  • Nazhand A, Durazzo A, Lucarini M, Souto EB, Santini A (2020) Characteristics, occurrence, detection and detoxification of aflatoxins in foods and feeds. Foods 9:644

    Article  CAS  PubMed Central  Google Scholar 

  • Noroozi R, Sadeghi E, Rouhi M, Safajoo S, Razmjoo F, Paimard G, Moradi L (2020) Fates of aflatoxin B1 from wheat flour to Iranian traditional cookies: managing procedures to aflatoxin B1 reduction during traditional processing. Food Sci Nutr 8:6014–6022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pallares N, Tolosa J, Gavahian M, Barba FJ, Mousavi-Khaneghah A, Ferrer E (2020) The potential of pulsed electric fields to reduce pesticides and toxins. In: Pulsed electric fields to obtain healthier and sustainable food for tomorrow. Elsevier

    Google Scholar 

  • Pandiselvam R, Subhashini S, Banuu Priya E, Kothakota A, Ramesh S, Shahir S (2019) Ozone based food preservation: a promising green technology for enhanced food safety. Ozone Sci Eng 41:17–34

    Article  CAS  Google Scholar 

  • Pankaj S, Shi H, Keener KM (2018) A review of novel physical and chemical decontamination technologies for aflatoxin in food. Trends Food Sci Technol 71:73–83

    Article  CAS  Google Scholar 

  • Patil H, Shah N, Hajare S, Gautam S, Kumar G (2019) Combination of microwave and gamma irradiation for reduction of aflatoxin B1 and microbiological contamination in peanuts (Arachis hypogaea L.). World Mycotoxin J 12:269–280

    Article  CAS  Google Scholar 

  • Puligundla P, Lee T, Mok C (2020) Effect of corona discharge plasma jet treatment on the degradation of aflatoxin B1 on glass slides and in spiked food commodities. LWT 124:108333

    Article  CAS  Google Scholar 

  • Rahman S, Khan I, Oh DH (2016) Electrolyzed water as a novel sanitizer in the food industry: current trends and future perspectives. CRFSFS 15:471–490

    Google Scholar 

  • Rasheed U, Ain QU, Yaseen M, Santra S, Yao X, Liu B (2020) Assessing the aflatoxins mitigation efficacy of blueberry pomace biosorbent in buffer, gastrointestinal fluids and model wine. Toxins 12:466

    Article  CAS  PubMed Central  Google Scholar 

  • Rastegar H, Shoeibi S, Yazdanpanah H, Amirahmadi M, Khaneghah AM, Campagnollo FB, Sant’ana AS (2017) Removal of aflatoxin B1 by roasting with lemon juice and/or citric acid in contaminated pistachio nuts. Food Control 71:279–284

    Article  CAS  Google Scholar 

  • Rui C, He J, Li Y, Liang Y, You L, He L, Li K, Zhang S (2019) Selective extraction and enrichment of aflatoxins from food samples by mesoporous silica FDU-12 supported aflatoxins imprinted polymers based on surface molecularly imprinting technique. Talanta 201:342–349

    Article  CAS  PubMed  Google Scholar 

  • Rushing BR, Selim MI (2019) Aflatoxin B1: a review on metabolism, toxicity, occurrence in food, occupational exposure, and detoxification methods. Food Chem Toxicol 124:81–100

    Article  CAS  PubMed  Google Scholar 

  • Saalia FK, Phillips RD (2011) Degradation of aflatoxins by extrusion cooking: effects on nutritional quality of extrudates. LWT-Food Sci Technol 44:1496–1501

    Article  CAS  Google Scholar 

  • Sakudo A, Toyokawa Y, Misawa T, Imanishi Y (2017) Degradation and detoxification of aflatoxin B1 using nitrogen gas plasma generated by a static induction thyristor as a pulsed power supply. Food Control 73:619–626

    Article  CAS  Google Scholar 

  • Schaarschmidt S, Fauhl-Hassek C (2019) Mycotoxins during the processes of nixtamalization and tortilla production. Toxins 11:227

    Article  CAS  PubMed Central  Google Scholar 

  • Shen M-H, Singh RK (2021) Effect of rotating peanuts on aflatoxin detoxification by ultraviolet C light and irradiation uniformity evaluated by AgCl-based dosimeter. Food Control 120:107533

    Article  CAS  Google Scholar 

  • Shi H, Cooper B, Stroshine RL, Ileleji KE, Keener KM (2017) Structures of degradation products and degradation pathways of aflatoxin B1 by high-voltage atmospheric cold plasma (HVACP) treatment. J Agri Food Chem 65:6222–6230

    Article  CAS  Google Scholar 

  • Siciliano I, Spadaro D, Prelle A, Vallauri D, Cavallero MC, Garibaldi A, Gullino ML (2016) Use of cold atmospheric plasma to detoxify hazelnuts from aflatoxins. Toxins 8:125

    Article  PubMed Central  Google Scholar 

  • Solís-Cruz B, Hernández-Patlán D, Beyssac E, Latorre JD, Hernandez-Velasco X, Merino-Guzman R, Tellez G, López-Arellano R (2017) Evaluation of chitosan and cellulosic polymers as binding adsorbent materials to prevent aflatoxin B1, fumonisin B1, ochratoxin, trichothecene, deoxynivalenol, and zearalenone mycotoxicoses through an in vitro gastrointestinal model for poultry. Polymers 9:529

    Article  PubMed Central  Google Scholar 

  • Subramanian V, Shanmugam N, Ranganathan K, Kumar S, Reddy R (2017) Effect of combination processing on aflatoxin reduction: process optimization by response surface methodology. J Food Process Preserv 41:e13230

    Article  Google Scholar 

  • Vearasilp S, Thobunluepop P, Thanapornpoonpong S-N, Pawelzik E, Von Hörsten D (2015) Radio frequency heating on lipid peroxidation, decreasing oxidative stress and aflatoxin B1 reduction in Perilla frutescens L. highland oil seed. Agri Sci Procedia 5:177–183

    Google Scholar 

  • Vijayalakshmi S, Nadanasabhapathi S, Kumar R, Kumar SS (2018) Effect of pH and pulsed electric field process parameters on the aflatoxin reduction in model system using response surface methodology. J Food Sci Technol 55:868–878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S-Q, Huang G-Q, Li Y-P, Xiao J-X, Zhang Y, Jiang W-L (2015) Degradation of aflatoxin B1 by low-temperature radio frequency plasma and degradation product elucidation. Eur Food Res Technol 241:103–113

    Article  CAS  Google Scholar 

  • Wang B, Mahoney NE, Pan Z, Khir R, Wu B, Ma H, Zhao L (2016) Effectiveness of pulsed light treatment for degradation and detoxification of aflatoxin B1 and B2 in rough rice and rice bran. Food Control 59:461–467

    Article  CAS  Google Scholar 

  • Wang M, Hearon SE, Phillips TD (2020) A high capacity bentonite clay for the sorption of aflatoxins. Food Addit Contam Part A 37:332–341

    Article  Google Scholar 

  • Wanga H, Lib C, Xinb M, Khoob HE, Moa Z, Zhoua S, Daia X, Chena X, Nonga Y, Zhenga J-M (2020) Ultraviolet-LED irradiation effectively detoxified aflatoxin B1 in groundnut oils. ScienceAsia 46:602–610

    Article  CAS  Google Scholar 

  • Wilson SA (2019) Selectivity of infrared heat treatment on inactivation of mycotoxigenic fungi on stored grain

    Google Scholar 

  • Yang J, Cai K, Deng G, Yin Z, Ruan J, Cai F, Fang Y (2019) A staggered double-vane slow-wave structure with double sheet electron beams for 340 GHz traveling wave tube. J Electromagn Waves Appl 33:1632–1643

    Article  Google Scholar 

  • Yim D-G, Jo C, Kim H-J, Cha J-S, Kim HC, Nam K-C (2015) Combined effect of irradiation and ageing condition on physicochemical and microbial quality of Hanwoo eye of round. Korean J Food Sci Anim Resources 35:406

    Article  Google Scholar 

  • Zahoor M, Ali Khan F (2016) Aflatoxin B1 detoxification by magnetic carbon nanostructures prepared from maize straw. Desalin Water Treat 57:11893–11903

    Article  CAS  Google Scholar 

  • Zhang Q, Xiong K, Tatsumi E, Liu HJ (2012). Elimination of aflatoxin B1 in peanuts by acidic electrolyzed oxidizing water. Food Control 27(1):16–20

    Google Scholar 

  • Zheng N, Li SL, Zhang H, Min L, Gao YN, Wang JQ (2017) A survey of aflatoxin M1 of raw cow milk in China during the four seasons from 2013 to 2015. Food Control 78:176–182

    Google Scholar 

Download references

Acknowledgments

Amin Mousavi Khaneghah would like to thank the support of Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (Grant #2018/15432-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Mousavi Khaneghah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mostashari, P., Amiri, S., Rezazad Bari, L., Hashemi Moosavi, M., Mousavi Khaneghah, A. (2021). Physical Decontamination and Degradation of Aflatoxins. In: Hakeem, K.R., Oliveira, C.A.F., Ismail, A. (eds) Aflatoxins in Food. Springer, Cham. https://doi.org/10.1007/978-3-030-85762-2_10

Download citation

Publish with us

Policies and ethics