Skip to main content

Biosensing Applications of Electrode Materials

  • Chapter
  • First Online:
Modified Nanomaterials for Environmental Applications

Abstract

The application of biosensors (BSs) in various fields of our endeavours such as medical science and agriculture as well as environmental management and monitoring has attained great importance. Consequently, this has resulted in more discoveries of comprehensive and influential investigative tools using organic or biological sensing components as BSs. Topical developments in organic or biological procedures and instrumentation have improved the sensitive extent of BSs. Several BSs such as nanoparticles/nanomaterials, polymers, microbes built BSs, etc. have widespread potential applications. However, it is significant to assimilate multifaceted methods to develop BSs that can possibly be used for more diverse applications. Agreeably, nanotechnology has been of great assistance in the transformation of BSs, biosensing-based mechanisms and their applications not just in electrode materials but other aspects of human endeavours. Advancement in the field of nano-sciences has contributed significantly to a wide range of innovative technologies that have allowed us to considerably improve and even reconsidered procedures and products or to generate wholly innovative functionalities. Hence, in this chapter, we will present a comprehensive appraisal of the manufacture of diverse nanostructured conducting polymers as well as their composites with various forms. Our major emphasis will primarily be on conducting polymer-integrated electrochemical biosensors (ECBs) that are used for addressing extensive biological areas as well as the construction and applications of the molecularly reproduced polymer-based BSs. The applications of graphene-based ECBs and biosensing-based electrode systems will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Shao, J. Wang, H. Wu, J. Liu, I.A. Aksay, Y. Lin, Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22, 1027–1036 (2010)

    Article  CAS  Google Scholar 

  2. K.J. Stine, Biosensor applications of electrodeposited nanostructures. Appl. Sci. 9(797), 1–40 (2019)

    Google Scholar 

  3. W.A. El-Said, M. Abdelshakour, J.H. Choi, J.W. Choi, Application of conducting polymer nanostructures to electrochemical biosensors. Molecules 25(307), 1–11 (2020)

    Google Scholar 

  4. L.C. Clark Jr., C. Lyons, Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci. 102, 29–45 (1962)

    Article  CAS  Google Scholar 

  5. A.P.F. Turner, I. Karubeand, G.S. Wilson, Biosensors Fundamentals and Applications (Oxford University Press, Oxford, 1987)

    Google Scholar 

  6. N. Arora, Recent advances in biosensors technology: a review. Octa J. Biosci. 1(2), 147–150 (2013)

    Google Scholar 

  7. J.I. Reyes De Corcuera, J.R. Cavalieri, Prototype instruments for laboratory and on-line measurement of lipoxygenase activity. Food Sci. Technol. Int. 9(1), 5–9 (2003)

    Article  CAS  Google Scholar 

  8. S. Borgmann, A. Schulte, S. Neugebauer, W. Schuhmann, Amperometric biosensors. Adv. Electrochem. Sci. Eng. (2011)

    Google Scholar 

  9. W. Nwankwo, A.S. Olayinka, K.E. Ukhurebor, Nanoinformatics: why design of projects on nanomedicine development and clinical applications may fail? in Proceeding of the 2020 International Conference in Mathematics, Computer Engineering and Computer Science (ICMCECS), Lagos, Nigeria (IEEE Xplore, 2020), pp. 1–7

    Google Scholar 

  10. R. Long, Y. Guo, L. Xie, S. Shi, J. Xu, C. Tong, et al., White pepper-derived ratiometric carbon dots for highly selective detection and imaging of coenzyme A. Food Chem. 315 (2020)

    Google Scholar 

  11. Q. Zhou, D. Tang, Recent advances in photoelectrochemical biosensors for analysis of mycotoxins in food. TrAC - Trends n Anal. Chem. 124 (2020)

    Google Scholar 

  12. K. Kahn, K.W. Plaxco, Principles of biomolecular recognition, in 9 Recognition Receptors in Biosensors. ed. by M. Zourob (Springer, New York, 2010), pp. 3–46

    Chapter  Google Scholar 

  13. P. Mehrotra, Biosensors and their applications—A review. J. Oral Biol. Craniofacial Res. 6(2), 153–159 (2016)

    Article  Google Scholar 

  14. B. Bharat, Biomimetics: lessons from nature—An overview. Phil. Trans. R. Soc. A 367, 1445–1486 (2009)

    Google Scholar 

  15. R. Monosik, M. Streansky, E. Surdik, Biosensors-classification, characterization and new trends. Acta Chimica Slovaca 5, 109–120 (2012)

    Article  Google Scholar 

  16. X. Niu, Y. Zhong, R. Chen, F. Wang, Y. Liu, D. Luo, A “turn-on” fluorescence sensor for Pb2+ detection based on graphene quantum dots and gold nanoparticles. Sens. Actuators, B Chem. 255, 1577–1581 (2018)

    Article  CAS  Google Scholar 

  17. L. Farzin, M. Shamsipur, L. Samandari, S. Sadjadi, S. Sheibani, Biosensing strategies based on organic-scaffolded metal nanoclusters for ultrasensitive detection of tumor markers. Talanta 214 (2020)

    Google Scholar 

  18. K. Sode, T. Yamazaki, I. Lee, T. Hanashi, W. Tsugawa, Biocapacitor: a novel principle for biosensors. Biosens. Bioelectron. 76, 20–28 (2016)

    Article  CAS  Google Scholar 

  19. S. Rodriguez-Mozaz, M.J. Alda, M.P. Marco, Biosensors for environmental monitoring: A global perspective. Talanta 65(2), 291–297 (2005)

    Article  CAS  Google Scholar 

  20. S. Vigneshvar, C.C. Sudhakumari, B. Senthilkumaran, H. Prakash, Recent advances in biosensor technology for potential applications—An overview. Front. Bioeng. Biotechnol. 4(11), 1–9 (2016)

    Google Scholar 

  21. A. Salek-Maghsoud, F. Vakhshiteh, R. Torabia, S. Hassani, M.R. Ganjali, P. Norouzi, M. Hosseini, M. Abdollahi, Recent advances in biosensor technology in assessment of early diabetes biomarkers. Biosens. Bioelectron. 99, 122–135 (2018)

    Article  Google Scholar 

  22. M. Citartan, S.C. Gopinath, J. Tominaga, T.H. Tang, Label-free methods of reporting biomolecular interactions by optical biosensors. Analyst 138, 3576–3592 (2013)

    Article  CAS  Google Scholar 

  23. S. Sang, Y. Wang, Q. Feng, Y. Wei, J. Ji, W. Zhang, Progress of new label-free techniques for biosensors: a review. Crit. Rev. Biotechnol. 15, 1–17 (2015)

    Article  Google Scholar 

  24. J.M. Harris, C. Reyes, G.P. Lopez, Common causes of glucose oxidase instability in in vivo biosensing: a brief review. J. Diabetes Sci. Technol. 7, 1030–1038 (2013)

    Article  Google Scholar 

  25. A.P. Turner, Biosensors: sense and sensibility. Chem. Soc. Rev. 42, 3184–3196 (2013)

    Article  CAS  Google Scholar 

  26. J. Wang, G. Chen, H. Jiang, Z. Li, X. Wang, Advances in nano-scaled biosensors for biomedical applications. Analyst 138, 4427–4435 (2013)

    Article  CAS  Google Scholar 

  27. B. Wang, S. Takahashi, X. Du, J. Anzai, Electrochemical biosensors based on ferroceneboronic acid and its derivatives: a review. Biosensors (Basel) 4, 243–256 (2014)

    Article  CAS  Google Scholar 

  28. F.J. Gruhl, B.E. Rapp, K. Lange, Biosensors for diagnostic applications. Adv. Biochem. Eng. Biotechnol. 133, 115–148 (2013)

    CAS  Google Scholar 

  29. L.D. Mello, A. Kisner, M.O. Goulart, L.T. Kubota, Biosensors for antioxidant evaluation in biological systems. Comb. Chem. High Throughput Screen. 16, 109–120 (2013)

    CAS  Google Scholar 

  30. P.E. Erden, E. Kilic, A review of enzymatic uric acid biosensors based on amperometric detection. Talanta 107, 312–323 (2013)

    Article  CAS  Google Scholar 

  31. J. Kim, S. Imani, W.R. de Araujo, J. Warchall, G. Valdes-Ramirez, T.R. Paixao et al., Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosens. Bioelectron. 74, 1061–1068 (2015)

    Article  CAS  Google Scholar 

  32. E.B. Bahadir, M.K. Sezginturk, Electrochemical biosensors for hormone analyses. Biosens. Bioelectron. 68, 62–71 (2015)

    Article  CAS  Google Scholar 

  33. E. Hamidi-Asl, I. Palchetti, E. Hasheminejad, M. Mascini, A review on the electrochemical biosensors for determination of microRNAs. Talanta 115, 74–83 (2013)

    Article  CAS  Google Scholar 

  34. F. Long, A. Zhu, H. Shi, Recent advances in optical biosensors for environmental monitoring and early warning. Sensors (Basel) 13, 13928–13948 (2013)

    Article  CAS  Google Scholar 

  35. N. Verma, A. Bhardwaj, Biosensor technology for pesticides—A review. Appl. Biochem. Biotechnol. 175, 3093–3119 (2015)

    Article  CAS  Google Scholar 

  36. P. Paulraj, N. Janaki, S. Sandhya, K. Pandian, Single pot synthesis of polyaniline protected silver nanoparticles by interfacial polymerization and study its application on electrochemical oxidation of hydrazine. Colloids Surf. A. 377, 28–34 (2011)

    Article  CAS  Google Scholar 

  37. W. Nwankwo, S.A. Olayinka, K.E. Ukhurebor, Green computing policies and regulations: a necessity? Int. J. Sci. Technol. Res. 9(1), 4378–4383 (2020)

    Google Scholar 

  38. W. Nwankwo, K.E. Ukhurebor, An x-ray of connectivity between climate change and particulate pollutions. J. Adv. Res. Dyn. Control Syst. 11(8) Special Issue, 3002–3011 (2019)

    Google Scholar 

  39. K.E. Ukhurebor, W. Nwankwo, Estimation of the refractivity gradient from measured essential climate variables in Iyamho-Auchi, Edo State, South-South region of Nigeria. Indonesian J. Electr. Eng. Comput. Sci. 19(1), 276–284 (2020)

    Article  Google Scholar 

  40. K.E. Ukhurebor, U.O. Aigbe, A.S. Olayinka, W. Nwankwo, J.O. Emegha, Climatic change and pesticides usage: a brief review of their implicative relationship. Assumption Univ. eJ. Interdiscip. Res. 5(1), 44–49 (2020)

    Google Scholar 

  41. K.E. Ukhurebor, S.O. Azi, Review of methodology to obtain parameters for radio wave propagation at low altitudes from meteorological data: new results for Auchi area in Edo State, Nigeria. J. King Saud Univ. – Sci. 31(4), 1445–1451 (2019)

    Google Scholar 

  42. K.E. Ukhurebor, S.A. Olayinka, W. Nwankwo, C. Alhasan, Evaluation of the effects of some weather variables on UHF and VHF receivers within Benin City, South-South region of Nigeria. J. Phys.: IOP Conf. Ser. 1299, 012052 (2019)

    Google Scholar 

  43. K.E. Ukhurebor, O.J. Umukoro, Influence of meteorological variables on UHF radio signal: recent findings for EBS, Benin City, South-South, Nigeria. IOP Conf. Ser.: Earth Environ. Sci. 173, 012017 (2018)

    Google Scholar 

  44. C.S. Pundir, N. Chauhan, Acetylcholinesterase inhibition-based biosensors for pesticide determination: a review. Anal. Biochem. 429, 19–31 (2012)

    Article  CAS  Google Scholar 

  45. G. Marrazza, Piezoelectric biosensors for organophosphate and carbamate pesticides: a review. Biosensors (Basel) 4, 301–317 (2014)

    Article  Google Scholar 

  46. B. Senthilkumaran, Pesticide and sex steroid analogue-induced endocrine disruption differentially targets hypothalamo-hypophyseal-gonadal system during gametogenesis in teleosts—A review. Gen. Comp. Endocrinol. 219, 136–142 (2015)

    Article  CAS  Google Scholar 

  47. F. Peng, Y. Su, Y. Zhong, C. Fan, S.T. Lee, Y. He, Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy. Acc. Chem. Res. 47, 612–623 (2014)

    Article  CAS  Google Scholar 

  48. W.A. El-Said, C.H. Yea, Il-K. Kwon, J.W. Choi, Fabrication of electrical cell chip for the detection of anticancer drugs and environmental toxicants effect. Biochip. J. 3, 105–112 (2009)

    Google Scholar 

  49. W.A. El-Said, C.H. Yea, H. Kim, J.W. Choi, Fabrication of self-assembled RGD layer for cell chip to detect anticancer drug effect on HepG2 cells. Curr. Appl. Phys. 9, 76–80 (2009)

    Article  Google Scholar 

  50. H. Ogi, Wireless-electrodeless quartz-crystal-microbalance biosensors for studying interactions among biomolecules: a review. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 89, 401–417 (2013)

    Google Scholar 

  51. S.U. Senveli, O. Tigli, Biosensors in the small scale: methods and technology trends. IET Nanobiotechnol. 7, 7–21 (2013)

    Article  CAS  Google Scholar 

  52. X. Guo, Single-molecule electrical biosensors based on single-walled carbon nanotubes. Adv. Mater. 25, 3397–3408 (2013)

    Article  CAS  Google Scholar 

  53. E. Schneider, D.S. Clark, Cytochrome P450 (CYP) enzymes and the development of CYP biosensors. Biosens. Bioelectron. 39, 1–13 (2013)

    Article  CAS  Google Scholar 

  54. A.D. Dias, D.M. Kingsley, D.T. Corr, Recent advances in bioprinting and applications for biosensing. Biosensors (Basel) 4, 111–136 (2014)

    Article  CAS  Google Scholar 

  55. I. Khimji, E.Y. Kelly, Y. Helwa, M. Hoang, J. Liu, Visual optical biosensors based on DNA-functionalized polyacrylamide hydrogels. Methods 64, 292–298 (2013)

    Article  CAS  Google Scholar 

  56. S.J. Kwon, A.J. Bard, DNA analysis by application of Pt nanoparticle electrochemical amplification with single label response. J. Am. Chem. Soc. 134, 10777–10779 (2012)

    Article  CAS  Google Scholar 

  57. M.Y. Shen, B.R. Li, Y.K. Li, Silicon nanowire field-effect-transistor based biosensors: from sensitive to ultra-sensitive. Biosens. Bioelectron. 60, 101–111 (2014)

    Article  CAS  Google Scholar 

  58. M., Li, R. Li, C.M. Li, N. Wu, Electrochemical and optical biosensors based on nanomaterials and nanostructures: a review. Front. Biosci. (Schol Ed) 3, 1308–1331 (2011)

    Google Scholar 

  59. Y. Zhou, C.W. Chiu, H. Liang, Interfacial structures and properties of organic materials for biosensors: an overview. Sensors (Basel) 12, 15036–15062 (2012)

    Article  CAS  Google Scholar 

  60. P.J. Ko, R. Ishikawa, H. Sohn, A. Sandhu, Porous silicon platform for optical detection of functionalized magnetic particles biosensing. J. Nanosci. Nanotechnol. 13, 2451–2460 (2013)

    Article  CAS  Google Scholar 

  61. C. Lamprecht, P. Hinterdorfer, A. Ebner, Applications of biosensing atomic force microscopy in monitoring drug and nanoparticle delivery. Expert. Opin. Drug Deliv. 11, 1237–1253 (2014)

    Article  CAS  Google Scholar 

  62. L. Su, W. Jia, C. Hou, Y. Lei, Microbial biosensors: a review. Biosens. Bioelectron. 26, 1788–1799 (2011)

    Article  CAS  Google Scholar 

  63. E. Hutter, D. Maysinger, Gold-nanoparticle-based biosensors for detection of enzyme activity. Trends Pharmacol. Sci. 34, 497–507 (2013)

    Article  CAS  Google Scholar 

  64. L. Ding, A.M. Bond, J. Zhai, J. Zhang, Utilization of nanoparticle labels for signal amplification in ultrasensitive electrochemical affinity biosensors: a review. Anal. Chim. Acta 797, 1–12 (2013)

    Article  CAS  Google Scholar 

  65. S. Kunzelmann, C. Solscheid, M.R. Webb, Fluorescent bio-sensors: design and application to motor proteins. EXS 105, 25–47 (2014)

    CAS  Google Scholar 

  66. L. Oldach, J. Zhang, Genetically encoded fluorescent biosensors for live-cell visualization of protein phosphorylation. Chem. Biol. 21, 186–197 (2014)

    Article  CAS  Google Scholar 

  67. C. Randriamampita, A.C. Lellouch, Imaging early signalling events in T lymphocytes with fluorescent biosensors. Biotechnol. J. 9, 203–212 (2014)

    Article  CAS  Google Scholar 

  68. M.R. De, F. Carimi, W.B. Frommer, Mitochondrial biosensors. Int. J. Biochem. Cell Biol. 48, 39–44 (2014)

    Google Scholar 

  69. M. Thunemann, K. Schmidt, W.C. de, X. Han, R.K. Jain, D. Fukumura, et al., Correlative intravital imaging of cGMP signals and vasodilation in mice. Front. Physiol. 5, 394 (2014)

    Google Scholar 

  70. T. Su, Z. Zhang, Q. Luo, Ratiometric fluorescence imaging of dual bio-molecular events in single living cells using a new FRET pair mVenus/ mKOkappa-based biosensor and a single fluorescent protein biosensor. Biosens. Bioelectron. 31, 292–298 (2012)

    Article  CAS  Google Scholar 

  71. B.N. Johnson, R. Mutharasan, Biosensor-based microRNA detection: techniques, design, performance, and challenges. Analyst 139, 1576–1588 (2014)

    Article  CAS  Google Scholar 

  72. K. Park, J. Jung, J. Son, S.H. Kim, B.H. Chung, Anchoring foreign substances on live cell surfaces using Sortase A specific binding peptide. Chem. Commun. (Camb) 49, 9585–9587 (2013)

    Article  CAS  Google Scholar 

  73. J.Z. Sun, K.G. Peter, R.W. Si, D.D. Zhai, Z.H. Liao, D.Z. Sun et al., Microbial fuel cell-based biosensors for environmental monitoring: a review. Water Sci. Technol. 71, 801–809 (2015)

    Article  CAS  Google Scholar 

  74. Z. Du, H. Li, T. Gu, A state-of-the-art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol. Adv. 25, 464–482 (2007)

    Article  CAS  Google Scholar 

  75. J.C. Gutierrez, F. Amaro, A. Martin-Gonzalez, Heavy metal whole- cell biosensors using eukaryotic microorganisms: an updated critical review. Front. Microbiol. 6, 48 (2015)

    Google Scholar 

  76. F.W. Scheller, A. Yarman, T. Bachmann, T. Hirsch, S. Kubick, R. Renneberg et al., Future of biosensors: a personal view. Adv. Biochem. Eng. Biotechnol. 140, 1–28 (2014)

    CAS  Google Scholar 

  77. S. Wang, G.M. Poon, W.D. Wilson, Quantitative investigation of protein-nucleic acid interactions by biosensor surface plasmon resonance. Methods Mol. Biol. 1334, 313–332 (2015)

    Article  CAS  Google Scholar 

  78. Z. Zhang, J. Liu, Z.M. Qi, D.F. Lu, In situ study of self-assembled nanocomposite films by spectral SPR sensor. Mater. Sci. Eng. C Mater. Biol. Appl. 51, 242–247 (2015)

    Google Scholar 

  79. M.S. Artiles, C.S. Rout, T.S. Fisher, Graphene-based hybrid materials and devices for biosensing. Adv. Drug Deliv. Rev. 63, 1352–1360 (2011)

    Article  CAS  Google Scholar 

  80. F. Valentini, F.L. Galache, E. Tamburri, G. Palleschi, Single walled carbon nanotubes/polypyrrole-GOx composite films to modify gold micro-electrodes for glucose biosensors: study of the extended linearity. Biosens. Bioelectron. 43, 75–78 (2013)

    Article  CAS  Google Scholar 

  81. N.S. Fracchiolla, S. Artuso, A. Cortelezzi, Biosensors in clinical practice: focus on oncohematology. Sensors (Basel) 13, 6423–6447 (2013)

    Article  CAS  Google Scholar 

  82. K. Abe, W. Yoshida, K. Ikebukuro, Electrochemical biosensors using aptamers for theranostics. Adv. Biochem. Eng. Biotechnol. 140, 183–202 (2014)

    CAS  Google Scholar 

  83. I. Grabowska, K. Malecka, U. Jarocka, J. Radecki, H. Radecka, Electrochemical biosensors for detection of avian influenza virus – current status and future trends. Acta Biochim. Pol. 61, 471–478 (2014)

    Article  Google Scholar 

  84. F. Mazzei, R. Antiochia, F. Botre, G. Favero, C. Tortolini, Affinity- based biosensors in sport medicine and doping control analysis. Bioanalysis 6, 225–245 (2014)

    Article  CAS  Google Scholar 

  85. A.J. Bandodkar, J. Wang, Non-invasive wearable electrochemical sensors: a review. Trends Biotechnol. 32, 363–371 (2014)

    Article  CAS  Google Scholar 

  86. A.T. Lawal, S.B. Adeloju, Progress and recent advances in fabrication and utilization of hypoxanthine biosensors for meat and fish quality assessment: a review. Talanta 100, 217–228 (2012)

    Article  CAS  Google Scholar 

  87. H. Kumar, R. Rani, Development of biosensors for the detection of biological warfare agents: its issues and challenges. Sci. Prog. 96, 294–308 (2013)

    Article  CAS  Google Scholar 

  88. J.L. Arlett, E.B. Myers, M.L. Roukes, Comparative advantages of mechanical biosensors. Nat. Nanotechnol. 6, 203–215 (2011)

    Article  CAS  Google Scholar 

  89. P.N. Navya, A. Kaphle, S.P. Srinivas, S.K. Bhargava, V.M. Rotello, H.K. Daima, Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Converg. 6, 23 (2019)

    Article  CAS  Google Scholar 

  90. J.Y. Kim, D. O’Hare, Monolithic nano-porous polymer in microfluidic channels for lab-chip liquid chromatography. Nano Converg. 5, 19 (2018)

    Article  Google Scholar 

  91. S. Soylemez, F.E. Kanik, S.D. Uzun, S.O. Hacioglu, L. Toppare, Development of an efficient immobilization matrix based on a conducting polymer and functionalized multiwall carbon nanotubes: Synthesis and its application to ethanol biosensors. J. Mater. Chem. B 2, 511–521 (2014)

    Article  CAS  Google Scholar 

  92. C. Dhand, S.P. Singh, S.K. Arya, M. Datta, B.D. Malhotra, Cholesterol biosensor based on electrophoretically deposited conducting polymer film derived from nano-structured polyaniline colloidal suspension. Anal. Chim. Acta 602, 244–251 (2007)

    Article  CAS  Google Scholar 

  93. M.A. Nandi, R.B. Gangopadhyay, A. Bhaumik, Mesoporous polyaniline having high conductivity at room temperature. Microporous Mesoporous Mater. 109, 239 (2007)

    Article  Google Scholar 

  94. S.E. Moulton, P.C. Innis, L.A.P. Kane-Maguire, O. Ngamna, G.G. Wallace, Polymerisation and characterisation of conducting polyaniline nanoparticle dispersions. Curr. Appl. Phys. 4, 402–406 (2004)

    Article  Google Scholar 

  95. M. Mazur, M. Tagowska, B. Pałys, K. Jackowska, Template synthesis of polyaniline and poly (2-methoxyaniline) nanotubes: comparison of the formation mechanisms. Electrochem. Commun. 5, 403 (2003)

    Article  CAS  Google Scholar 

  96. K.P. Lee, A. Gopalan, S. Komathi, D. Raghupathy, Polyaniline-based nanocomposites: Preparation, properties and applications, in Physical Properties and Applications of Polymer Nanocomposites, ed. by S.C. Tjong, Y.W. Mai 1st ed., (Woodhead Publishing, Cambridge, 2010)

    Google Scholar 

  97. J. Huang, R.B. Kaner, A General chemical route to polyaniline nanofibers. J. Am. Chem. Soc. 126, 851–855 (2004)

    Article  CAS  Google Scholar 

  98. S. Che, A.E.G. Bennett, T. Yokoi, K. Sakamoto, H. Kunieda, O. Terasaki, T. Tatsumi, A novel anionic surfactant templating route for synthesizing mesoporous silica with unique structure. Nat. Mater. 2, 801–805 (2003)

    Article  CAS  Google Scholar 

  99. D.D. Sawall, R.M. Villahermosa, R.A. Lipeles, A.R. Hopkins, Interfacial polymerization of polyaniline nanofibers grafted to Au surfaces. Chem. Mater. 16, 1606 (2004)

    Article  CAS  Google Scholar 

  100. D. Saini, R. Chauhan, T. Basu, Fabrication of biosensors based on nanostructured conducting polymer (NSCP). Int. Res. J. Biotechnol. 2, 145–156 (2011)

    Google Scholar 

  101. K.J. Moreno, I. Moggio, E. Arias, I. Llarena, S.E. Moya, R.F. Ziolo, H. Barrientos, Silver nanoparticles functionalized in situ with the conjugated polymer (PEDOT: PSS). J. Nanosci. Nanotechnol. 9, 3987–3992 (2009)

    Article  CAS  Google Scholar 

  102. R.G. Melendez, K.J. Moreno, I. Moggio, E. Arias, A. Ponce, I. Llanera, S.E. Moya, On the influence of silver nanoparticles size in the electrical conductivity of PEDOT: PSS. Mater. Sci. Forum 644, 85–90 (2010)

    Article  CAS  Google Scholar 

  103. I. Hussain, M. Brust, A.J. Papworth, A.I. Cooper, Preparation of acrylate-stabilized gold and silver hydrosols and gold-polmer composite films. Langmuir 19, 4831–4835 (2003)

    Article  CAS  Google Scholar 

  104. H. Cong, M. Radosz, B.F. Towler, Y. Shen, Polymer-inorganic nanocomposite membranes for gas separation. Sep. Purif. Technol. 55, 281–291 (2007)

    Article  CAS  Google Scholar 

  105. Y. Feng, T. Yang, W. Zhang, C. Jiang, K. Jiao, Enhanced sensitivity for deoxyribonucleic acid electrochemical impedance sensor: Gold nanoparticle/polyaniline nanotube membranes. Anal. Chim. Acta. 616, 144–151 (2008)

    Article  CAS  Google Scholar 

  106. A. Balamurugan, S.M. Chen, Silver nanograins incorporated PEDOT modified electrode for electrocatalytic sensing of hydrogen peroxide. Electroanalysis 21, 1419–1423 (2009)

    Article  CAS  Google Scholar 

  107. S.W. Dutse, N.A. Yusof, H. Ahmad, M.Z. Hussein, Z. Zainal, An electrochemical DNA biosensor for Ganodermaboninense pathogen of oil palm utilizing a new ruthenium complex, [Ru(dppz)2(qtpy)] Cl2. Int. J. Electrochem. Sci. 7, 8105–8115 (2012)

    CAS  Google Scholar 

  108. G. Yang, K.L. Kampstra, M.R. Abidian, High-performance conducting polymer nanofiber biosensors for detection of biomolecules. Adv. Mater. (2014)

    Google Scholar 

  109. H. Zhu, L. Li, W. Zhou, Z. Shao, X. Chen, Advances in non-enzymatic glucose sensors based on metal oxides. J. Mater. Chem. B 4, 7333–7349 (2016)

    Article  CAS  Google Scholar 

  110. A.A. Elkhawaga, M.M. Khalifa, O. El-badawy, M.A. Hassan, W.A El-Said, Rapid and highly sensitive detection of pyocyanin biomarker in different Pseudomonas aeruginosa infections using gold nanoparticles modified sensor. PLoS ONE (2019)

    Google Scholar 

  111. J.H. Lee, W.A. El-Said, B.K. Oh, J.W. Choi, Enzyme-free glucose sensor based on Au nanobouquet fabricated indium tin oxide electrode. J. Nanosci. Nanotechnol. 14, 8432–8438 (2014)

    Article  CAS  Google Scholar 

  112. P. Salazar, V. Rico, A.R. González-Elipe, Nickel-copper bilayer nanoporous electrode prepared by physical vapor deposition at oblique angles for the non-enzymatic determination of glucose. Sens. Actuator B 226, 436–443 (2016)

    Article  CAS  Google Scholar 

  113. T. Soganci, H.C. Soyleyici, D.O. Demirko, M. Ak, S. Timur, Use of super-structural conducting polymer as functional immobilization matrix in biosensor design. J. Electrochem. Soc. 165, 22–26 (2018)

    Article  Google Scholar 

  114. R.E. Munteanu, R. Ye, C. Polonschii, A. Ru, M. Gheorghiu, E. Gheorghiu, R. Boukherroub, W. Schuhmann, S. Melinte, S. Gáspár, High spatial resolution electrochemical biosensing using reflected light microscopy. Sci. Rep. 9, 15196 (2019)

    Article  Google Scholar 

  115. C.H. Yea, B. Lee, H.H. Kim, S.U. Kim, W.A. El-Said, J.H. Minc, B.K. Oh, J.W. Choi, The immobilization of animal cells using the cysteine-modified RGD oligopeptide. Ultramicroscopy 108, 1144–1147 (2008)

    Article  CAS  Google Scholar 

  116. W.A. El-Said, C.H. Yea, J.W. Choi, Il-K. Kwon, Ultrathin polyaniline film coated on an indium–tin oxide cell-based chip for study of anticancer effect. Thin Solid Film 518, 661–667 (2009)

    Google Scholar 

  117. J.Y. Lee, J.W. Lee, C.E. Schmidt, Neuroactive conducting scaffolds: nerve growth factor conjugation on active ester-functionalized polypyrrole. J. R. Soc. Interface 6, 801–810 (2009)

    Article  CAS  Google Scholar 

  118. A.E. Elkholy, F.E.T. Heakal, W.A. El-Said, Improving the electrocatalytic performance of Pd nanoparticles supported on indium/tin oxide substrates towards glucose oxidation. Appl. Catal. A: Gen. 580, 28–33 (2019)

    Article  CAS  Google Scholar 

  119. W.A. El-Said, C.H. Yea, M. Jung, H.C. Kim, J.W. Choi, Analysis of effect of nanoporous alumina substrate coated with polypyrrole nanowire on cell morphology based on AFM topography. Ultramicroscopy 110, 676–681 (2010)

    Article  CAS  Google Scholar 

  120. L.T. Strover, J. Malmström, O. Laita, J. Reynisson, N. Aydemir, M.K. Nieuwoudt, D.E. Williams, P.R. Dunbar, M.A. Brimble, J. Travas-Sejdic, A new precursor for conducting polymer-based brush interfaces with electroactivity in aqueous solution. Polymer 54, 1305–1317 (2013)

    Article  CAS  Google Scholar 

  121. W.A. El-Said, J.W. Choi, Electrochemical Biosensor consisted of conducting polymer layer on gold nanodots patterned Indium Tin Oxide electrode for rapid and simultaneous determination of purine bases. Electrochim. Acta 123, 51–57 (2014)

    Article  CAS  Google Scholar 

  122. B. Aksoy, A. Pafsahan, Ö. Güngör, S. Köytepe, T. Seçkin, A novel electrochemical biosensor based on polyimide-boron nitride composite membranes. Int. J. Polym. Mater. Polym. Biomater. 66, 203–212 (2017)

    Article  CAS  Google Scholar 

  123. M.M. Khalifa, A.A. Elkhawaga, M.A. Hassan, A.M. Zahran, A.M. Fathalla, W.A. El-Said, O. El-Badawy, Highly specific electrochemical sensing of pseudomonas aeruginosa in patients suffering from corneal ulcers: a comparative study. Sci. Rep. 9, 18320 (2019)

    Article  CAS  Google Scholar 

  124. C. Tancharoen, W. Sukjee, C. Thepparit, T. Jaimipuk, P. Auewarakul, A. Thitithanyanont, C. Sangma, Electrochemical biosensor based on surface imprinting for zika virus detection in Serum. Acs Sens. 4, 69–75 (2019)

    Article  CAS  Google Scholar 

  125. A.M. Pappa, D. Ohayon, A. Giovannitti, I.P. Maria, A. Savva, I. Uguz, J. Rivnay, I. McCulloch, R.M. Owens, S. Inal, Direct metabolite detection with an n-type accumulation mode organic electrochemical transistor. Sci. Adv. 4, eaat0911 (2018)

    Google Scholar 

  126. A. Rico-Yuste, S. Carrasco, Molecularly imprinted polymer-based hybrid materials for the development of optical sensors. Polymers 11, 1173 (2019)

    Article  Google Scholar 

  127. L. Liu, X. Zhu, Y. Zeng, H. Wang, Y. Lu, J. Zhang, Z. Yin, Z. Chen, Y. Yang, L. Li, An electrochemical sensor for diphenylamine detection based on reduced graphene Oxide/Fe3O4-molecularly imprinted polymer with 1,4-Butanediyl-3,30-bis-l vinylimidazolium dihexafluorophosphate Ionic liquid as cross-linker. Polymers 10, 1329 (2018)

    Article  Google Scholar 

  128. B. Liu, J. Yan, M. Wang, X. Wu, Electrochemical sensor based on molecularly imprinted polymer for determination of nonylphenol. Int. J. Electrochem. Sci. 13, 11953–11960 (2018)

    Article  CAS  Google Scholar 

  129. H. Essousi, H. Barhoumi, M. Bibani, N. Ktari, F. Wendler, A. Al-Hamry, O. Kanoun, Ion-imprinted electrochemical sensor based on copper nanoparticles-polyaniline matrix for nitrate detection. J. Sens. 2019, 2019

    Google Scholar 

  130. B. Öndes, M. Soysal, Determination of diuron by using electrochemical sensor based on molecularly imprinted polymer film. J. Electrochem. Soc. 166, 395–401 (2019)

    Article  Google Scholar 

  131. F. Samari, B. Hemmateenejad, Z. Rezaei, M. Shamsipur, A novel approach for rapid determination of vitamin B12 in pharmaceutical preparations using BSA-modified gold. Anal. Methods 4, 4155–4160 (2012)

    Article  CAS  Google Scholar 

  132. M. Nakos, I. Pepelanova, S. Beutel, U. Krings, R.G. Berger, T. Scheper, Isolation and Analysis of Vitamin B12 from Plant Samples. Food Chem. 216, 301–308 (2017)

    Article  CAS  Google Scholar 

  133. R. Singh, S. Jaiswal, K. Singh, S. Fatma, B.B. Prasad, Biomimetic polymer-based electrochemical sensor using methyl blue adsorbed reduced graphene oxide and functionalized multiwalled carbon nanotubes for trace sensing of cyanocobalamin. ACS Appl. Nano Mater. 1, 4652–4660 (2018)

    Article  CAS  Google Scholar 

  134. G.-P. Nikoleli, D.P. Nikolelis, C. Siontorou, S. Karapetis, S. Bratakou, N. Tzamtzis, Nanobiosensors based on graphene electrodes: recent trends and future applications, in Applications of nanomaterials (Elsevier Ltd. Amsterdam, 2018)

    Google Scholar 

  135. C. Karunakaran, K. Bhargava, R. Benjamin, Biosensors and Bioelectronics, 1st edn. (Elsevier, Amsterdam, 2015)

    Google Scholar 

  136. C. Leger, P. Bertrand, Direct electrochemistry of redox enzymes as a tool for mechanistic studies. Chem. Rev. 108, 379–2438 (2008)

    Article  Google Scholar 

  137. Y. Yao, K. Shiu, Direct electrochemistry of glucose oxidase at carbon nanotube-gold colloid modified electrode with poly (diallyldimethylammonium chloride) coating. Electroanalysis 20, 1542–1548 (2008)

    Article  CAS  Google Scholar 

  138. S. Andreescu, L.A. Luck, Studies of the binding and signalling of surface-immobilized periplasmic glucose receptors on gold nanoparticles: a glucose biosensor application. Anal. Biochem. 375, 282–290 (2008)

    Article  CAS  Google Scholar 

  139. Y. Wang, Y. Yao, Direct electron transfer of glucose oxidase promoted by carbon nanotubes is without value in certain mediator-free applications. Microchim. Acta 176, 271–277 (2012)

    Article  CAS  Google Scholar 

  140. X. Zhang, Q. Liao, M.S. Chu, Liu, Y. Zhang, Structure effect on graphene-modified enzyme electrode glucose sensors. Biosens. Bioelectron. 52, 281–287 (2014)

    Google Scholar 

  141. P. Zhang, X. Zhao, Y. Ji, Z. Ouyang, X. Wen, J. Li, Z. Su, G. Wei, Electrospinning graphene quantum dots into a nanofibrous membrane for dual-purpose fluorescent and electrochemical biosensors. J. Mater. Chem. B 3, 2487–2496 (2015)

    Article  CAS  Google Scholar 

  142. S. Liu, J. Tian, L. Wang, Y. Luo, W. Lu, X. Sun, Self-assembled graphene platelet-glucose oxidase nanostructures for glucose biosensing. Biosens. Bioelectron. 26, 4491–4496 (2011)

    Article  CAS  Google Scholar 

  143. J. Huang, L. Zhang, R.P. Liang, J.D. Qiu, “On-off” switchable electrochemical affinity nanobiosensor based on graphene oxide for ultrasensitive glucose sensing. Biosens. Bioelectron. 41, 430–435 (2013)

    Article  CAS  Google Scholar 

  144. Y. Zhao, A. Kim, G. Wan, B.C. Tee, Design and applications of stretchable and self-healable conductors for soft electronics. Nano Converg. 6, 25 (2019)

    Article  Google Scholar 

  145. H. Razmi, R. Mohammad-Rezaei, Graphene quantum dots as a new substrate for immobilization and direct electrochemistry of glucose oxidase: application to sensitive glucose determination. Biosens. Bioelectron. 41, 498–504 (2013)

    Article  CAS  Google Scholar 

  146. Z. Li, C. Xie, J. Wang, A. Meng, F. Zhang, Direct electrochemistry of cholesterol oxidase immobilized on chitosan–graphene and cholesterol sensing. Sens. Actuators B Chem. 208, 505–511 (2015)

    Article  CAS  Google Scholar 

  147. Z. Fan, Q. Lin, P. Gong, B. Liu, J. Wang, S. Yang, A new enzymatic immobilization carrier based on graphene capsule for hydrogen peroxide biosensors. Electrochim. Acta 151, 186–194 (2015)

    Article  CAS  Google Scholar 

  148. Y. Zhou, H. Yin, X. Meng, Z. Xu, Y. Fu, S. Ai, Direct electrochemistry of sarcosine oxidase on graphene, chitosan and silver nanoparticles modified glassy carbon electrode and its biosensing for hydrogen peroxide. Electrochim. Acta 71, 294–301 (2012)

    Article  CAS  Google Scholar 

  149. L.M. Lu, X.L. Qiu, X.B. Zhang, G.L. Shen, W. Tan, R.Q. Yu, Supramolecular assembly of enzyme on functionalized graphene for electrochemical biosensing. Biosens. Bioelectron. 45, 102–107 (2013)

    Article  CAS  Google Scholar 

  150. X. Liu, J. Zhang, R. Yan, Q. Zhang, X. Liu, Preparation of graphene nanoplatelet-titanate nanotube composite and its advantages over the two single components as biosensor immobilization materials. Biosens. Bioelectron. 51, 76–81 (2014)

    Article  CAS  Google Scholar 

  151. A. Muthurasu, V. Ganesh, Horseradish peroxidase enzyme immobilized graphene quantum dots as electrochemical biosensors. Appl. Biochem. Biotechnol. 174, 945–959 (2014)

    Article  CAS  Google Scholar 

  152. A. Gasnier, M. Laura Pedano, M.D. Rubianes, G.A. Rivas, Graphene paste electrode: electrochemical behavior and analytical applications for the quantification of NADH. Sens. Actuators B Chem. 176, 921–926 (2013)

    Google Scholar 

  153. H. Teymourian, A. Salimi, S. Khezrian, Fe3O4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform. Biosens. Bioelectron. 49, 1–8 (2013)

    Article  CAS  Google Scholar 

  154. P. Li, X. Chen, W. Yang, Graphene-induced self-assembly of peptides into macroscopic-scale organized nanowire arrays for electrochemical NADH sensing. Langmuir 29, 8629–8635 (2013)

    Article  CAS  Google Scholar 

  155. P.P. Gai, C.E. Zhao, Y. Wang, E.S. Abdel-Halim, J.R. Zhang, J.J. Zhu, NADH dehydrogenase-like behaviour of nitrogen-doped graphene and its application in NAD(+)- dependent dehydrogenase biosensing. Biosens. Bioelectron. 62, 170–176 (2014)

    Article  CAS  Google Scholar 

  156. R.S. Dey, C.R. Raj, Development of an amperometric cholesterol biosensor based on graphene-Pt nanoparticle hybrid material. J. Phys. Chem. C 114, 21427–21433 (2010)

    Google Scholar 

  157. H.B. Nguyen, V.C. Nguyen, V.T. Nguyen, H.D. Le, V.Q. Nguyen, T.T. Tam Ngo, Q.P. Do, X.N. Nguyen, N.M. Phan, D. Lam Tran, Development of the layer-by-layer biosensor using graphene films: application for cholesterol determination. Adv. Nat. Sci. Nanosci. Nanotechnol. 4, 015013 (2013)

    Google Scholar 

  158. M.Q. Israr, K. ul Hasan, J.R. Sadaf, I. Engquist, O. Nour, M. Willander, B. Danielsson, Structural characterization and biocompatible applications of graphene nanosheets for miniaturization of potentiometric cholesterol biosensor. J. Biosens. Bioelectron. 2(3), 109–113 (2011)

    Google Scholar 

  159. G.P. Nikoleli, Z. Ibupoto, D. Nikolelis, V. Likodimos, N. Psaroudakis, N. Tzamtzis, M. Willander, T. Hianik, Potentiometric cholesterol biosensing application of graphene electrode with stabilized polymeric lipid membrane. Cent. Eur. J. Chem. 11, 1554–1561 (2013)

    CAS  Google Scholar 

  160. G.P. Nikoleli, M.Q. Israr, N. Tzamtzis, D.P. Nikolelis, M. Willander, N. Psaroudakis, Structural characterization of graphene nanosheets for miniaturization of potentiometric urea lipid film-based biosensors. Electroanalysis 24, 1285–1295 (2012)

    Article  CAS  Google Scholar 

  161. E. Palek, M. Fojta, Peer reviewed: detecting DNA hybridization and damage. Anal. Chem. 73, 74–83 (2001)

    Article  Google Scholar 

  162. J.P. Tosar, G. Branas, J. Laíz, Electrochemical DNA hybridization sensors applied to real and complex biological samples. Biosens. Bioelectron. 26, 1205–1217 (2010)

    Google Scholar 

  163. M. Zhou, Y. Zhai, S. Dong, Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal. Chem. 81, 5603–5613 (2009)

    Article  CAS  Google Scholar 

  164. C.X. Lim, H.Y. Hoh, P.K. Ang, K.P. Loh, Direct voltammetric detection of DNA and pH sensing on epitaxial graphene: an insight into the role of oxygenated defects. Anal. Chem. 82, 7387–7393 (2010)

    Article  CAS  Google Scholar 

  165. M. Pumera, T. Sasaki, H. Iwai, Relationship between carbon nanotube structure and electrochemical behavior: heterogeneous electron transfer at electrochemically activated carbon nanotubes. Chem. Asian. J. 3, 2046–2055 (2008)

    Article  CAS  Google Scholar 

  166. A. Ambrosi, M. Pumera, Stacked graphene nanofibers for electrochemical oxidation of DNA bases. Phys. Chem. Chem. Phys. 12, 8943–8947 (2010)

    Article  CAS  Google Scholar 

  167. G.P. Nikoleli, D.P. Nikolelis, N. Tzamtzis, N. Psaroudakis, A selective immunosensor for D-dimer based on antibody immobilized on a graphene electrode with incorporated lipid films. Electroanalysis 26, 1522–1527 (2014)

    Article  CAS  Google Scholar 

  168. B. Liu, D. Du, X. Hua, X.Y. Yu, Y. Lin, Paper-based electrochemical biosensors: from test strips to paper-based microfluidics. Electroanalysis 26, 1214–1223 (2014)

    Article  CAS  Google Scholar 

  169. Y. Wan, Y. Su, X. Zhu, G. Liu, C. Fan, Development of electrochemical immunosensors towards point of care diagnostics. Biosens. Bioelectron. 47, 1–11 (2013)

    Article  CAS  Google Scholar 

  170. S. Yang, G. Li, D. Wang, Z. Qiao, L. Qu, Synthesis of nanoneedle-like copper oxide on N-doped reduced graphene oxide: a three-dimensional hybrid for nonenzymatic glucose sensor. Sens. Actuator B 238, 588–595 (2017)

    Article  CAS  Google Scholar 

  171. K.E. Ukhurebor, C.O. Adetunji, A.O. Bobadoye, U.O. Aigbe, R.B. Onyancha, I.U. Siloko, J.O. Emegha, G.O. Okocha, I.C. Abiodun. Bionanomaterials for biosensor technology, in Bionanomaterials: Fundamentals and Biomedical Applications, ed. by R.P. Singh, K.R.B. Singh (Institute of Physics Publishing, In press, 2021) ISBN: 9780750337656

    Google Scholar 

  172. R.G. Kerry, K.E. Ukhurebor, S. Kumari, G.K. Maurya, S. Patra, B. Panigrahi, S. Majhi, J.R. Rout, M.D.P. Rodriguez-Torres, G. Das, H-S. Shin, J.K. Patra, A comprehensive review on the applications of nano-biosensor based approaches for non-communicable and communicable disease detection. Biomater. Sci. https://doi.org/10.1039/D0BM02164D (2021)

  173. K.E. Ukhurebor, C.O. Adetunji, Relevance of biosensor in climate smart organic agriculture and their role in environmental sustainability: what has been done and what we need to do, in Biosensors in Agriculture: Recent Trends and Future Perspectives, ed. by R.N. Pudake, U. Jain, C. Kole, Concepts and Strategies in Plant Sciences (Springer, Cham, pp. 115–136). https://doi.org/10.1007/978-3-030-66165-6_7 (2021)

  174. C.O. Adetunji, W. Nwankwo, K.E. Ukhurebor, A.S. Olayinka, A.S. Makinde. Application of biosensor for the identification of pests and diseases mitigating against increase in agricultural production: recent advances, in Biosensors in Agriculture: Recent Trends and Future Perspectives, R.N. Pudake, U. Jain, C. Kole, (Springer, Cham, pp. 169–189). https://doi.org/10.1007/978-3-030-66165-6_9 (2021)

  175. C.O. Adetunji, K.E. Ukhurebor, Recent trends in utilization of biotechnological tools for environmental sustainability, in Microbial Rejuvenation of Polluted Environment. Microorganisms for Sustainability, vol. 27, ed. by C.O. Adetunji, D.G. Panpatte, Y.K. Jhala (Springer, Cham, pp. 239–263, 2021). https://doi.org/10.1007/978-981-15-7459-7_11

  176. K.E. Ukhurebor, The role of biosensor in climate smart organic agriculture towards agricultural and environmental sustainability, in Agrometeorology, ed. by R.S. Meena (IntechOpen, London). https://doi.org/10.5772/intechopen.93150 (2020)

  177. W. Nwankwo, K.E. Ukhurebor, Nanoinformatics: opportunities and challenges in the development and delivery of healthcare products in developing countries. IOP Conf. Ser.: Earth Environ. Sci. 655, 012018 (2021)

    Google Scholar 

  178. K.E. Ukhurebor, U.O. Aigbe, R.B. Onyancha, W. Nwankwo, O.A. Osibote, H.K. Paumo, O.M. Ama, C.O. Adetunji, I.U. Siloko, Effect of hexavalent chromium on the environment and removal techniques: a review. J. Environ. Manage. 280, 111809 (2021)

    Google Scholar 

  179. R.B. Onyancha, U.O. Aigbe, K.E. Ukhurebor, P.W. Muchiri, Facile synthesis and applications of carbon nanotubes in heavy-metal remediation and biomedical fields: a comprehensive review. J. Mol. Struct. 1238, 1–25 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to their respective institutions, the editors and authors whose articles were used while writing this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kingsley Eghonghon Ukhurebor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ukhurebor, K.E. et al. (2022). Biosensing Applications of Electrode Materials. In: Ama, O.M., Sinha Ray, S., Ogbemudia Osifo, P. (eds) Modified Nanomaterials for Environmental Applications. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-85555-0_9

Download citation

Publish with us

Policies and ethics