Skip to main content

Electrochemical Detection of Heavy Metals

  • Chapter
  • First Online:
Modified Nanomaterials for Environmental Applications

Abstract

Heavy metals effluence poses a severe threat to environmental systems and a huge challenge for global sustainability. To monitor and detect heavy metals pollution in the environment, a portable point of care sensing platform is required. The detection of heavy metals ion using electrochemical sensors is considered a unique and perfect class of sensor technology. This chapter focuses on the use of voltammetry techniques for the detection of heavy metals ions using nanomaterials like carbon nanomaterials, polymers, metal oxides nanomaterials and metals nanomaterials. The voltammetry techniques were found to be effective in heavy metal ions detection owing to the ease of fabrication, chemical stability of sensors, low cost, selectivity, and sensitivity of nanomaterials electrochemical sensors. From the observed limits of detection for various metal ions detection from previous research, most electrochemical sensors made from nanomaterials showed selectivity and sensitivity towards heavy metals ions and were below the allowed level for each metal’s ions by the World Health Organization.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.H. Wu, H.M. Lo, J.C. Wang, S.Y. Yu, B.D. Yan, Electrochemical detection of heavy metal pollutants using crosslinked chitosan/carbon nanotubes thin film electrodes. Mater. Express 7(1), 15–24 (2017)

    Google Scholar 

  2. A. Odobašić, I. Šestan, S. Begić, Biosensors for determination of heavy metals in waters, in Environmental Biosensors (IntechOpen 2019)

    Google Scholar 

  3. T. Wang, W. Yue, Carbon nanotubes heavy metal detection with stripping voltammetry: a review paper. Electroanalysis 29(10), 2178–2189 (2017)

    Article  CAS  Google Scholar 

  4. R. Jiang, N. Liu, S. Gao, X. Mamat, Y. Su, T. Wagberg, Y. Li, X. Hu, G. Hu, A facile electrochemical sensor based on PyTS–CNTs for simultaneous determination of cadmium and lead ions. Sensors 18(5), 1–13 (2018)

    Article  CAS  Google Scholar 

  5. M. Tian, L. Fang, X. Yan, W. Xiao, K.H. Row, Determination of heavy metal ions and organic pollutants in water samples using ionic liquids and ionic liquid-modified sorbents. J. Anal. Methods Chem. (2019)

    Google Scholar 

  6. H. Malassa, M. Al-Qutob, M. Al-Khatib, F. Al-Rimawi, Determination of different trace heavy metals in ground water of South West Bank/Palestine by ICP/MS. J. Environ. Prot. 4, 818–827 (2013)

    Article  Google Scholar 

  7. J. Raj, A. Raina, T.D. Dogra, Direct determination of zinc, cadmium, lead, copper metal in tap water of Delhi (India) by anodic stripping voltammetry technique. E3S Web Conf. EDP Sci. 1, 09009 (2013)

    Google Scholar 

  8. Y. Khdaychi, L. Idrissi, S. Souabi, Y. Kadmi, Simultaneous electrochemical analysis of heavy metals in atmospheric deposits. J. Mater Environ Sci 9(7), 2189–2200 (2018)

    CAS  Google Scholar 

  9. Y. Lu, X. Liang, C. Niyungeko, J. Zhou, J. Xu, G. Tian, A review of the identification and detection of heavy metal ions in the environment by voltammetry. Talanta 178, 324–338 (2018)

    Article  CAS  Google Scholar 

  10. T.T.P. Nguyen, X.G. Trinh, D.T.T. Uyen, Using electrode made of carbon nanotubes and bismuth oxide for the determination of metal concentration by anodic stripping voltammetry. J. Chem. (2019)

    Google Scholar 

  11. J. Kudr, H.V. Nguyen, J. Gumulec, L. Nejdl, I. Blazkova, B. Ruttkay-Nedecky, D. Hynek, J. Kynicky, V. Adam, R. Kizek, Simultaneous automatic electrochemical detection of zinc, cadmium, copper, and lead ions in environmental samples using a thin-film mercury electrode and an artificial neural network. Sensors 15(1), 592–610 (2015)

    Google Scholar 

  12. N. Jadon, R. Jain, S. Sharma, K Singh, Recent trends in electrochemical sensors for multianalyte detection—a review. Talanta 161, 894–916 (2016)

    Google Scholar 

  13. L.L. Shen, G.R. Zhang, W. Li, M. Biesalski, B.J. Etzold, Modifier-free microfluidic electrochemical sensor for heavy-metal detection. ACS Omega 2(8), 4593–4603 (2017)

    Article  CAS  Google Scholar 

  14. D. Li, C. Wang, H. Zhang, Y. Sun, Q. Duan, J. Ji, W. Zhang, S. Sang, A highly effective copper nanoparticle coupled with RGO for electrochemical detection of heavy metal ions. Int. J. Electrochem. Sci. 12, 10933–10945 (2017)

    Google Scholar 

  15. P. Chooto, Modified electrodes for determining trace metal ions. Application of the voltammetry, M. Stoytcheva, R. Zlatev (eds.) (Intech, Rijeka, Croatia: InTech, 2017), p. 129.

    Google Scholar 

  16. S.H. Mnyipika, P.N. Nomngongo, Square wave anodic stripping voltammetry for simultaneous determination of trace Hg (II) and Tl (I) in Surface water samples using SnO2@ MWCNTs modified glassy carbon electrode. Int. J. Electrochem. Sci 12, 4811–4827 (2017)

    Article  CAS  Google Scholar 

  17. D. Zhao, D. Siebold, N.T. Alvarez, V.N. Shanov, W.R. Heineman, Carbon nanotube thread electrochemical cell: detection of heavy metals. Anal. Chem. 89(18), 9654–9663 (2017)

    Article  CAS  Google Scholar 

  18. A.C. Power, B. Gorey, S. Chandra, J. Chapman, Carbon nanomaterials and their application to electrochemical sensors: a review. Nanotechnol. Rev. 7(1), 19–41 (2018)

    Article  CAS  Google Scholar 

  19. D. Jariwala, V.K. Sangwan, L.J. Lauhon, T.J. Marks, M.C. Hersam, Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem. Soc. Rev. 42(7), 2824–2860 (2013)

    Article  CAS  Google Scholar 

  20. H. Hou, K.M. Zeinu, S. Gao, B. Liu, J. Yang, J. Hu, Recent advances and perspective on design and synthesis of electrode materials for electrochemical sensing of heavy metals. Energy Environ. Mater. 1(3), 113–131 (2018)

    Article  CAS  Google Scholar 

  21. S. Palisoc, M. Natividad, Y.A. Malabuyo, R.C. Pereja, Determination of heavy metals in root crops using bismuth nanoparticles modified graphene paste electrode. Agron. Res. 17(1), 245–260 (2019)

    Google Scholar 

  22. F. Scholz, Voltammetric techniques of analysis: the essentials. ChemTexts 1(4), 17 (2015)

    Article  Google Scholar 

  23. O.A. Farghaly, R.A. Hameed, A.A.H. Abu-Nawwas, Analytical application using modern electrochemical techniques. Int. J. Electrochem. Sci. 9(1), 3287–3318 (2014)

    Google Scholar 

  24. S. Wilke, H. Wang, M. Muraczewska, H. Müller, Amperometric detection of heavy metal ions in ion pair chromatography at an array of water/nitrobenzene micro interfaces. Fresenius J. Anal. Chem. 356(3–4), 233–236 (1996)

    Article  CAS  Google Scholar 

  25. G. Aragay, A. Merkoçi, Nanomaterials application in electrochemical detection of heavy metals. Electrochimica Acta 84, 49–61 (2012)

    Google Scholar 

  26. J. Barón-Jaimez, M.R. Joya, J. Barba-Ortega, Anodic stripping voltammetry—ASV for determination of heavy metals. J. Phys. Conf. Ser. 466(1), 012023 (2013)

    Google Scholar 

  27. D. Andrienko, Cyclic Voltammetry (Wiely Pub, New York, 2008), pp. 3–12

    Google Scholar 

  28. P. Protti, Introduction to modern voltammetric and polarographic analisys techniques. AMEL Srl 10 (2001)

    Google Scholar 

  29. P.S. Joshi, D.S. Sutrave, A brief study of cyclic voltammetry and electrochemical analysis. Int. J. ChemTech Res. 11, 77–88 (2018)

    Google Scholar 

  30. L.A. Pašti, N.M. Gavrilov, S.V. Mentus, Voltammetric techniques in electrocatalytic studies, in Voltammetry theory, types and applications (Nova Publisher, New York, 2014), pp. 1–337

    Google Scholar 

  31. N. Elgrishi, K.J. Rountree, B.D. McCarthy, E.S. Rountree, T.T. Eisenhart, J.L. Dempsey, A practical beginner’s guide to cyclic voltammetry. J. Chem. Educ. 95(2), 197–206 (2018)

    Article  CAS  Google Scholar 

  32. F.C. Pereira, N.R. Stradiotto, M.V.B. Zanoni, Electrochemical reduction and cathodic stripping voltammetric determination of clotrimazole. J. Braz. Chem. Soc. 12(2), 202–207 (2001)

    Article  CAS  Google Scholar 

  33. S.K. Pandey, P. Singh, J. Singh, S. Sachan, S. Srivastava, S.K. Singh, Nanocarbon-based electrochemical detection of heavy metals. Electroanalysis 28(10), 2472–2488 (2016)

    Article  CAS  Google Scholar 

  34. V. CH, A. Srividya, A. Ajitha, U. Rao, An overview on cyclic voltammetry and its application in pharmaceutical analysis. Int. J. Chem. Pharm. Sci. 5(2) (2014)

    Google Scholar 

  35. A.K. Srivastava, S.S. Upadhyay, C.R. Rawool, N.S. Punde, A.S. Rajpurohit, Voltammetric techniques for the analysis of drugs using nanomaterials based chemically modified electrodes. Curr. Anal. Chem. 15(3), 249–276 (2019)

    Article  CAS  Google Scholar 

  36. P. Dauphin-Ducharme, N. Arroyo-Currás, M. Kurnik, G. Ortega, H. Li, K.W. Plaxco, Simulation-based approach to determining electron transfer rates using square-wave voltammetry. Langmuir 33(18), 4407–4413 (2017)

    Article  CAS  Google Scholar 

  37. N.A. Alarfaj, Adsorptive stripping anodic voltammetric determination of thioctic acid in bulk and pharmaceutical formulations. Int. J. Biomed. Sci. IJBS 5(1), 54 (2009)

    CAS  Google Scholar 

  38. M. Li, H. Gou, I. Al-Ogaidi, N. Wu, Nanostructured sensors for detection of heavy metals: a review. ACS Sustain. Chem. (2013)

    Google Scholar 

  39. N. Meepun, S. Siriket, S. Dejmanee, Adsorptive stripping voltammetry for determination of cadmium in the presence of cupferron on a nafion-coated bismuth film electrode. Int. J. Electrochem. Sci. 7, 10582–10591 (2012)

    CAS  Google Scholar 

  40. A.H. Alghamdi, Applications of stripping voltammetric techniques in food analysis. Arab. J. Chem. 3(1), 1–7 (2010)

    Article  CAS  Google Scholar 

  41. L. Eddaif, A. Shaban, J. Telegdi, Sensitive detection of heavy metals ions based on the calixarene derivatives-modified piezoelectric resonators: a review. Int. J. Environ. Anal. Chem. 99(9), 824–853 (2019)

    Google Scholar 

  42. W.M. Peterson, R.V. Wong, Fundamentals of stripping voltammetry. American Laboratory (1981)

    Google Scholar 

  43. G. March, T.D. Nguyen, B. Piro, Modified electrodes used for electrochemical detection of metal ions in environmental analysis. Biosensors 5(2), 241–275 (2015)

    Article  Google Scholar 

  44. X. Liu, Y. Yao, Y., Ying, J. Ping, Recent advances in nanomaterial-enabled screen-printed electrochemical sensors for heavy metal detection. TrAC Trends Anal Chem 187–202 (2019)

    Google Scholar 

  45. P. Chooto, P. Wararatananurak, C. Innuphat, Determination of trace levels of Pb (II) in tap water by anodic stripping voltammetry with boron-doped diamond electrode. Sci. Asia 36(2), 143–157 (2010)

    Google Scholar 

  46. D. Stankovic, G. Roglic, J. Mutic, I. Andjelkovic, M. Markovic, D. Manojlovic, Determination of copper in water by anodic stripping voltammetry using Cu-DPABA–NA/GCE modified electrode. Int. J. Electrochem. Sci 6, 5617–5625 (2011)

    CAS  Google Scholar 

  47. W. Ye, Y. Li, J. Wang, B. Li, Y. Cui, Y. Yang, G. Qian, Electrochemical detection of trace heavy metal ions using a Ln-MOF modified glass carbon electrode. J. Solid State Chem. 281, 121032 (2020)

    Google Scholar 

  48. J. Santos, M. Smyth, Mercury-free anodic stripping voltammetry of lead ions using a PVS-doped polyaniline modified glassy carbon electrode. Anal. Commun. 35(10), 345–348 (1998)

    Article  CAS  Google Scholar 

  49. R.S. Kelly, Analytical Electrochemistry: The Basic Concepts. Analytical Sciences Digital Library (2009)

    Google Scholar 

  50. T.K. Sari, J. Jin, R. Zein, E. Munaf, Anodic stripping voltammetry for the determination of trace Cr (VI) with Graphite/Styrene-Acrylonitrile copolymer composite electrodes. Anal. Sci. 33(7), 801–806 (2017)

    Article  CAS  Google Scholar 

  51. E.P. Achterberg, C. Braungardt, Stripping voltammetry for the determination of trace metal speciation and in-situ measurements of trace metal distributions in marine waters. Anal. Chim. Acta 400(1–3), 381–397 (1999)

    Article  CAS  Google Scholar 

  52. W. Yue, A. Bange, B.L. Riehl, B.D. Riehl, J.M. Johnson, I. Papautsky, W.R. Heineman, Manganese detection with a metal catalyst free carbon nanotube electrode: anodic versus cathodic stripping voltammetry. Electroanalysis 24(10), 1909–1914 (2012)

    Google Scholar 

  53. R. Porada, K. Jedlińska, J. Lipińska, B. Baś, Voltammetric sensors with laterally placed working electrodes: a review. J Electrochem Soc 167(3), 037536 (2020)

    Google Scholar 

  54. L. Redivo, M. Stredanský, E. De Angelis, L. Navarini, M. Resmini, L. Švorc, Bare carbon electrodes as simple and efficient sensors for the quantification of caffeine in commercial beverages. R Soc Open Sci 5(5), 172146 (2018)

    Google Scholar 

  55. A. Dekanski, J. Stevanović, R. Stevanović, B.Z. Nikolić, V.M. Jovanović, Glassy carbon electrodes: I characterization and electrochemical activation. Carbon 39(8), 1195–1205 (2001)

    Article  CAS  Google Scholar 

  56. G. Ilangovan, K.C. Pillai, Mechanism of activation of glassy carbon electrodes by cathodic pretreatment. J. Solid State Electrochem. 3(6), 357–360 (1999)

    Article  CAS  Google Scholar 

  57. Y. Li, L.H. Huang, S.M. Chen, B.S. Lou, X. Liu, One-step fabrication of a new carbon paste electrode for dopamine, ascorbic acid and uric acid determination in serum. Int. J. Electrochem. Sci. 10, 7671–7683 (2015)

    Google Scholar 

  58. B. Bansod, T. Kumar, R. Thakur, S. Rana, I. Singh, 2017. A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. Biosens. Bioelectron. 94, 443–455 (2017)

    Google Scholar 

  59. M. Pan, J. Yang, K. Liu, Z. Yin, T. Ma, S. Liu, L. Xu, S. Wang, Noble metal nanostructured materials for chemical and biosensing systems. Nanomaterials 10(2), 209 (2020)

    Article  Google Scholar 

  60. M.R. Willner, P.J. Vikesland, Nanomaterial enabled sensors for environmental contaminants. J. Nanobiotechnol. 16(1), 1–16 (2018)

    Article  Google Scholar 

  61. G. Rahman, Z. Najaf, A. Mehmood, S. Bilal, S.A. Mian, G. Ali, An overview of the recent progress in the synthesis and applications of carbon nanotubes. C J. Carbon Res. 5(1), 1–31 (2019)

    Google Scholar 

  62. H. He, L.A. Pham-Huy, P. Dramou, D. Xiao, P. Zuo, C. Pham-Huy, Carbon nanotubes: applications in pharmacy and medicine. BioMed Res. Int. (2013)

    Google Scholar 

  63. A.R. Sadrolhosseini, A.S.M. Noor, A. Bahrami, H.N. Lim, Z.A. Talib, M.A. Mahdi, Application of polypyrrole multi-walled carbon nanotube composite layer for detection of mercury, lead, and iron ions using surface plasmon resonance technique. PloS One 9(4) (2014)

    Google Scholar 

  64. E. Guo, Simultaneous electrochemical determination of lead and copper based on graphenated multi-walled carbon nanotubes. Int. J. Electrochem. Sci 10, 7341–7348 (2015)

    CAS  Google Scholar 

  65. J. Morton, N. Havens, A. Mugweru, A.K. Wanekaya, Detection of trace heavy metal ions using carbon nanotube‐modified electrodes. Electroanal. Int. J. Devoted Fundamental Pract. Aspects Electroanal. 21(14), 1597–1603 (2009)

    Google Scholar 

  66. R. Baby, B. Saifullah, M.Z. Hussein, Carbon nanomaterials for the treatment of heavy metal-contaminated water and environmental remediation. Nanoscale Res. Lett. 14(1), 341 (2019)

    Article  Google Scholar 

  67. O. Zaytseva, G. Neumann, Carbon nanomaterials: production, impact on plant development, agricultural, and environmental applications. Chem. Biol. Technol. Agricul. 3(1), 17 (2016)

    Google Scholar 

  68. K.L.S. Castro, S.M. Oliveira, R.V. Curti, J.R. Araújo, L.M. Sassi, C.M. Almeida, E.H.M. Ferreira, B.S. Archanjo, M.F. Cabral, A. Kuznetsov, L.A. Sena, Electrochemical response of glassy carbon electrodes modified using graphene sheets of different sizes. Int. J. Electrochem. Sci 13(1), 71–87 (2018)

    Article  CAS  Google Scholar 

  69. S. Wyantuti, R.A. Hafidza, S. Ishmayana, Y.W. Hartati, Anodic stripping voltammetry with pencil graphite electrode for determination of chromium (III). J. Phys. Conf. Ser. 812(1), 012006 (2017). IOP Publishing

    Google Scholar 

  70. X. Xuan, M.F. Hossain, J.Y. Park, A fully integrated and miniaturized heavy-metal-detection sensor based on micro-patterned reduced graphene oxide. Sci. Rep. 6, 33125 (2016)

    Article  CAS  Google Scholar 

  71. S. Palisoc, R.I.M. Vitto, M. Natividad, Determination of heavy metals in herbal food supplements using bismuth/multi-walled carbon nanotubes/nafion modified graphite electrodes sourced from waste batteries. Sci. Reports 9(1), 1–13 (2019)

    Google Scholar 

  72. M. Vanitha, N. Balasubramanian, L.M. Joni, C. Panatarani, C., Detection of mercury ions using L-cysteine modified electrodes by anodic stripping voltammetric method. AIP Conf. Proc. 1927(1), 030001 (2018). AIP Publishing LLC

    Google Scholar 

  73. C. Raril, J.G. Manjunatha, Fabrication of novel polymer-modified graphene-based electrochemical sensor for the determination of mercury and lead ions in water and biological samples. J. Anal. Sci. Technol. 11(1), 3 (2010)

    Article  Google Scholar 

  74. L.U. Pikna, M. Heželová, Z. Kováčová, Optimization of simultaneous electrochemical determination of Cd (II), Pb (II), Cu (II) and Hg (II) at carbon nanotube-modified graphite electrodes. J. Environ. Sci. Health Part A 50(8), 874–881 (2015)

    Article  CAS  Google Scholar 

  75. G. Maduraiveeran, W. Jin, Nanomaterials based electrochemical sensor and biosensor platforms for environmental applications. Trends Enviro Anal. Chem. 13, 10–23 (2017)

    Article  CAS  Google Scholar 

  76. B.S. Boruah, N.K. Daimari, R. Biswas, Functionalized silver nanoparticles as an effective medium towards trace determination of arsenic (III) in aqueous solution. Results Phys. 12, 2061–2065 (2019)

    Article  Google Scholar 

  77. I.A. Tayeb, K.A. Razak, Development of gold nanoparticles modified electrodes for the detection of heavy metal ions. J. Phys. Conf. Ser. 1083(1), 012044 (2018). IOP Publishing

    Google Scholar 

  78. Y. Cheng, F. Sun, J. Lee, T. Shi, T. Wang, Y. Li, Gold-nanoparticles-graphene modified glassy carbon electrode for trace detection of lead ions. E3S Web Conf. 78, 03007 (2019). EDP Sciences

    Google Scholar 

  79. L. Pujol, D. Evrard, K. Groenen-Serrano, M. Freyssinier, A. Ruffien-Cizsak, P. Gros, Electrochemical sensors and devices for heavy metals assay in water: the French groups’ contribution. Front. Chem. 2, 19 (2014)

    Google Scholar 

  80. S. Lee, S.K. Park, E. Choi, Y. Piao, Voltammetric determination of trace heavy metals using an electrochemically deposited graphene/bismuth nanocomposite film-modified glassy carbon electrode. J. Electroanal. Chem. 766, 120–127 (2016)

    Article  CAS  Google Scholar 

  81. B. Petovar, K. Xhanari, M. Finšgar, A detailed electrochemical impedance spectroscopy study of a bismuth-film glassy carbon electrode for trace metal analysis. Analytica Chimica Acta 1004, 10–21 (2018)

    Google Scholar 

  82. U.O. Aigbe, R. Das, W.H. Ho, V. Srinivasu, A. Maity, A novel method for removal of Cr (VI) using polypyrrole magnetic nanocomposite in the presence of unsteady magnetic fields. Sep. Purif. Technol. 194, 377–387 (2018)

    Article  CAS  Google Scholar 

  83. U.O. Aigbe, W.H. Ho, A. Maity, M. Khenfouch, V. Srinivasu, Removal of hexavalent chromium from wastewater using PPy/Fe3O4 magnetic nanocomposite influenced by rotating magnetic field from two pole three-phase induction motor. J. Phys. Conf. Ser. 984(1), 012008 (2018). IOP Publishing

    Google Scholar 

  84. U.O. Aigbe, M.K. Khenfouch, W.H. Ho, A. Maity, V.J. Vallabhapurapu, N.M. Hemmaragala, Congo red dye removal under the influence of rotating magnetic field by polypyrrole magnetic nanocomposite. Desalin. Water Treat. 131, 328–342 (2018)

    Article  CAS  Google Scholar 

  85. J. Theerthagiri, S. Salla, R.A. Senthil, P. Nithyadharseni, A. Madankumar, P. Arunachalam, T. Maiyalagan, H.S. Kim, A review on ZnO nanostructured materials: energy, environmental and biological applications. Nanotechnology, 30(39), 392001 (2019)

    Google Scholar 

  86. M.M. Abdullah, F.M. Rajab, S.M. Al-Abbas, Structural and optical characterization of Cr2O3 nanostructures: evaluation of its dielectric properties. AIP Adv. 4(2), 027121 (2014)

    Google Scholar 

  87. R. Etefagh, E. Azhir, N. Shahtahmasebi, Synthesis of CuO nanoparticles and fabrication of nanostructural layer biosensors for detecting Aspergillus niger fungi. Scientia Iranica 20(3), 1055–1058 (2013)

    Google Scholar 

  88. K. Henkel, J. Haeberle, K. Müller, C. Janowitz, D. Schmeißer, Preparation, properties, and electronic structure of SnO2, in Single Crystals of Electronic Materials (Woodhead Publishing, 2019), pp. 547–572

    Google Scholar 

  89. J. Li, S. Meng, J. Niu, H. Lu, Electronic structures, and optical properties of monoclinic ZrO2 studied by first-principles local density approximation+ U approach. J. Adv. Ceram. 6(1), 43–49 (2017)

    Article  CAS  Google Scholar 

  90. N. Rahimi, R.A. Pax, E.M. Gray, Review of functional titanium oxides. I: TiO2 and its modifications. Progress Solid State Chem. 44(3), 86–105 (2016)

    Google Scholar 

  91. T. Gonçalves, R.V. Silva, J. de Brito, J.M. Fernández, A.R. Esquinas, Hydration of reactive MgO as partial cement replacement and its influence on the macroperformance of cementitious mortars. Adv. Mater. Sci. Eng. (2019)

    Google Scholar 

  92. Z. Koudelkova, T. Syrovy, P. Ambrozova, Z. Moravec, L. Kubac, D. Hynek, L. Richtera, V. Adam, Determination of zinc, cadmium, lead, copper, and silver using a carbon paste electrode and a screen-printed electrode modified with chromium (III) oxide. Sensors 17(8), 1832 (2017)

    Article  Google Scholar 

  93. H.L. Fan, S.F. Zhou, J. Gao, Y.Z. Liu, Continuous preparation of Fe3O4 nanoparticles through impinging stream-rotating packed Bed reactor and their electrochemistry detection toward heavy metal ions. J. Alloy. Compd. 671, 354–359 (2016)

    Article  CAS  Google Scholar 

  94. Y. Kong, T. Wu, D. Wu, Y. Zhang, Y. Wang, B. Du, Q. Wei, An electrochemical sensor based on Fe3O4@ PANI nanocomposites for sensitive detection of Pb 2+ and Cd 2+. Anal. Methods 10(39), 4784–4792 (2018)

    Article  CAS  Google Scholar 

  95. Y.F. Sun, W.K. Chen, W.J. Li, T.J. Jiang, J.H. Liu, Z.G. Liu, Selective detection toward Cd2+ using Fe3O4/RGO nanoparticle modified glassy carbon electrode. J. Electroanal. Chem. 714, 97–102 (2014)

    Article  Google Scholar 

  96. G.O. Buica, A.B. Stoian, C. Manole, I. Demetrescu, C. Pirvu, Zr/ZrO2 nanotube electrode for detection of heavy metal ions. Electrochem. Commun. 110, 106614 (2020)

    Google Scholar 

  97. P.K.Q. Nguyen, S.K. Lunsford, Electrochemical response of carbon paste electrode modified with mixture of titanium dioxide/zirconium dioxide in the detection of heavy metals: lead and cadmium. Talanta 101, 110–121 (2012)

    Article  CAS  Google Scholar 

  98. M.A. Deshmukh, M.D. Shirsat, A. Ramanaviciene, A. Ramanavicius, Composites based on conducting polymers and carbon nanomaterials for heavy metal ion sensing. Crit. Rev. Anal. Chem. 48(4), 293–304 (2018)

    Article  CAS  Google Scholar 

  99. H. Wang, C. Xu, B. Yuan, Polymer-based electrochemical sensing platform for heavy metal ions detection—a critical review. Int. J. Electrochem. Sci 14, 8760–8771 (2019)

    Article  CAS  Google Scholar 

  100. J. Shi, F. Tang, H. Xing, H. Zheng, B. Lianhua, W. Wei, Electrochemical detection of Pb and Cd in paper-based microfluidic devices. J. Braz. Chem. Soc. 23(6), 1124–1130 (2012)

    Article  CAS  Google Scholar 

  101. M.A. Rahman, M.S. Won, Y.B. Shim, Characterization of an EDTA bonded conducting polymer modified electrode: its application for the simultaneous determination of heavy metal ions. Anal. Chem. 75(5), 1123–1129 (2003)

    Article  CAS  Google Scholar 

  102. M.A. Deshmukh, G.A. Bodkhe, S. Shirsat, A. Ramanavicius, M.D. Shirsat, Nanocomposite platform based on EDTA modified Ppy/SWNTs for the sensing of Pb (II) ions by electrochemical method. Front. Chem. 6, 451 (2018)

    Article  CAS  Google Scholar 

  103. W. Wu, A. Ali, R. Jamal, M. Abdulla, T. Bakri, T. Abdiryim, A bromine-catalysis-synthesized poly (3, 4-ethylenedioxythiophene)/graphitic carbon nitride electrochemical sensor for heavy metal ion determination. RSC Adv. 9(60), 34691–34698 (2019)

    Google Scholar 

  104. G.H. Hwang, W.K. Han, J.S. Park, S.G. Kang, Determination of trace metals by anodic stripping voltammetry using a bismuth-modified carbon nanotube electrode. Talanta 76(2), 301–308 (2008)

    Google Scholar 

  105. M.M. Radhi, W.T. Tan, M.Z. Ab Rahman, A.B. Kassim, Voltammetric detection of Hg (II) at C60, activated carbon and MWCNT modified glassy carbon electrode. Res. J. Appl. Sci. 5, 59–64 (2010)

    Google Scholar 

  106. A. Simpson, R.R. Pandey, C.C. Chusuei, K. Ghosh, R. Patel, A.K. Wanekaya, Fabrication characterization and potential applications of carbon nanoparticles in the detection of heavy metal ions in aqueous media. Carbon 127, 122–130 (2018)

    Article  CAS  Google Scholar 

  107. X. Guo, Y. Yun, V.N. Shanov, H.B. Halsall, W.R. Heineman, Determination of trace metals by anodic stripping voltammetry using a carbon nanotube tower electrode. Electroanalysis 23(5), 1252–1259 (2011)

    Article  CAS  Google Scholar 

  108. X.C. Fu, J. Wu, J. Li, C.G. Xie, Y.S. Liu, Y. Zhong, J.H. Liu, Electrochemical determination of trace copper (II) with enhanced sensitivity and selectivity by gold nanoparticle/single-wall carbon nanotube hybrids containing three-dimensional l-cysteine molecular adapters. Sens. Actuators B Chem. 182, 382–389 (2013)

    Article  CAS  Google Scholar 

  109. H. Bagheri, A. Afkhami, H. Khoshsafar, M. Rezaei, A. Shirzadmehr, Simultaneous electrochemical determination of heavy metals using a triphenylphosphine/MWCNTs composite carbon ionic liquid electrode. Sens. Actuators B Chem. 186, 451–460 (2013)

    Google Scholar 

  110. S. Cerovac, V. Guzsvány, Z. Kónya, A.M. Ashrafi, I. Švancara, S. Rončević, Á. Kukovecz, B. Dalmacija, K. Vytřas, Trace level voltammetric determination of lead and cadmium in sediment pore water by a bismuth-oxychloride particle-multiwalled carbon nanotube composite modified glassy carbon electrode. Talanta 134(2015), 640–649 (2015)

    Article  CAS  Google Scholar 

  111. J.E. Robinson, W.R. Heineman, L.B. Sagle, M. Meyyappan, J.E. Koehne, Carbon nanofiber electrode array for the detection of lead. Electrochem. Commun. 73, 89–93 (2016)

    Article  CAS  Google Scholar 

  112. C. Choi, Y. Jeong, Y. Kwon, Detection of trace copper metal at carbon nanotube based electrodes using square wave anodic stripping voltammetry. Bull. Korean Chem. Soc. 34(3), 801–809 (2013)

    Article  CAS  Google Scholar 

  113. G.G. Matlou, D. Nkosi, K. Pillay, O. Arotiba, Electrochemical detection of Hg (II) in water using self-assembled single walled carbon nanotube-poly (m-amino benzene sulfonic acid) on gold electrode. Sens. Bio-Sens. Res. 10, 27–33 (2016)

    Article  Google Scholar 

  114. V. Somerset, J. Leaner, R. Mason, E. Iwuoha, A. Morrin, Determination of inorganic mercury using a polyaniline and polyaniline-methylene blue coated screen-printed carbon electrode. Int. J. Environ. Anal. Chem. 90(9), 671–685 (2010)

    Google Scholar 

  115. W. Zhang, S. Fan, X. Li, S. Liu, D. Duan, L. Leng, C. Cui, Y. Zhang, L. Qu, Electrochemical determination of lead (II) and copper (II) by using phytic acid and polypyrrole functionalized metal-organic frameworks. Microchim. Acta 187(1), 69 (2020)

    Article  CAS  Google Scholar 

  116. Y. Wang, L. Wang, W. Huang, T. Zhang, X. Hu, J.A. Perman, S. Ma, A metal-organic framework and conducting polymer based electrochemical sensor for high performance cadmium ion detection. J. Mater. Chem. A 5(18), 8385–8393 (2017)

    Article  CAS  Google Scholar 

  117. N. Wang, E. Kanhere, A.G.P. Kottapalli, J. Miao, M.S. Triantafyllou, Flexible liquid crystal polymer-based electrochemical sensor for in-situ detection of zinc (II) in seawater. Microchim. Acta 184(8), 3007–3015 (2017)

    Article  CAS  Google Scholar 

  118. R. Xie, L. Zhou, C. Lan, F. Fan, R. Xie, H. Tan, T. Xie, L. Zhao, Nanostructured carbon black for simultaneous electrochemical determination of trace lead and cadmium by differential pulse stripping voltammetry. R. Soc. Open Sci. 5(7), 180282 (2018)

    Google Scholar 

  119. S. Touzara, A. Amlil, H. Saâdane, C. Laghlimi, A. Chtaini, EDTA-modified carbon paste composite for electrochemical determination of Pb(II) ions. J. Mater. Sci. Eng. 8(6), 1–5 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aigbe, U.O. et al. (2022). Electrochemical Detection of Heavy Metals. In: Ama, O.M., Sinha Ray, S., Ogbemudia Osifo, P. (eds) Modified Nanomaterials for Environmental Applications. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-85555-0_3

Download citation

Publish with us

Policies and ethics