Skip to main content

Internet of Vehicles

  • Chapter
  • First Online:
E-Mobility

Part of the book series: EAI/Springer Innovations in Communication and Computing ((EAISICC))

Abstract

Safe driving is a vital component of automotive industry. According to WHO’s report, 1.2 million deaths occurred each year on account of road accidents indicating  an exponential increase in the number of fatalities year by year due to the increment of vehicles on the road. The avoidance of possible road accidents, minimization of carbon emission, efficient fuel consumption, enhanced driver safety and comfort, identification of faster routes, saving resources are the prospects of automobile manufacturers and research. The ability of vehicle communication with other vehicles and other elements could significantly upgrade the safety and driving systems. Thus, it is much needed to build an intelligent transport system (ITS) with aid of the Internet of Things (IoT) in the form of the Internet of Vehicles (IoV) for the vehicular grid. The objective of IoV is to connect a global network and communicating with each other by enabling high mobility, safety-critical applications, vehicle-to-vehicle (V2V) communication, security, and privacy.

IoV is also termed a vehicle ad-hoc network (VANET), which consists of a sensing platform, networking platform, and application platform. The sensing platform consists of internal sensors like brakes, accelerator, driver’s state of health (Ford heart monitor seat), and so on and external sensors like GPS, cameras, Lidar, and so on. The principle working of networking platform ensures connectivity of vehicular communication technologies such as WAVE, DSRC, Bluetooth, ZigBee, GSM, 3G, LTE, 5G between V2I (Vehicle to Infrastructure), V2V, V2P (vehicle to pedestrian), V2S (vehicle to sensors). The application platform does the processing of inputs received via communication tools and takes decisions such as weather forecast, traffic management, electronic toll collection, parking assistance. All these functions from efficient communication to processing the correct decisions via these platforms specifically designed for vehicles are called Vehicle Cloud. A vehicle cloud can compute intelligent routing, deliver security and privacy of each data, and validate the crowdsourced information. This chapter covers the description regarding the above topics, future challenges in understanding the connectivity of vehicles, enhancing technologies, and network architecture of IoV. At the end of the chapter, the future of IoV is also presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Joy, J., Rabsatt, V., & Gerla, M. (2018). Internet of vehicles: Enabling safe, secure, and private vehicular crowdsourcing. Internet Technology Letters, 1(1), e16. doi: 10.1002/itl2.16.

    Google Scholar 

  2. Vijayaraghavan, V., & Leevinson, J. R. (2020). Intelligent traffic management systems for next generation IoV in smart city scenario. In Connected vehicles in the internet of things (pp. 123–141). Springer. https://doi.org/10.1007/978-3-030-36167-9_6

    Chapter  Google Scholar 

  3. da Silva Barbosa, F. E., de Mendonça Júnior, F. F., & Dias, K. L. (2020). A platform for cloudification of network and applications in the internet of vehicles. Transactions on Emerging Telecommunications Technologies, 31(5), e3961. https://doi.org/10.1002/ett.3961

    Article  Google Scholar 

  4. Ghanshala, K. K., Sharma, S., Mohan, S., & Joshi, R. C. (2018, November). Cloud-based cognitive radio adhoc vehicular network architecture: A next-generation smart city. In 2018 IEEE 9th annual information technology, electronics and Mobile communication conference (IEMCON) (pp. 145–150). IEEE. doi: https://doi.org/10.1109/IEMCON.2018.8614995.

  5. Sharma, S., Muhammad, A. W. A. N., & Mohan, S. (2018). U.S. patent application no. 15/705,542.

    Google Scholar 

  6. Guerrero-Ibáñez, J. A., Flores-Cortés, C., & Zeadally, S. (2013). Vehicular ad-hoc networks (vanets): Architecture, protocols and applications. In Next-generation wireless technologies (pp. 49–70). Springer. https://doi.org/10.1007/978-1-4471-5164-7_5.

    Chapter  Google Scholar 

  7. Sharma, S., & Mohan, S. (2016, November). Cognitive radio adhoc vehicular network (CRAVENET): Architecture, applications, security requirements and challenges. In 2016 IEEE international conference on advanced networks and telecommunications systems (ANTS) (pp. 1–6). IEEE. doi: https://doi.org/10.1109/ANTS.2016.7947842.

  8. Sharma, S., & Mohan, S. (2020). Cloud-based secured VANET with advanced resource management and IoV applications. In Connected vehicles in the internet of things (pp. 309–325). Springer, Cham. . https://doi.org/10.1007/978-3-030-36167-9_11.

  9. Yang, F., Wang, S., Li, J., Liu, Z., & Sun, Q. (2014). An overview of internet of vehicles. China Communications, 11(10), 1–15. https://doi.org/10.1109/CC.2014.6969789

    Article  Google Scholar 

  10. Mahmood, Z. (2020). Connected vehicles in the IoV: Concepts, technologies and architectures. In Connected vehicles in the internet of things (pp. 3–18). Springer. https://doi.org/10.1007/978-3-030-36167-9_1

    Chapter  Google Scholar 

  11. Mayilsamy, K., Ramachandran, N., & Raj, V. S. (2018). An integrated approach for data security in vehicle diagnostics over internet protocol and software update over the air. Computers & Electrical Engineering, 71, Elsevier, Print ISSN: 0045-7906 E-ISSN:1879-0755.

    Google Scholar 

  12. Kathiresh, M., & Varun, C. (2014). Automotive ethernet in on-board diagnosis (Over IP) and in-vehicle Networking, International Conference on Embedded Systems, Amrita Vishwa Vidyapeetham, Coimbatore and published in IEEE Explorer. ISBN 978-1-4799-5026-9.

    Google Scholar 

  13. Kathiresh, M., Neelaveni, R., Benny, M. A., & Moses, B. J. S. (2021). Vehicle diagnostics over internet protocol and over-the-air updates. In M. Kathiresh & R. Neelaveni (Eds.), Automotive embedded systems. EAI/Springer innovations in communication and computing. Springer. https://doi.org/10.1007/978-3-030-59897-6_5.

    Google Scholar 

  14. Jadhav, A. (2021). Automotive cybersecurity. In M. Kathiresh & R. Neelaveni (Eds.), Automotive embedded systems. EAI/Springer innovations in communication and computing. Springer. https://doi.org/10.1007/978-3-030-59897-6_6.

    Google Scholar 

  15. Janeera, D. A., Gnanamalar, S. S. R., Ramya, K. C., & Kumar, A. G. A. (2021). Internet of things and artificial intelligence-enabled secure autonomous vehicles for smart cities. In M. Kathiresh & R. Neelaveni (Eds.), Automotive embedded systems. EAI/Springer innovations in communication and computing. Springer. https://doi.org/10.1007/978-3-030-59897-6_11.

    Google Scholar 

  16. Flavio, B. (2013). The smart and connected vehicle and the internet of things. WSTS.

    Google Scholar 

  17. Kaiwartya, O., Abdullah, A. H., Cao, Y., Altameem, A., Prasad, M., Lin, C. T., & Liu, X. (2016). Internet of vehicles: Motivation, layered architecture, network model, challenges, and future aspects. IEEE Access, 4, 5356–5373. https://doi.org/10.1109/ACCESS.2016.2603219

    Article  Google Scholar 

  18. Alouache, L., Nguyen, N., Aliouat, M., & Chelouah, R. (2018, April). Toward a hybrid SDN architecture for V2V communication in IoV environment. In 2018 fifth international conference on software defined systems (SDS) (pp. 93–99). IEEE. https://doi.org/10.1109/SDS.2018.8370428

  19. Vinoth, K. K. (2021). Model-based automotive software development. In M. Kathiresh & R. Neelaveni (Eds.), Automotive embedded systems. EAI/Springer innovations in communication and computing. Springer. https://doi.org/10.1007/978-3-030-59897-6_4.

    Google Scholar 

  20. Contreras-Castillo, J., Zeadally, S., & Guerrero Ibáñez, J. A. (2017). A seven-layered model architecture for internet of vehicles. Journal of Information and Telecommunication, 1(1), 4–22. https://doi.org/10.1080/24751839.2017.1295601

    Article  Google Scholar 

  21. Gandotra, P., Jha, R. K., & Jain, S. (2017). A survey on device-to-device (D2D) communication: Architecture and security issues. Journal of Network and Computer Applications, 78, 9–29. https://doi.org/10.1016/j.jnca.2016.11.002

    Article  Google Scholar 

  22. Kang, L., Li, J., Li, X., Wang, W., Zhang, Y., & Poslad, S. (2015). A traffic-aware resource allocation scheme for internet of vehicles: A supply and demand function approach. J. Computational Information Systems, 11(3), 987–994. https://doi.org/10.12733/jcis13115

    Article  Google Scholar 

  23. Darwish, T. S., & Bakar, K. A. (2018). Fog based intelligent transportation big data analytics in the internet of vehicles environment: Motivations, architecture, challenges, and critical issues. IEEE Access, 6, 15679–15701. https://doi.org/10.1109/ACCESS.2018.2815989

    Article  Google Scholar 

  24. Marz, N., & Warren, J. (2015). Big data: Principles and best practices of scalable real-time data systems. Manning Publications Co.. Print ISBN: 9781617290343.

    Google Scholar 

  25. Kathiresh, M., Neelaveni, R., & Abinesh, S. 2014. Analysis of multi-core architecture for automotive applications. In International conference on embedded systems, Amrita Vishwa Vidyapeetham, Coimbatore and published in IEEE Explorer. ISBN 978–1–4799-5026-3.

    Google Scholar 

  26. Zhou, H., Xu, W., Chen, J., & Wang, W. (2020). Evolutionary V2X technologies toward the internet of vehicles: Challenges and opportunities. Proceedings of the IEEE, 108(2), 308–323.

    Article  Google Scholar 

  27. Shen, X., Cheng, X., Zhang, R., Jiao, B., & Yang, Y. (2013). Distributed congestion control approaches for the IEEE 802.11 p vehicular networks. IEEE Intelligent Transportation Systems Magazine, 5(4), 50–61. https://doi.org/10.1109/MITS.2013.2279176

    Article  Google Scholar 

  28. Mosyagin, J. (2010, June). Using 4G wireless technology in the car. In 2010 12th international conference on transparent optical networks (pp. 1–4). IEEE. doi: https://doi.org/10.1109/ICTON.2010.5549094.

  29. Araniti, G., Campolo, C., Condoluci, M., Iera, A., & Molinaro, A. (2013). LTE for vehicular networking: A survey. IEEE Communications Magazine, 51(5), 148–157. https://doi.org/10.1109/MCOM.2013.6515060

    Article  Google Scholar 

  30. Thota, J., Almesaeed, R., Doufexi, A., Armour, S., & Nix, A. R. (2015, May). Infrastructure to vehicle throughput performance in LTE-A using 2D and 3D 3GPP/ITU Channel models. In 2015 IEEE 81st vehicular technology conference (VTC spring) (pp. 1–5). IEEE. doi: https://doi.org/10.1109/VTCSpring.2015.7145880.

  31. Yang, Y., Hu, H., Xu, J., & Mao, G. (2009). Relay technologies for WiMAX and LTE-advanced mobile systems. IEEE Communications Magazine, 47(10), 100–105. https://doi.org/10.1109/MCOM.2009.5273815

    Article  Google Scholar 

  32. Sukuvaara, T., & Pomalaza-Ráez, C. (2009). Vehicular networking pilot system for vehicle-to-infrastructure and vehicle-to-vehicle communications. International Journal of Communication Networks and Information Security, 1(3), 1.

    Google Scholar 

  33. Naboulsi, D., & Fiore, M. (2013, July). On the instantaneous topology of a large-scale urban vehicular network: The cologne case. In Proceedings of the fourteenth ACM international symposium on mobile ad hoc networking and computing (pp. 167–176). doi: https://doi.org/10.1145/2491288.2491312.

  34. Ghaffarian, H., Fathy, M., & Soryani, M. (2012). Vehicular ad hoc networks enabled traffic controller for removing traffic lights in isolated intersections based on integer linear programming. IET Intelligent Transport Systems, 6(2), 115–123. https://doi.org/10.1049/iet-its.2010.0207

    Article  Google Scholar 

  35. Abbas, M. T., Jibran, M. A., Afaq, M., & Song, W. C. (2020). An adaptive approach to vehicle trajectory prediction using multimodel Kalman filter. Transactions on Emerging Telecommunications Technologies, 31(5), e3734. https://doi.org/10.1002/ett.3734

    Article  Google Scholar 

  36. Antony, M. M., & Whenish, R. (2021). Advanced driver assistance systems (ADAS). In M. Kathiresh & R. Neelaveni (Eds.), Automotive embedded systems. EAI/Springer innovations in communication and computing. Springer. https://doi.org/10.1007/978-3-030-59897-6_9.

    Google Scholar 

  37. Liu, K., Xu, X., Chen, M., Liu, B., Wu, L., & Lee, V. C. (2019). A hierarchical architecture for the future internet of vehicles. IEEE Communications Magazine, 57(7), 41–47.

    Article  Google Scholar 

  38. Atif, Y., Kharrazi, S., Jianguo, D., & Andler, S. F. (2020). Internet of things data analytics for parking availability prediction and guidance. Transactions on Emerging Telecommunications Technologies, 31(5), e3862. https://doi.org/10.1002/ett.3862

    Article  Google Scholar 

  39. Malik, K. R., Ahmad, M., Khalid, S., Ahmad, H., Al-Turjman, F., & Jabbar, S. (2020). Image and command hybrid model for vehicle control using internet of vehicles. Transactions on Emerging Telecommunications Technologies, 31(5), e3774. https://doi.org/10.1002/ett.3774

    Article  Google Scholar 

  40. Sun, Y., Bi, Y., Han, Y., Xie, D., & Li, R. (2020). Research on safe driving behavior of transportation vehicles based on vehicle network data mining. Transactions on Emerging Telecommunications Technologies, 31(5), e3772. https://doi.org/10.1002/ett.3772

    Article  Google Scholar 

  41. Hamsini, S., & Kathiresh, M. (2021). Automotive safety systems. In M. Kathiresh & R. Neelaveni (Eds.), Automotive embedded systems. EAI/Springer innovations in communication and computing. Springer. https://doi.org/10.1007/978-3-030-59897-6_1.

    Google Scholar 

  42. Naeem, M., Ejaz, W., Iqbal, M., Iqbal, F., Anpalagan, A., & Rodrigues, J. J. (2020). Efficient scheduling of video camera sensor networks for IoT systems in smart cities. Transactions on Emerging Telecommunications Technologies, 31(5), e3798. https://doi.org/10.1002/ett.3798

    Article  Google Scholar 

  43. Chen, C. M., Xiang, B., Liu, Y., & Wang, K. H. (2019). A secure authentication protocol for internet of vehicles. IEEE Access, 7, 12,047–12,057.

    Article  Google Scholar 

  44. Shirley, D. R. A., Sundari, V. K., Sheeba, T. B., & Rani, S. S. (2021). Analysis of IoT-enabled intelligent detection and prevention system for drunken and juvenile drive classification. In M. Kathiresh & R. Neelaveni (Eds.), Automotive embedded systems. EAI/Springer innovations in communication and computing. Springer. https://doi.org/10.1007/978-3-030-59897-6_10.

    Google Scholar 

  45. Ansari, S., Ahmad, J., Aziz Shah, S., Kashif Bashir, A., Boutaleb, T., & Sinanovic, S. (2020). Chaos-based privacy preserving vehicle safety protocol for 5G connected autonomous vehicle networks. Transactions on Emerging Telecommunications Technologies, 31(5), e3966. https://doi.org/10.1002/ett.3966

    Article  Google Scholar 

  46. Shen, X., Fantacci, R., & Chen, S. (2020). Internet of vehicles. Proceedings of the IEEE, 108(2), 242–245.

    Article  Google Scholar 

  47. Dutta, A. K., Elhoseny, M., Dahiya, V., & Shankar, K. (2020). An efficient hierarchical clustering protocol for multihop internet of vehicles communication. Transactions on Emerging Telecommunications Technologies, 31(5), e3690. https://doi.org/10.1002/ett.3690

    Article  Google Scholar 

  48. Tigadi, A. S., Changappa, N., Singhal, S., & Kulkarni, S. (2021). Autonomous vehicles: Present technological traits and scope for future innovation. In M. Kathiresh & R. Neelaveni (Eds.), Automotive embedded systems. EAI/Springer innovations in communication and computing. Springer. https://doi.org/10.1007/978-3-030-59897-6_7.

    Google Scholar 

  49. Priyan, M. K., & Devi, G. U. (2019). A survey on internet of vehicles: Applications, technologies, challenges and opportunities. International Journal of Advanced Intelligence Paradigms, 12(1–2), 98–119. https://doi.org/10.1504/IJAIP.2019.096957

    Article  Google Scholar 

  50. Sharma, S., & Kaushik, B. (2019). A survey on internet of vehicles: Applications, security issues & solutions. Vehicular Communications, 20, 100182.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Santhakumar, G., Whenish, R. (2022). Internet of Vehicles. In: Kathiresh, M., Kanagachidambaresan, G.R., Williamson, S.S. (eds) E-Mobility. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-85424-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85424-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85423-2

  • Online ISBN: 978-3-030-85424-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics