Skip to main content

Artificial Intelligence in Adult Spinal Deformity

  • Conference paper
  • First Online:

Part of the book series: Acta Neurochirurgica Supplement ((NEUROCHIRURGICA,volume 134))

Abstract

Artificial Intelligence is gaining traction in medicine for its ease of use and advancements in technology. This study evaluates the current literature on the use of artificial intelligence in adult spinal deformity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Pellisé F, et al. Impact on health related quality of life of adult spinal deformity (ASD) compared with other chronic conditions. Eur Spine J. 2015;24(1):3–11. https://doi.org/10.1007/s00586-014-3542-1.

    Article  PubMed  Google Scholar 

  2. Bess S, et al. The health impact of symptomatic adult spinal deformity: comparison of deformity types to United States population norms and chronic diseases. Spine (Phila Pa 1976). 2016;41(3):224–33. https://doi.org/10.1097/BRS.0000000000001202.

    Article  PubMed  Google Scholar 

  3. Bess S, et al. Pain and disability determine treatment modality for older patients with adult scoliosis, while deformity guides treatment for younger patients. Spine (Phila Pa 1976). 2009;34(20):2186–90. https://doi.org/10.1097/BRS.0b013e3181b05146.

    Article  PubMed  Google Scholar 

  4. Schwab F, et al. Adult scoliosis: prevalence, SF-36, and nutritional parameters in an elderly volunteer population. Spine (Phila Pa 1976). 2005;30(9):1082–5. https://doi.org/10.1097/01.brs.0000160842.43482.cd.

    Article  PubMed  Google Scholar 

  5. Jain A, et al. Incidence of perioperative medical complications and mortality among elderly patients undergoing surgery for spinal deformity: analysis of 3519 patients. J Neurosurg Spine. 2017;27(5):534–9. https://doi.org/10.3171/2017.3.SPINE161011.

    Article  PubMed  Google Scholar 

  6. Smith C, et al. The prevalence of complications associated with lumbar and thoracic spinal deformity surgery in the elderly population: a meta-analysis. J Spine Surg. 2019;5(2):2.

    Article  Google Scholar 

  7. Cheng JS, Forbes J, Wong C, Perry E. The epidemiology of adult spinal deformity and the aging population. In: Wang MY, Lu Y, Anderson DG, Mummaneni PV, editors. Minimally invasive spinal deformity surgery: an evolution of modern techniques. Vienna: Springer; 2014. p. 3–10.

    Chapter  Google Scholar 

  8. Kelly MP, et al. Operative versus nonoperative treatment for adult symptomatic lumbar scoliosis. JBJS. 2019;101(4):338–52. https://doi.org/10.2106/JBJS.18.00483.

    Article  Google Scholar 

  9. Lonergan T, Place H, Taylor P. Acute complications after adult spinal deformity surgery in patients aged 70 years and older. Clin Spine Surg. 2016;29(8):314–7. https://doi.org/10.1097/BSD.0b013e3182764a23.

    Article  PubMed  Google Scholar 

  10. Uribe JS, et al. Complications in adult spinal deformity surgery: an analysis of minimally invasive, hybrid, and open surgical techniques. Neurosurg Focus. 2014;36(5):E15. https://doi.org/10.3171/2014.3.FOCUS13534.

    Article  PubMed  Google Scholar 

  11. Zanirato A, et al. Complications in adult spine deformity surgery: a systematic review of the recent literature with reporting of aggregated incidences. Eur Spine J. 2018;27(9):2272–84. https://doi.org/10.1007/s00586-018-5535-y.

    Article  PubMed  Google Scholar 

  12. Emami A, Deviren V, Berven S, Smith JA, Hu SS, Bradford DS. Outcome and complications of long fusions to the sacrum in adult spine deformity: Luque-Galveston, combined iliac and sacral screws, and sacral fixation. Spine (Phila Pa 1976). 2002;27(7):776–86. https://doi.org/10.1097/00007632-200204010-00017.

    Article  PubMed  Google Scholar 

  13. Soroceanu A, et al. Medical complications after adult spinal deformity surgery: incidence, risk factors, and clinical impact. Spine (Phila Pa 1976). 2016;41(22):1718–23. https://doi.org/10.1097/BRS.0000000000001636.

    Article  PubMed  Google Scholar 

  14. Bohr A, Memarzadeh K. The rise of artificial intelligence in healthcare applications. In: Artificial intelligence in healthcare; 2020. p. 25–60. https://doi.org/10.1016/B978-0-12-818438-7.00002-2.

    Chapter  Google Scholar 

  15. Azad TD, et al. Fostering reproducibility and generalizability in machine learning for clinical prediction modeling in spine surgery. Spine J. 2020. https://doi.org/10.1016/j.spinee.2020.10.006.

  16. Pellisé F, et al. Development and validation of risk stratification models for adult spinal deformity surgery. J Neurosurg Spine. 2019:1–13. https://doi.org/10.3171/2019.3.SPINE181452.

  17. Han X, et al. Safety and accuracy of robot-assisted versus fluoroscopy-assisted pedicle screw insertion in thoracolumbar spinal surgery: a prospective randomized controlled trial. J Neurosurg Spine. 2019;30:1–8. https://doi.org/10.3171/2018.10.SPINE18487.

    Article  Google Scholar 

  18. Tack C. Artificial intelligence and machine learning | applications in musculoskeletal physiotherapy. Musculoskelet Sci Pract. 2019;39:164–9. https://doi.org/10.1016/j.msksp.2018.11.012.

    Article  PubMed  Google Scholar 

  19. Rasouli JJ, et al. Artificial intelligence and robotics in spine surgery. Global Spine J. 2020;11:556–64. https://doi.org/10.1177/2192568220915718.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Durand WM, DePasse JM, Daniels AH. Predictive modeling for blood transfusion after adult spinal deformity surgery: a tree-based machine learning approach. Spine (Phila Pa 1976). 2018;43(15):1058–66. https://doi.org/10.1097/BRS.0000000000002515.

    Article  PubMed  Google Scholar 

  21. Kang H. The prevention and handling of the missing data. Korean J Anesthesiol. 2013;64(5):402–6. https://doi.org/10.4097/kjae.2013.64.5.402.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Deng B-C, et al. A new strategy to prevent over-fitting in partial least squares models based on model population analysis. Anal Chim Acta. 2015;880:32–41. https://doi.org/10.1016/j.aca.2015.04.045.

    Article  PubMed  CAS  Google Scholar 

  23. Granholm V, Noble WS, Käll L. A cross-validation scheme for machine learning algorithms in shotgun proteomics. BMC Bioinform. 2012;13(Suppl 16):S3. https://doi.org/10.1186/1471-2105-13-S16-S3.

    Article  CAS  Google Scholar 

  24. Ames CP, et al. Utilization of predictive modeling to determine episode of care costs and to accurately identify catastrophic cost nonwarranty outlier patients in adult spinal deformity surgery: a step toward bundled payments and risk sharing. Spine (Phila Pa 1976). 2020;45(5):E252–65. https://doi.org/10.1097/BRS.0000000000003242.

    Article  PubMed  Google Scholar 

  25. Ames CP, et al. Development of predictive models for all individual questions of SRS-22R after adult spinal deformity surgery: a step toward individualized medicine. Eur Spine J. 2019;28(9):1998–2011. https://doi.org/10.1007/s00586-019-06079-x.

    Article  PubMed  Google Scholar 

  26. Ames CP, et al. Artificial intelligence based hierarchical clustering of patient types and intervention categories in adult spinal deformity surgery: towards a new classification scheme that predicts quality and value. Spine (Phila Pa 1976). 2019;44(13):915–26. https://doi.org/10.1097/BRS.0000000000002974.

    Article  PubMed  Google Scholar 

  27. Scheer JK, et al. Development of a preoperative predictive model for reaching the Oswestry disability index minimal clinically important difference for adult spinal deformity patients. Spine Deform. 2018;6(5):593–9. https://doi.org/10.1016/j.jspd.2018.02.010.

    Article  PubMed  Google Scholar 

  28. Passias PG, et al. Predictive model for distal junctional kyphosis after cervical deformity surgery. Spine J. 2018;18(12):2187–94. https://doi.org/10.1016/j.spinee.2018.04.017.

    Article  PubMed  Google Scholar 

  29. Scheer JK, et al. Development of a preoperative predictive model for major complications following adult spinal deformity surgery. J Neurosurg Spine. 2017;26(6):736–43. https://doi.org/10.3171/2016.10.SPINE16197.

    Article  PubMed  Google Scholar 

  30. Scheer JK, et al. Development of validated computer-based preoperative predictive model for proximal junction failure (PJF) or clinically significant PJK with 86% accuracy based on 510 ASD patients with 2-year follow-up. Spine (Phila Pa 1976). 2016;41(22):E1328–35. https://doi.org/10.1097/BRS.0000000000001598.

    Article  PubMed  Google Scholar 

  31. Sanders C, Saltzstein SL, Nguyen DH, Stafford HS, Schultzel M, Sadler GR. Understanding the limits of large datasets. J Cancer Educ. 2012;27(4):664–9. https://doi.org/10.1007/s13187-012-0383-7.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wild S, Fischbacher C, McKnight J. Using large diabetes databases for research. J Diabetes Sci Technol. 2016;10(5):1073–8. https://doi.org/10.1177/1932296816645120.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Alluri RK, Leland H, Heckmann N. Surgical research using national databases. Ann Transl Med. 2016;4(20):393. https://doi.org/10.21037/atm.2016.10.49.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl J Med. 2019;380(14):1347–58.

    Article  PubMed  Google Scholar 

  35. Pan Y, et al. Evaluation of a computer-aided method for measuring the cobb angle on chest X-rays. Eur Spine J. 2019;28(12):3035–43. https://doi.org/10.1007/s00586-019-06115-w.

    Article  PubMed  Google Scholar 

  36. Cho BH, et al. Automated measurement of lumbar lordosis on radiographs using machine learning and computer vision. Global Spine J. 2020;10(5):611–8. https://doi.org/10.1177/2192568219868190.

    Article  PubMed  Google Scholar 

  37. Galbusera F, et al. Fully automated radiological analysis of spinal disorders and deformities: a deep learning approach. Eur Spine J. 2019;28(5):951–60. https://doi.org/10.1007/s00586-019-05944-z.

    Article  PubMed  Google Scholar 

  38. Burström G, et al. Machine learning for automated 3-dimensional segmentation of the spine and suggested placement of pedicle screws based on intraoperative cone-beam computer tomography. J Neurosurg Spine. 2019;31(1):147–54. https://doi.org/10.3171/2018.12.SPINE181397.

    Article  PubMed  Google Scholar 

  39. Edström E, et al. Does augmented reality navigation increase pedicle screw density compared to free-hand technique in deformity surgery? Single surgeon case series of 44 patients. Spine (Phila Pa 1976). 2020;45(17):E1085–90. https://doi.org/10.1097/BRS.0000000000003518.

    Article  PubMed  Google Scholar 

  40. Mezger U, Jendrewski C, Bartels M. Navigation in surgery. Langenbecks Arch Surg. 2013;398(4):501–14. https://doi.org/10.1007/s00423-013-1059-4.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gargallo-Albiol J, Barootchi S, Salomó-Coll O, Wang H. Advantages and disadvantages of implant navigation surgery. A systematic review. Ann Anat. 2019;225:1–10. https://doi.org/10.1016/j.aanat.2019.04.005.

    Article  PubMed  Google Scholar 

  42. Towards better clinical prediction models: seven steps for development and an ABCD for validation. Abstract—Europe PMC. https://europepmc.org/article/PMC/4155437. Accessed 2 Mar 2020.

  43. Gregory TM, Gregory J, Sledge J, Allard R, Mir O. Surgery guided by mixed reality: presentation of a proof of concept. Acta Orthop. 2018;89(5):480–3. https://doi.org/10.1080/17453674.2018.1506974.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Volpe KD. Heads up! Docs perform first augmented reality-guided spinal fusion. SpineUniverse. https://www.spineuniverse.com/professional/news/first-augmented-reality-guided-spinal-fusion. Accessed 6 Nov 2020.

  45. Bhandari M, Zeffiro T, Reddiboina M. Artificial intelligence and robotic surgery: current perspective and future directions. Curr Opin Urol. 2020;30(1):48–54. https://doi.org/10.1097/MOU.0000000000000692.

    Article  PubMed  Google Scholar 

  46. Jain D, Durand W, Burch S, Daniels A, Berven S. Machine learning for predictive modeling of 90-day readmission, major medical complication, and discharge to a facility in patients undergoing long segment posterior lumbar spine fusion. Spine (Phila Pa 1976). 2020;45(16):1151–60. https://doi.org/10.1097/BRS.0000000000003475.

    Article  PubMed  Google Scholar 

  47. Ebrahimi S, Gajny L, Vergari C, Angelini ED, Skalli W. Vertebral rotation estimation from frontal X-rays using a quasi-automated pedicle detection method. Eur Spine J. 2019;28(12):3026–34. https://doi.org/10.1007/s00586-019-06158-z.

    Article  PubMed  Google Scholar 

  48. Khatri R, Varghese V, Sharma S, Kumar GS, Chhabra HS. Pullout strength predictor: a machine learning approach. Asian Spine J. 2019;13(5):842–8. https://doi.org/10.31616/asj.2018.0243.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Yagi M, et al. Predictive model for major complications 2 years after corrective spine surgery for adult spinal deformity. Eur Spine J. 2019;28(1):180–7. https://doi.org/10.1007/s00586-018-5816-5.

    Article  PubMed  Google Scholar 

  50. Kim JS, et al. Predicting surgical complications in patients undergoing elective adult spinal deformity procedures using machine learning. Spine Deform. 2018;6(6):762–70. https://doi.org/10.1016/j.jspd.2018.03.003.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph H. Schwab .

Editor information

Editors and Affiliations

Ethics declarations

 The authors of this study have no financial disclosures.

1 Electronic Supplementary Material

Fig. S1

Mesh Terms for PubMed Search (JPEG 84244 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kamalapathy, P.N., Karhade, A.V., Tobert, D., Schwab, J.H. (2022). Artificial Intelligence in Adult Spinal Deformity. In: Staartjes, V.E., Regli, L., Serra, C. (eds) Machine Learning in Clinical Neuroscience. Acta Neurochirurgica Supplement, vol 134. Springer, Cham. https://doi.org/10.1007/978-3-030-85292-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85292-4_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85291-7

  • Online ISBN: 978-3-030-85292-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics