Skip to main content

Regulatory T Cells in SLE

  • Chapter
  • First Online:
Pathogenesis of Systemic Lupus Erythematosus
  • 463 Accesses

Abstract

Autoimmune diseases such as type 1 diabetes and systemic lupus erythematosus are chronic inflammatory diseases caused by immune system dysfunction. When immune cells such as T cells and B cells recognize self-antigens, this can lead to cellular and tissue destruction. Multiple causes of autoimmune diseases have been suggested, such as genetic predisposition, molecular mimicry, and importantly, a loss in numbers and/or function of regulatory T cells. Regulatory T cells (or Tregs) are a subset of CD4+ T cells essential for functional cellular immunity. They play an important role in preventing the induction of autoimmunity through various mechanisms, including, but not limited to, the secretion of immunosuppressive cytokines such as IL-10 and TGF-β. Their indispensability in protection against autoimmunity can be demonstrated in cases of immune dysregulation polyendocrinopathy enteropathy X-linked (IPEX) syndrome, where loss of Treg function results in severe autoimmunity and even death. Furthermore, a decrease in numbers of functional Tregs and/or loss of Treg function is often been implicated in the pathogenesis of autoimmune diseases. Consequently, there has been increased interest in the use of Tregs in immunotherapy (whether polyclonal or antigen-specific) to treat autoimmune diseases such as systemic lupus erythematosus. Recent studies have shown that antigen-specific Tregs are important for protection against autoimmune disease. In a paradigm shifting study, utilizing the model autoimmune disease, Goodpasture’s, it was found that antigen-specific Tregs dominantly suppressed pro-inflammatory autoreactive conventional T cells and protected from disease. Therefore, there are now efforts to increase the numbers of antigen-specific Tregs to treat autoimmune diseases. One such way is to genetically engineer antigen-specific Tregs. Studies using animal models of disease and Jurkat cell lines have shown potential for the genetic engineering of antigen-specific Tregs for antigen-specific disease suppression. These Tregs can be conferred with antigen specificity through the use of lentiviral vectors containing specific T cell receptor (TCR) sequences. The use of antigen-specific Tregs as therapeutics in autoimmunity could also be applied to systemic lupus erythematosus (SLE), a chronic inflammatory autoimmune disease estimated to affect 1 in 1000 people. SLE is a highly heterogenous disease with a number of target autoantigens such as double-stranded DNA and the Smith (Sm) antigen. Patients present with different disease manifestations, including, but not limited to, lupus nephritis, malar rash, and neuropsychiatric lupus. Amongst the autoantigens, the Sm antigen is most specific for SLE; and, autoreactivity to the Sm antigen is associated with worse prognosis, in particular a strong predisposition to develop lupus nephritis. Furthermore, there is a strong HLA association in anti-Sm + SLE patients, suggesting a dominant T cell directed response in these patients. Current treatments for SLE involve the use of corticosteroids and immunosuppressive agents. However, long-term intake of these medications can lead to severe side effects such as increased risks of infection and drug toxicity. Due to the importance of antigen-specific Tregs in protecting against autoimmune disease, there is now the potential to develop antigen-specific Tregs for use as treatment for SLE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vignali DA, Collison LW, Workman CJ (2008) How regulatory T cells work. Nat Rev Immunol 8(7):523–532

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. van der Vliet HJJ, Nieuwenhuis EE (2007) IPEX as a result of mutations in Foxp3. Clin Dev Immunol 2007:89017

    PubMed  PubMed Central  Google Scholar 

  3. Dominguez Villar M, Hafler DA (2018) Regulatory T cells in autoimmune disease. Nat Immunol 19:665–673

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Klein L, Kyewski B, Allen PM, Hogquist KA (2014) Positive and negative selection of the T cell repertoire: what thymocytes see (and don’t see). Nat Rev Immunol 14:377

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Morikawa H, Sakaguchi S (2014) Genetic and epigenetic basis of Treg cell development and function: from a FoxP3-centered view to an epigenome-defined view of natural Treg cells. Immunol Rev 259(1):192–205

    Article  PubMed  CAS  Google Scholar 

  6. Lee W, Lee GR (2018) Transcriptional regulation and development of regulatory T cells. Exp Mol Med. 50:e456

    Google Scholar 

  7. Wakamatsu E, Omori H, Kawano A, Ogawa S, Abe R (2018) Strong TCR stimulation promotes the stabilization of Foxp3 expression in regulatory T cells induced in vitro through increasing the demethylation of Foxp3 CNS2. Biochem Biophys Res Commun 503(4):2597–2602

    Article  PubMed  CAS  Google Scholar 

  8. Ohkura N, Hamaguchi M, Morikawa H, Sugimura K, Tanaka A, Ito Y et al (2012) T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell development. Immunity 37(5):785–799

    Article  PubMed  CAS  Google Scholar 

  9. Toker A, Engelbert D, Garg G, Polansky JK, Floess S, Miyao T et al (2013) Active demethylation of the Foxp3 locus leads to the generation of stable regulatory T cells within the thymus. J Immunol 190(7):3180

    Article  PubMed  CAS  Google Scholar 

  10. Kanamori M, Nakatsukasa H, Okada M, Lu Q, Yoshimura A (2016) Induced regulatory T cells: their development, stability, and applications. Trends Immunol 37(11):803–811

    Article  PubMed  CAS  Google Scholar 

  11. Levings MK, Gregori S, Tresoldi E, Cazzaniga S, Bonini C, Roncarolo MG (2005) Differentiation of Tr1 cells by immature dendritic cells requires IL-10 but not CD25+CD4+ Tr cells. Blood 105(3):1162–1169

    Article  PubMed  CAS  Google Scholar 

  12. Gagliani N, Magnani CF, Huber S, Gianolini ME, Pala M, Licona-Limon P, et al (2013) Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells. Nat Med 19:739-46

    Google Scholar 

  13. Zeng H, Zhang R, Jin B, Chen L (2015) Type 1 regulatory T cells: a new mechanism of peripheral immune tolerance. Cell Mol Immunol 12:566–571

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Bandala-Sanchez E, Zhang Y, Reinwald S, Dromey JA, Lee B-H, Qian J, et al (2013) T cell regulation mediated by interaction of soluble CD52 with the inhibitory receptor Siglec-10. Nat Immunol 14:741–748

    Google Scholar 

  15. Miyara M, Sakaguchi S (2007) Natural regulatory T cells: mechanisms of suppression. Trends Mol Med. 13(3):108–116

    Article  PubMed  CAS  Google Scholar 

  16. Liang B, Workman C, Lee J, Chew C, Dale BM, Colonna L et al (2008) Regulatory T cells inhibit dendritic cells by lymphocyte activation gene-3 engagement of MHC class II. J Immunol 180(9):5916–5926

    Article  PubMed  CAS  Google Scholar 

  17. Chaudhry A, SamsteinRobert M, Treuting P, Liang Y, PilsMarina C, Heinrich J-M et al (2011) Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation. Immunity 34(4):566–578

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Konkel JE, Zhang D, Zanvit P, Chia C, Zangarle-Murray T, Jin W, et al (2017) Transforming growth factor-β signaling in regulatory T cells controls T helper-17 cells and tissue-specific immune responses. Immunity 46(4):660–674

    Google Scholar 

  19. Bandala-Sanchez EG, Bediaga N, Goddard-Borger ED, Ngui K, Naselli G, Stone NL et al (2018) CD52 glycan binds the proinflammatory B box of HMGB1 to engage the Siglec-10 receptor and suppress human T cell function. Proc Natl Acad Sci USA 115(30):7783–7788

    Google Scholar 

  20. Iikuni N, Lourenco EV, Hahn BH, La Cava A (2009) Cutting edge: Regulatory T cells directly suppress B cells in systemic lupus erythematosus. J Immunol 183:1518–1522

    Article  PubMed  CAS  Google Scholar 

  21. Hua J, Inomata T, Chen Y, Foulsham W, Stevenson W, Shiang T et al (2018) Pathological conversion of regulatory T cells is associated with loss of allotolerance. Sci Rep 8(1):7059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Komatsu N, Okamoto K, Sawa S, Nakashima T, Oh hora M, Kodama T et al (2013) Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat Med 20:62–68

    Article  PubMed  CAS  Google Scholar 

  23. Kimura A, Kishimoto T (2010) IL-6: Regulator of Treg/Th17 balance. Eur J Immunol 40(7):1830–1835

    Article  PubMed  CAS  Google Scholar 

  24. Thornton AM, Lu J, Korty PE, Kim YC, Martens C, Sun PD et al (2019) Helios+ and Helios- Treg subpopulations are phenotypically and functionally distinct and express dissimilar TCR repertoires. Eur J Immunol 49:398–412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Valencia X, Yarboro C, Illei G, Lipsky PE (2007) Deficient CD4+CD25high T regulatory cell function in patients with active systemic lupus erythematosus. J Immunol 178(4):2579–2588

    Article  PubMed  CAS  Google Scholar 

  26. Bonelli M, Savitskaya A, von Dalwigk K, Steiner CW, Aletaha D, Smolen JS et al (2008) Quantitative and qualitative deficiencies of regulatory T cells in patients with systemic lupus erythematosus (SLE). Int Immunol 20(7):861–868

    Article  PubMed  CAS  Google Scholar 

  27. Zhu Y, Huang Y, Ming B, Wu X, Chen Y, Dong L (2019) Regulatory T-cell levels in systemic lupus erythematosus patients: a meta-analysis. Lupus. 28(4):445–454

    Article  PubMed  CAS  Google Scholar 

  28. Alvarado-Sánchez B, Hernández-Castro B, Portales-Pérez D, Baranda L, Layseca-Espinosa E, Abud-Mendoza C, et al (2006) Regulatory T cells in patients with systemic lupus erythematosus. J Autoimmun 27(2):110–118

    Google Scholar 

  29. Dall’Era M, Pauli ML, Remedios K, Taravati K, Sandova PM, Putnam AL et al (2019) Adoptive Treg cell therapy in a patient with systemic lupus erythematosus. Arthritis Rheumatol. 71(3):431–440

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. He J, Zhang X, Wei Y, Sun X, Chen Y, Deng J et al (2016) Low-dose interleukin-2 treatment selectively modulates CD4+ T cell subsets in patients with systemic lupus erythematosus. Nat Med 22:991–993

    Article  PubMed  CAS  Google Scholar 

  31. Ferreira LMR, Muller YD, Bluestone JA, Tang Q (2019) Next-generation regulatory T cell therapy. Nat Rev Drug Discov 18(10):749–769

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Di Ianni M, Falzetti F, Carotti A, Terenzi A, Castellino F, Bonifacio E et al (2011) Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation. Blood 117(14):3921–3928

    Article  PubMed  CAS  Google Scholar 

  33. Bluestone JA, Buckner JH, Fitch M, Gitelman SE, Gupta S, Hellerstein MK, et al (2015) Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Sci Transl Med 7(315):315ra189

    Google Scholar 

  34. Todo S, Yamashita K, Goto R, Zaitsu M, Nagatsu A, Oura T et al (2016) A pilot study of operational tolerance with a regulatory T-cell-based cell therapy in living donor liver transplantation. Hepatology 64(2):632–643

    Article  PubMed  CAS  Google Scholar 

  35. Dawson NAJ, Levings MK (2017) Antigen-specific regulatory T cells: are police CARs the answer? Transl Res. 187:53–58

    Article  PubMed  CAS  Google Scholar 

  36. Guedan S, Calderon H, Posey AD Jr, Maus MV (2019) Engineering and design of chimeric antigen receptors. Mol Ther—Meth Clin D. 12:145–156

    Article  CAS  Google Scholar 

  37. Blat D, Zigmond E, Alteber Z, Waks T, Eshhar Z (2014) Suppression of murine colitis and its associated cancer by carcinoembryonic antigen-specific regulatory T cells. Mol Ther 22(5):1018–1028

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Yoon J, Schmidt A, Zhang A-H, Königs C, Kim YC, Scott DW (2017) FVIII-specific human chimeric antigen receptor T-regulatory cells suppress T– and B-cell responses to FVIII. Blood 129(2):238–245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. MacDonald KG, Hoeppli RE, Huang Q, Gillies J, Luciani DS, Orban PC et al (2016) Alloantigen-specific regulatory T cells generated with a chimeric antigen receptor. J Clin Invest 126(4):1413–1424

    Article  PubMed  PubMed Central  Google Scholar 

  40. Boardman DA, Philippeos C, Fruhwirth GO, Ibrahim MAA, Hannen RF, Cooper D et al (2017) Expression of a chimeric antigen receptor specific for donor HLA class I enhances the potency of human regulatory T cells in preventing human skin transplant rejection. Am J Transplant 17(4):931–943

    Article  PubMed  CAS  Google Scholar 

  41. Kim YC, Zhang AH, Su Y, Rieder SA, Rossi RJ, Ettinger RA et al (2015) Engineered antigen-specific human regulatory T cells: immunosuppression of FVIII-specific T- and B-cell responses. Blood 125:1107–1115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Hull CM, Nickolay LE, Estorninho M, Richardson MW, Riley JL, Peakman M et al (2017) Generation of human islet-specific regulatory T cells by TCR gene transfer. J Autoimmun 79:63–73

    Article  PubMed  CAS  Google Scholar 

  43. Kim YC, Zhang AH, Yoon J, Culp WE, Lees JR, Wucherpfennig KW et al (2018) Engineered MBP-specific human Tregs ameliorate MOG-induced EAE through IL-2-triggered inhibition of effector T cells. J Autoimmun 92:77–86

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Wang J, Ioan-Facsinay A, van der Voort EIH, Huizinga TWJ, Toes REM (2007) Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells. Eur J Immunol 37(1):129–138

    Article  PubMed  CAS  Google Scholar 

  45. Mathew JM, Voss H-J, LeFever A, Konieczna I, Stratton C, He J, et al (2018) A phase I clinical trial with ex vivo expanded recipient regulatory T cells in living donor kidney transplants. Sci Rep. 8(1):7428

    Google Scholar 

  46. Cojocaru M, Cojocaru IM, Silosi I, Vrabie CD (2011) Manifestations of systemic lupus erythematosus. Maedica. 6:330–336

    PubMed  PubMed Central  Google Scholar 

  47. Maidhof W, Hilas O (2012) Lupus: An overview of the disease and management options. P&T 37:240–249

    Google Scholar 

  48. Rees R, Doherty M, Grainge MJ, Lanyon P, Zhang W (2017) The worldwide incidence and prevalence of systemic lupus erythematosus: a systematic review of epidemiological studies. Rheumatology 56:1945–1961

    Article  PubMed  Google Scholar 

  49. Carter EE, Barr SG, Clarke AE (2016) The global burden of SLE: prevalence, health disparities and socioeconomic impact. Nat Rev Rheumatol 12:605–620

    Article  PubMed  Google Scholar 

  50. van Schaarenburg RA, Magro-Checa C, Bakker JA, Onno Teng YK, Bajema IM, Huizinga TW, et al (2016) C1q deficiency and neuropsychiatric systemic lupus erythematosus. Front Immunol 7:e00647

    Google Scholar 

  51. Poole BD, Scofield RH, Harley JB, James JA (2009) Epstein-Barr virus and molecular mimicry in systemic lupus erythematosus. Autoimmunity 39:63–70

    Article  CAS  Google Scholar 

  52. Graham RR, Ortmann W, Rodine P, Espe K, Langefeld C, Lange E et al (2007) Specific combinations of HLA-DR2 and DR3 class II haplotypes contribute graded risk for disease susceptibility and autoantibodies in human SLE. Eur J Hum Genet 15:823

    Article  PubMed  CAS  Google Scholar 

  53. Jiang C, Deshmukh US, Gaskin F, Bagavant H, Hanson J, David CS et al (2010) Differential responses to Smith D autoantigen by mice with HLA-DR and HLA-DQ transgenes: dominant responses by HLA-DR3 transgenic mice with diversification of autoantibodies to small nuclear ribonucleoprotein, double-stranded DNA, and nuclear antigens. J Immunol 184:1085–1091

    Article  PubMed  CAS  Google Scholar 

  54. Niu Z, Zhang P, Tong Y (2015) Value of HLA-DR genotype in systemic lupus erythematosus and lupus nephritis: a meta-analysis. Int J Rheum Dis. 18:17–28

    Article  PubMed  CAS  Google Scholar 

  55. Langefeld CD, Ainsworth HC, Graham DSC, Kelly JA, Comeau ME, Marion MC et al (2017) Transancestral mapping and genetic load in systemic lupus erythematosus. Nat Commun 8:16021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Marchini M, Antonioli R, Lleó A, Barili M, Caronni M, Origgi L et al (2003) HLA class II antigens associated with lupus nephritis in Italian SLE patients. Hum Immunol 64:462–468

    Article  PubMed  CAS  Google Scholar 

  57. Chung SA, Brown EE, Williams AH, Ramos PS, Berthier CC, Bhangale T et al (2014) Lupus nephritis susceptibility loci in women with systemic lupus erythematosus. J Am Soc Nephrol 25(12):2859–2870

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. de Holanda MI, Klumb E, Imada A, Lima LA, Alcantara I, Gregorio F et al (2018) The prevalence of HLA alleles in a lupus nephritis population. Transpl Immunol 47:37–43

    Article  PubMed  CAS  Google Scholar 

  59. Ooi JD, Petersen J, Tan YH, Huynh M, Willett ZJ, Ramarathinam SH et al (2017) Dominant protection from HLA-linked autoimmunity by antigen-specific regulatory T cells. Nature 545:243–248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Kim K, Bang S-Y, Lee H-S, Okada Y, Han B, Saw W-Y et al (2014) The HLA-DRβ1 amino acid positions 11–13-26 explain the majority of SLE-MHC associations. Nat Commun 5:5902

    Article  PubMed  CAS  Google Scholar 

  61. Riemekasten G, Hahn BH (2005) Key autoantigens in SLE. Rheumatology 44:975–982

    Article  PubMed  CAS  Google Scholar 

  62. Ishizaki J, Saito K, Nawata M, Mizuno Y, Tokunaga M, Sawamukai N et al (2014) Low complements and high titre of anti-Sm antibody as predictors of histopathologically proven silent lupus nephritis without abnormal urinalysis in patients with systemic lupus erythematosus. Rheumatology 54(3):405–412

    Article  PubMed  CAS  Google Scholar 

  63. Arroyo Ávila M, Santiago Casas Y, McGwin G, Cantor RS, Petri M, Ramsey Goldman R et al (2015) Clinical associations of anti-Smith antibodies in PROFILE: a multi-ethnic lupus cohort. Clin Rheumatol 34(7):1217–1223

    Article  PubMed  PubMed Central  Google Scholar 

  64. Deshmukh US, Sim DL, Dai C, Kannapell CC, Gaskin F, Rajagopalan G et al (2011) HLA-DR3 restricted T cell epitope mimicry in induction of autoimmune response to lupus-associated antigen SmD. J Autoimmun 37:254–262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Chowdhary VR, Dai C, Tilahun AY, Hanson JA, Smart MK, Grande JP et al (2015) A central role for HLA-DR3 in anti-Smith antibody responses and glomerulonephritis in a transgenic mouse model of spontaneous lupus. J Immunol 195:4660–4667

    Article  PubMed  CAS  Google Scholar 

  66. Zhao Z, Ren J, Dai C, Kannapell CC, Wang H, Gaskin F et al (2019) Nature of T cell epitopes in lupus antigens and HLA-DR determines autoantibody initiation and diversification. Ann Rheum Dis 78:380–390

    Article  PubMed  CAS  Google Scholar 

  67. Xue K, Niu W-Q, Cui Y (2018) Association of HLA-DR3 and HLA-DR15 polymorphisms with risk of systemic lupus erythematosus. Chin Med J (Engl) 131(23):2844–2851

    CAS  Google Scholar 

  68. Moulton VR, Suarez-Fueyo A, Meidan E, Li H, Mizui M, Tsokos GC (2017) Pathogenesis of human systemic lupus erythematosus: a cellular perspective. Trends Mol Med 23:615–635

    Google Scholar 

  69. Kaplan MJ (2011) Neutrophils in the pathogenesis and manifestations of SLE. Nat Rev Rheumatol 7:691–699

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Denny MF, Yalavarthi S, Zhao W, Thacker SG, Anderson M, Sandy AR et al (2010) A distinct subset of proinflammatory neutrophils isolated from patients with systemic lupus erythematosus induces vascular damage and synthesizes type I IFNs. J Immunol 184:3284–3297

    Article  PubMed  CAS  Google Scholar 

  71. Ren Y, Tang J, Mok MY, Chan AWK, Wu A, Lau CS (2003) Increased apoptotic neutrophils and macrophages and impaired macrophage phagocytic clearance of apoptotic neutrophils in systemic lupus erythematosus. Arthritis Rheum 48:2888–2897

    Article  PubMed  Google Scholar 

  72. Tsokos GC, Lo MS, Reis PC, Sullivan KE (2016) New insights into the immunopathogenesis of systemic lupus erythematosus. Nat Rev Rheumatol 12(716–730)

    Google Scholar 

  73. Bijl M, Reefman E, Horst G, Limburg PC, Kallenberg CGM (2006) Reduced uptake of apoptotic cells by macrophages in systemic lupus erythematosus: correlates with decreased serum levels of complement. Ann Rheum Dis 65:57–63

    Article  PubMed  CAS  Google Scholar 

  74. Fransen JH, van der Vlag J, Ruben J, Adema GJ, Berden JH, Hilbrands LB (2010) The role of dendritic cells in the pathogenesis of systemic lupus erythematosus. Arthritis Res Ther. 12:207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Urbonaviciute V, Furnrohr BG, Meister S, Munoz L, Heyder P, De Marchis F et al (2008) Induction of inflammatory and immune responses by HMGB-1-nucleosome complexes: implications for the pathogenesis of SLE. J Exp Med 205:3007–3018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Blanco P, Palucka AK, Pascual V, Banchereau J (2008) Dendritic cells and cytokines in human inflammatory and autoimmune diseases. Cytokine Growth Factor Rev 19:41–52

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Lövgren T, Eloranta M-L, Båve U, Alm GV, Rönnblom L (2004) Induction of interferon-α production in plasmacytoid dendritic cells by immune complexes containing nucleic acid released by necrotic or late apoptotic cells and lupus IgG. Arthritis Rheum 50(6):1861–1872

    Article  PubMed  CAS  Google Scholar 

  78. Sisirak V, Ganguly D, Lewis KL, Couillault C, Tanaka L, Bolland S et al (2014) Genetic evidence for the role of plasmacytoid dendritic cells in systemic lupus erythematosus. J Exp Med 211:1969–1976

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Ding D, Mehta H, McCune WJ, Kaplan MJ (2006) Aberrant phenotype and function of myeloid dendritic cells in systemic lupus erythematosus. J Immunol 177:5878–5889

    Article  PubMed  CAS  Google Scholar 

  80. Simmons DP, Wearsch PA, Canaday DH, Meyerson HJ, Liu YC, Wang Y et al (2012) Type 1 IFN drives a distinctive dendritic cell maturation phenotype that allows continued class II MHC synthesis and antigen processing. J Immunol 188:3116–3126

    Article  PubMed  CAS  Google Scholar 

  81. López P, Scheel-Toellner D, Rodríguez-Carrio J, Caminal-Montero L, Gordon C, Suárez A (2014) Interferon-α-induced B-lymphocyte stimulator expression and mobilization in healthy and systemic lupus erthymatosus monocytes. Rheumatology 53:2249–2258.

    Google Scholar 

  82. López P, Rodríguez-Carrio J, Caminal-Montero L, Mozo L, Suárez A (2016) A pathogenic IFNα, BLyS and IL-17 axis in systemic lupus erythematosus patients. Nature 6:20651

    Google Scholar 

  83. Kiefer K, Oropallo MA, Cancro MP, Marshak-Rothstein A (2012) Role of type 1 interferons in the activation of autoreactive B cells. Immunol Cell Biol 90:498–504

    Google Scholar 

  84. Cancro MP, D’Cruz DP, Khamashta MA (2009) The role of B lymphocyte stimulator (BLyS) in systemic lupus erythematosus. J Clin Invest 119:1066–1073

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Thien M, Phan TG, Gardam S, Amesbury M, Basten A, Mackay F et al (2004) Excess BAFF rescues self-reactive B cells from peripheral deletion and allows them to enter forbidden follicular and marginal zone niches. Immunity 20:785–798

    Article  PubMed  CAS  Google Scholar 

  86. Eilertsen GØ, Van Ghelue M, Strand H, Nossent JC (2011) Increased levels of BAFF in patients with systemic lupus erythematosus are associated with acute-phase reactants, independent of BAFF genetics: a case–control study. Rheumatology 50(12):2197–2205

    Article  PubMed  CAS  Google Scholar 

  87. Tangye SG, Ma CS, Brink R, Deenick EK (2013) The good, the bad and the ugly—TFH cells in human health and disease. Nat Rev Immunol 13:412

    Article  PubMed  CAS  Google Scholar 

  88. Crotty S (2014) T follicular helper cell differentiation, function, and roles in disease. Immunity 41(4):529–542

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Schmitt N, Morita R, Bourdery L, Bentebibel SE, Zurawski SM, Banchereau J et al (2009) Human dendritic cells induce the differentiation of interleukin-21-producing T follicular helper-like cells through interleukin-12. Immunity 31(1):158–169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Koenig KF, Groeschl I, Pesickova SS, Tesar V, Eisenberger U, Trendelenburg M (2012) Serum cytokine profile in patients with active lupus nephritis. Cytokine 60(2):410–416

    Article  PubMed  CAS  Google Scholar 

  91. Dai H, He F, Tsokos GC, Kyttaris VC (2017) IL-23 limits the production of IL-2 and promotes autoimmunity in lupus. J Immunol 199(3):903–910

    Article  PubMed  CAS  Google Scholar 

  92. Ballesteros Tato A, León B, Graf Beth A, Moquin A, Adams Pamela S, Lund Frances E et al (2012) Interleukin-2 inhibits germinal center formation by limiting T follicular helper cell differentiation. Immunity 36(5):847–856

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. von Spee-Mayer C, Siegert E, Abdirama D, Rose A, Klaus A, Alexander T, et al (2016) Low-dose interleukin-2 selectively corrects regulatory T cell defects in patients with systemic lupus erythematosus. Ann Rheum Dis 75:1407–1415

    Google Scholar 

  94. Wong CK, Lit LCW, Tam LS, Li EKM, Wong PTY, Lam CWK (2008) Hyperproduction of IL-23 and IL-17 in patients with systemic lupus erythematosus: Implications for Th17-mediated inflammation in auto-immunity. Clin Immunol 127(3):385–393

    Article  PubMed  CAS  Google Scholar 

  95. Vincent FB, Northcott M, Hoi A, Mackay F, Morand EF (2013) Clinical associations of serum interleukin-17 in systemic lupus erythematosus. Arthritis Res Ther. 15(4):R97

    Article  PubMed  PubMed Central  Google Scholar 

  96. Crispín JC, Oukka M, Bayliss G, Cohen RA, Van Beek CA, Stillman IE et al (2008) Expanded double negative T cells in patients with systemic lupus erythematosus produce IL-17 and infiltrate the kidneys. J Immunol 181(12):8761

    Article  PubMed  Google Scholar 

  97. Ogura H, Murakami M, Okuyama Y, Tsuruoka M, Kitabayashi C, Kanamoto M et al (2008) Interleukin-17 promotes autoimmunity by triggering a positive-feedback loop via interleukin-6 induction. Immunity 29(4):628–636

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua Ooi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cheong, R., Ooi, J. (2021). Regulatory T Cells in SLE. In: Hoi, A. (eds) Pathogenesis of Systemic Lupus Erythematosus. Springer, Cham. https://doi.org/10.1007/978-3-030-85161-3_9

Download citation

Publish with us

Policies and ethics