Skip to main content

Hallmark of Systemic Lupus Erythematosus: Role of B Cell Hyperactivity

  • Chapter
  • First Online:
Pathogenesis of Systemic Lupus Erythematosus

Abstract

B cells have been the focus of systemic lupus erythematosus (SLE) research for the past two decades since they are acknowledged to play a central role in disease pathogenesis. This has been somewhat fruitful, yielding the approval in 2011 by the Food and Drug Administration of the only (as of today) biological therapy in SLE, belimumab, a humanised monoclonal antibody (mAb) targeting the key B cell survival factor B cell-activating factor of the tumour necrosis factor (TNF) family (BAFF). However, given the modest clinical benefit of this biological agent, this condition is still burdened by a lack of new targeted therapies, without which many patients will continue to suffer from severe manifestations of the disease leading to irreversible organ damage, affecting their quality of life while increasing morbidity and mortality. This is in stark contrast to other autoimmune diseases, such as rheumatoid arthritis, where a revolution of targeted treatments, which started more than a decade ago, led to a new era of therapeutic management. Facing this unacceptable situation, a comprehensive understanding of the perturbed B cell biology operative in SLE is crucial in order to fine-tune and develop new targeted therapy alternatives in a precision medicine approach. In this chapter, we will discuss the pivotal roles of B cells in SLE pathogenesis, particularly changes that are observed in B cell subsets, the presence of B cell hyperactivity and loss of tolerance, the clinical relevance and pathogenic roles of autoantibodies, the operative signalling pathways, the interplay between B and T cells, the B cell cytokine network, and B cell-associated genetic factors in SLE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lisnevskaia L, Murphy G, Isenberg D (2014) Systemic lupus erythematosus. Lancet 384(9957):1878–1888

    Article  PubMed  Google Scholar 

  2. Vincent FB, Bourke P, Morand EF, Mackay F, Bossingham D (2013) Focus on systemic lupus erythematosus in indigenous Australians: towards a better understanding of autoimmune diseases. Intern Med J 43(3):227–234

    Article  PubMed  CAS  Google Scholar 

  3. Navarra SV, Guzman RM, Gallacher AE, Hall S, Levy RA, Jimenez RE et al (2011) Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. Lancet 377(9767):721–731

    Article  PubMed  CAS  Google Scholar 

  4. Furie R, Petri M, Zamani O, Cervera R, Wallace DJ, Tegzova D et al (2011) A phase III, randomized, placebo-controlled study of belimumab, a monoclonal antibody that inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus. Arthritis Rheum 63(12):3918–3930

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Vincent FB, Morand EF, Schneider P, Mackay F (2014) The BAFF/APRIL system in SLE pathogenesis. Nat Rev Rheumatol 10(6):365–373

    Article  PubMed  CAS  Google Scholar 

  6. Shlomchik MJ, Madaio MP, Ni D, Trounstein M, Huszar D (1994) The role of B cells in lpr/lpr-induced autoimmunity. J Exp Med 180(4):1295–1306

    Article  PubMed  CAS  Google Scholar 

  7. Chan O, Shlomchik MJ (1998) A new role for B cells in systemic autoimmunity: B cells promote spontaneous T cell activation in MRL-lpr/lpr mice. J Immunol 160(1):51–59

    Article  PubMed  CAS  Google Scholar 

  8. Harder KW, Quilici C, Naik E, Inglese M, Kountouri N, Turner A et al (2004) Perturbed myelo/erythropoiesis in Lyn-deficient mice is similar to that in mice lacking the inhibitory phosphatases SHP-1 and SHIP-1. Blood 104(13):3901–3910

    Article  PubMed  CAS  Google Scholar 

  9. Tsantikos E, Oracki SA, Quilici C, Anderson GP, Tarlinton DM, Hibbs ML (2010) Autoimmune disease in Lyn-deficient mice is dependent on an inflammatory environment established by IL-6. J Immunol 184(3):1348–1360

    Article  PubMed  CAS  Google Scholar 

  10. Zhang J, Roschke V, Baker KP, Wang Z, Alarcon GS, Fessler BJ et al (2001) Cutting edge: a role for B lymphocyte stimulator in systemic lupus erythematosus. J Immunol 166(1):6–10

    Article  PubMed  CAS  Google Scholar 

  11. Stohl W, Metyas S, Tan SM, Cheema GS, Oamar B, Xu D et al (2003) B lymphocyte stimulator overexpression in patients with systemic lupus erythematosus: longitudinal observations. Arthritis Rheum 48(12):3475–3486

    Article  PubMed  Google Scholar 

  12. Pers JO, Daridon C, Devauchelle V, Jousse S, Saraux A, Jamin C et al (2005) BAFF overexpression is associated with autoantibody production in autoimmune diseases. Ann N Y Acad Sci 1050:34–39

    Article  PubMed  CAS  Google Scholar 

  13. Steri M, Orru V, Idda ML, Pitzalis M, Pala M, Zara I et al (2017) Overexpression of the cytokine BAFF and autoimmunity risk. N Engl J Med 376(17):1615–1626

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Sakai J, Akkoyunlu M (2017) The role of BAFF system molecules in host response to pathogens. Clin Microbiol Rev 30(4):991–1014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Nardelli B, Belvedere O, Roschke V, Moore PA, Olsen HS, Migone TS et al (2001) Synthesis and release of B-lymphocyte stimulator from myeloid cells. Blood 97(1):198–204

    Article  PubMed  CAS  Google Scholar 

  16. Craxton A, Magaletti D, Ryan EJ, Clark EA (2003) Macrophage- and dendritic cell–dependent regulation of human B-cell proliferation requires the TNF family ligand BAFF. Blood 101(11):4464–4471

    Article  PubMed  CAS  Google Scholar 

  17. Scapini P, Nardelli B, Nadali G, Calzetti F, Pizzolo G, Montecucco C et al (2003) G-CSF-stimulated neutrophils are a prominent source of functional BLyS. J Exp Med 197(3):297–302

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Ittah M, Miceli-Richard C, Eric Gottenberg J, Lavie F, Lazure T, Ba N et al (2006) B cell-activating factor of the tumor necrosis factor family (BAFF) is expressed under stimulation by interferon in salivary gland epithelial cells in primary Sjogren’s syndrome. Arthritis Res Ther 8(2):R51

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mackay F, Woodcock SA, Lawton P, Ambrose C, Baetscher M, Schneider P et al (1999) Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J Exp Med 190(11):1697–1710

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Groom JR, Fletcher CA, Walters SN, Grey ST, Watt SV, Sweet MJ et al (2007) BAFF and MyD88 signals promote a lupuslike disease independent of T cells. J Exp Med 204(8):1959–1971

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Litinskiy MB, Nardelli B, Hilbert DM, He B, Schaffer A, Casali P et al (2002) DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nat Immunol 3(9):822–829

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Belnoue E, Pihlgren M, McGaha TL, Tougne C, Rochat AF, Bossen C et al (2008) APRIL is critical for plasmablast survival in the bone marrow and poorly expressed by early-life bone marrow stromal cells. Blood 111(5):2755–2764

    Article  PubMed  CAS  Google Scholar 

  23. Koyama T, Tsukamoto H, Miyagi Y, Himeji D, Otsuka J, Miyagawa H et al (2005) Raised serum APRIL levels in patients with systemic lupus erythematosus. Ann Rheum Dis 64(7):1065–1067

    Article  PubMed  CAS  Google Scholar 

  24. Hegazy M, Darwish H, Darweesh H, El-Shehaby A, Emad Y (2010) Raised serum level of APRIL in patients with systemic lupus erythematosus: correlations with disease activity indices. Clin Immunol 135(1):118–124

    Article  PubMed  CAS  Google Scholar 

  25. Treamtrakanpon W, Tantivitayakul P, Benjachat T, Somparn P, Kittikowit W, Eiam-ong S et al (2012) APRIL, a proliferation-inducing ligand, as a potential marker of lupus nephritis. Arthritis Res Ther 14(6):R252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Varfolomeev E, Kischkel F, Martin F, Seshasayee D, Wang H, Lawrence D et al (2004) APRIL-deficient mice have normal immune system development. Mol Cell Biol 24(3):997–1006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. da Silva LS, Almeida BL, de Melo AK, de Brito DC, Braz AS, Freire EA (2016) IgA nephropathy in systemic lupus erythematosus patients: case report and literature review. Rev Bras Reumatol Engl Ed 56(3):270–273

    Article  PubMed  Google Scholar 

  28. Braun D, Caramalho I, Demengeot J (2002) IFN-alpha/beta enhances BCR-dependent B cell responses. Int Immunol 14(4):411–419

    Article  PubMed  CAS  Google Scholar 

  29. Linker-Israeli M, Deans RJ, Wallace DJ, Prehn J, Ozeri-Chen T, Klinenberg JR (1991) Elevated levels of endogenous IL-6 in systemic lupus erythematosus. A putative role in pathogenesis. J Immunol 147(1):117–123

    Google Scholar 

  30. Abdel Galil SM, Ezzeldin N, El-Boshy ME (2015) The role of serum IL-17 and IL-6 as biomarkers of disease activity and predictors of remission in patients with lupus nephritis. Cytokine 76(2):280–287

    Article  PubMed  CAS  Google Scholar 

  31. Lu R, Munroe ME, Guthridge JM, Bean KM, Fife DA, Chen H et al (2016) Dysregulation of innate and adaptive serum mediators precedes systemic lupus erythematosus classification and improves prognostic accuracy of autoantibodies. J Autoimmun 74:182–193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Tanaka T, Narazaki M, Kishimoto T (2014) IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol 6(10):a016295

    Google Scholar 

  33. Fujimoto M, Nakano M, Terabe F, Kawahata H, Ohkawara T, Han Y et al (2011) The influence of excessive IL-6 production in vivo on the development and function of Foxp3+ regulatory T cells. J Immunol 186(1):32–40

    Article  PubMed  CAS  Google Scholar 

  34. Ozaki K, Spolski R, Ettinger R, Kim HP, Wang G, Qi CF et al (2004) Regulation of B cell differentiation and plasma cell generation by IL-21, a novel inducer of Blimp-1 and Bcl-6. J Immunol 173(9):5361–5371

    Article  PubMed  CAS  Google Scholar 

  35. Linterman MA, Beaton L, Yu D, Ramiscal RR, Srivastava M, Hogan JJ et al (2010) IL-21 acts directly on B cells to regulate Bcl-6 expression and germinal center responses. J Exp Med 207(2):353–363

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Dolff S, Abdulahad WH, Westra J, Doornbos-van der Meer B, Limburg PC, Kallenberg CG et al (2011) Increase in IL-21 producing T-cells in patients with systemic lupus erythematosus. Arthritis Res Ther 13(5):R157

    Google Scholar 

  37. Terrier B, Costedoat-Chalumeau N, Garrido M, Geri G, Rosenzwajg M, Musset L et al (2012) Interleukin 21 correlates with T cell and B cell subset alterations in systemic lupus erythematosus. J Rheumatol 39(9):1819–1828

    Article  PubMed  CAS  Google Scholar 

  38. Nakou M, Papadimitraki ED, Fanouriakis A, Bertsias GK, Choulaki C, Goulidaki N et al (2013) Interleukin-21 is increased in active systemic lupus erythematosus patients and contributes to the generation of plasma B cells. Clin Exp Rheumatol 31(2):172–179

    PubMed  Google Scholar 

  39. Sawalha AH, Kaufman KM, Kelly JA, Adler AJ, Aberle T, Kilpatrick J et al (2008) Genetic association of interleukin-21 polymorphisms with systemic lupus erythematosus. Ann Rheum Dis 67(4):458–461

    Article  PubMed  CAS  Google Scholar 

  40. Webb R, Merrill JT, Kelly JA, Sestak A, Kaufman KM, Langefeld CD et al (2009) A polymorphism within IL21R confers risk for systemic lupus erythematosus. Arthritis Rheum 60(8):2402–2407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Eto D, Lao C, DiToro D, Barnett B, Escobar TC, Kageyama R et al (2011) IL-21 and IL-6 are critical for different aspects of B cell immunity and redundantly induce optimal follicular helper CD4 T cell (Tfh) differentiation. PLoS One 6(3):e17739

    Google Scholar 

  42. Wong CK, Lit LC, Tam LS, Li EK, Wong PT, Lam CW (2008) Hyperproduction of IL-23 and IL-17 in patients with systemic lupus erythematosus: implications for Th17-mediated inflammation in auto-immunity. Clin Immunol 127(3):385–393

    Article  PubMed  CAS  Google Scholar 

  43. Vincent FB, Northcott M, Hoi A, Mackay F, Morand EF (2013) Clinical associations of serum interleukin-17 in systemic lupus erythematosus. Arthritis Res Ther 15(4):R97

    Article  PubMed  PubMed Central  Google Scholar 

  44. Crispin JC, Oukka M, Bayliss G, Cohen RA, Van Beek CA, Stillman IE et al (2008) Expanded double negative T cells in patients with systemic lupus erythematosus produce IL-17 and infiltrate the kidneys. J Immunol 181(12):8761–8766

    Article  PubMed  CAS  Google Scholar 

  45. Shah K, Lee WW, Lee SH, Kim SH, Kang SW, Craft J et al (2010) Dysregulated balance of Th17 and Th1 cells in systemic lupus erythematosus. Arthritis Res Ther 12(2):R53

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mitsdoerffer M, Lee Y, Jager A, Kim HJ, Korn T, Kolls JK et al (2010) Proinflammatory T helper type 17 cells are effective B-cell helpers. Proc Natl Acad Sci USA 107(32):14292–14297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Hsu HC, Yang P, Wang J, Wu Q, Myers R, Chen J et al (2008) Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice. Nat Immunol 9(2):166–175

    Article  PubMed  CAS  Google Scholar 

  48. Figgett WA, Vincent FB, Saulep-Easton D, Mackay F (2014) Roles of ligands from the TNF superfamily in B cell development, function, and regulation. Semin Immunol 26(3):191–202

    Article  PubMed  CAS  Google Scholar 

  49. Wehr C, Eibel H, Masilamani M, Illges H, Schlesier M, Peter HH et al (2004) A new CD21low B cell population in the peripheral blood of patients with SLE. Clin Immunol 113(2):161–171

    Article  PubMed  CAS  Google Scholar 

  50. Wardowska A, Komorniczak M, Skoniecka A, Bullo-Piontecka B, Lisowska KA, Debska-Slizien MA et al (2020) Alterations in peripheral blood B cells in systemic lupus erythematosus patients with renal insufficiency. Int Immunopharmacol 83:106451

    Google Scholar 

  51. Biajoux V, Bignon A, Freitas C, Martinez V, Thelen M, Lima G et al (2012) Expression of CXCL12 receptors in B cells from Mexican Mestizos patients with systemic Lupus erythematosus. J Transl Med 10:251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Peng Y, Guo F, Liao S, Liao H, Xiao H, Yang L et al (2020) Altered frequency of peripheral B-cell subsets and their correlation with disease activity in patients with systemic lupus erythematosus: a comprehensive analysis. J Cell Mol Med 24(20):12044–12053

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Zhu L, Yin Z, Ju B, Zhang J, Wang Y, Lv X et al (2018) Altered frequencies of memory B cells in new-onset systemic lupus erythematosus patients. Clin Rheumatol 37(1):205–212

    Article  PubMed  Google Scholar 

  54. Jenks SA, Cashman KS, Zumaquero E, Marigorta UM, Patel AV, Wang X et al (2018) Distinct effector B cells induced by unregulated toll-like receptor 7 contribute to pathogenic responses in systemic lupus erythematosus. Immunity 49(4):725–39 e6

    Google Scholar 

  55. Yap DYH, Yung S, Lee P, Yam IYL, Tam C, Tang C et al (2020) B cell subsets and cellular signatures and disease relapse in lupus nephritis. Front Immunol 11:1732

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Ye Z, Jiang Y, Sun D, Zhong W, Zhao L, Jiang Z (2019) The plasma interleukin (IL)-35 level and frequency of circulating IL-35(+) regulatory B cells are decreased in a cohort of Chinese patients with new-onset systemic lupus erythematosus. Sci Rep 9(1):13210

    Article  PubMed  PubMed Central  Google Scholar 

  57. Fang C, Luo T, Lin L (2017) The correlational research among serum CXCL13 levels, circulating plasmablasts and memory B cells in patients with systemic lupus erythematosus: a STROBE-compliant article. Medicine (Baltimore) 96(48):e8675

    Google Scholar 

  58. Wei C, Anolik J, Cappione A, Zheng B, Pugh-Bernard A, Brooks J et al (2007) A new population of cells lacking expression of CD27 represents a notable component of the B cell memory compartment in systemic lupus erythematosus. J Immunol 178(10):6624–6633

    Article  PubMed  CAS  Google Scholar 

  59. Jacobi AM, Reiter K, Mackay M, Aranow C, Hiepe F, Radbruch A et al (2008) Activated memory B cell subsets correlate with disease activity in systemic lupus erythematosus: delineation by expression of CD27, IgD, and CD95. Arthritis Rheum 58(6):1762–1773

    Article  PubMed  CAS  Google Scholar 

  60. Wu C, Fu Q, Guo Q, Chen S, Goswami S, Sun S et al (2019) Lupus-associated atypical memory B cells are mTORC1-hyperactivated and functionally dysregulated. Ann Rheum Dis 78(8):1090–1100

    Article  PubMed  CAS  Google Scholar 

  61. Liu Y, Zhou S, Qian J, Wang Y, Yu X, Dai D et al (2017) T-bet(+)CD11c(+) B cells are critical for antichromatin immunoglobulin G production in the development of lupus. Arthritis Res Ther 19(1):225

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wang S, Wang J, Kumar V, Karnell JL, Naiman B, Gross PS et al (2018) IL-21 drives expansion and plasma cell differentiation of autoreactive CD11c(hi)T-bet(+) B cells in SLE. Nat Commun 9(1):1758

    Article  PubMed  PubMed Central  Google Scholar 

  63. Nicholas MW, Dooley MA, Hogan SL, Anolik J, Looney J, Sanz I et al (2008) A novel subset of memory B cells is enriched in autoreactivity and correlates with adverse outcomes in SLE. Clin Immunol 126(2):189–201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Jacobi AM, Odendahl M, Reiter K, Bruns A, Burmester GR, Radbruch A et al (2003) Correlation between circulating CD27high plasma cells and disease activity in patients with systemic lupus erythematosus. Arthritis Rheum 48(5):1332–1342

    Article  PubMed  Google Scholar 

  65. Blair PA, Norena LY, Flores-Borja F, Rawlings DJ, Isenberg DA, Ehrenstein MR et al (2010) CD19(+)CD24(hi)CD38(hi) B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic Lupus Erythematosus patients. Immunity 32(1):129–140

    Article  PubMed  CAS  Google Scholar 

  66. Menon M, Blair PA, Isenberg DA, Mauri C (2016) A regulatory feedback between plasmacytoid dendritic cells and regulatory B cells is aberrant in systemic lupus erythematosus. Immunity 44(3):683–697

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Shen P, Roch T, Lampropoulou V, O’Connor RA, Stervbo U, Hilgenberg E et al (2014) IL-35-producing B cells are critical regulators of immunity during autoimmune and infectious diseases. Nature 507(7492):366–370

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Yang X, Yang J, Chu Y, Xue Y, Xuan D, Zheng S et al (2014) T follicular helper cells and regulatory B cells dynamics in systemic lupus erythematosus. PLoS One 9(2):e88441

    Google Scholar 

  69. Yoshizaki A, Miyagaki T, DiLillo DJ, Matsushita T, Horikawa M, Kountikov EI et al (2012) Regulatory B cells control T-cell autoimmunity through IL-21-dependent cognate interactions. Nature 491(7423):264–268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Park MJ, Lee SH, Kim EK, Lee EJ, Park SH, Kwok SK et al (2016) Myeloid-derived suppressor cells induce the expansion of regulatory B cells and ameliorate autoimmunity in the sanroque mouse model of systemic lupus erythematosus. Arthritis Rheumatol 68(11):2717–2727

    Article  PubMed  CAS  Google Scholar 

  71. Amrouche K, Pers JO, Jamin C (2019) Glatiramer acetate stimulates regulatory B cell functions. J Immunol 202(7):1970–1980

    Article  PubMed  CAS  Google Scholar 

  72. Arbuckle MR, McClain MT, Rubertone MV, Scofield RH, Dennis GJ, James JA et al (2003) Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N Engl J Med 349(16):1526–1533

    Article  PubMed  CAS  Google Scholar 

  73. Slight-Webb S, Lu R, Ritterhouse LL, Munroe ME, Maecker HT, Fathman CG et al (2016) Autoantibody-positive healthy individuals display unique immune profiles that may regulate autoimmunity. Arthritis & rheumatology. 68(10):2492–2502

    Article  CAS  Google Scholar 

  74. Flechsig A, Rose T, Barkhudarova F, Strauss R, Klotsche J, Dahnrich C et al (2017) What is the clinical significance of anti-Sm antibodies in systemic lupus erythematosus? A comparison with anti-dsDNA antibodies and C3. Clin Exp Rheumatol 35(4):598–606

    PubMed  Google Scholar 

  75. Vaglio A, Grayson PC, Fenaroli P, Gianfreda D, Boccaletti V, Ghiggeri GM et al (2018) Drug-induced lupus: traditional and new concepts. Autoimmun Rev 17(9):912–918

    Article  PubMed  CAS  Google Scholar 

  76. Aringer M, Costenbader K, Daikh D, Brinks R, Mosca M, Ramsey-Goldman R et al (2019) 2019 European League Against Rheumatism/American College of Rheumatology classification criteria for systemic lupus erythematosus. Arthritis & Rheumatol 71(9):1400–1412

    Article  Google Scholar 

  77. Han S, Zhuang H, Shumyak S, Yang L, Reeves WH (2015) Mechanisms of autoantibody production in systemic lupus erythematosus. Front Immunol 6:228

    Article  PubMed  PubMed Central  Google Scholar 

  78. Pisetsky DS, Lipsky PE (2020) New insights into the role of antinuclear antibodies in systemic lupus erythematosus. Nat Rev Rheumatol 16(10):565–579

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Pan N, Amigues I, Lyman S, Duculan R, Aziz F, Crow MK et al (2014) A surge in anti-dsDNA titer predicts a severe lupus flare within six months. Lupus 23(3):293–298

    Article  PubMed  CAS  Google Scholar 

  80. Yaniv G, Twig G, Shor DB, Furer A, Sherer Y, Mozes O et al (2015) A volcanic explosion of autoantibodies in systemic lupus erythematosus: a diversity of 180 different antibodies found in SLE patients. Autoimmun Rev 14(1):75–79

    Article  PubMed  CAS  Google Scholar 

  81. Sciascia S, Bertolaccini ML, Roccatello D, Khamashta MA, Sanna G (2014) Autoantibodies involved in neuropsychiatric manifestations associated with systemic lupus erythematosus: a systematic review. J Neurol 261(9):1706–1714

    Article  PubMed  CAS  Google Scholar 

  82. Becker Y, Marcoux G, Allaeys I, Julien AS, Loignon RC, Benk-Fortin H et al (2019) Autoantibodies in systemic lupus erythematosus target mitochondrial RNA. Front Immunol 10:1026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Gupta S, Tatouli IP, Rosen LB, Hasni S, Alevizos I, Manna ZG et al (2016) Distinct functions of autoantibodies against interferon in systemic lupus erythematosus: a comprehensive analysis of anticytokine autoantibodies in common rheumatic diseases. Arthritis Rheumatol 68(7):1677–1687

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Howe HS, Thong BYH, Kong KO, Chng HH, Lian TY, Chia FL et al (2017) Associations of B cell-activating factor (BAFF) and anti-BAFF autoantibodies with disease activity in multi-ethnic Asian systemic lupus erythematosus patients in Singapore. Clin Exp Immunol 189(3):298–303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Eggleton P, Ukoumunne OC, Cottrell I, Khan A, Maqsood S, Thornes J et al (2014) Autoantibodies against C1q as a diagnostic measure of lupus nephritis: systematic review and meta-analysis. J Clin Cell Immunol. 5(2):210

    PubMed  PubMed Central  Google Scholar 

  86. Birmingham DJ, Bitter JE, Ndukwe EG, Dials S, Gullo TR, Conroy S et al (2016) Relationship of circulating anti-C3b and anti-C1q IgG to lupus nephritis and its flare. Clin J Am Soc Nephrol 11(1):47–53

    Article  PubMed  CAS  Google Scholar 

  87. Mannik M, Merrill CE, Stamps LD, Wener MH (2003) Multiple autoantibodies form the glomerular immune deposits in patients with systemic lupus erythematosus. J Rheumatol 30(7):1495–1504

    PubMed  Google Scholar 

  88. Tsao BP, Ohnishi K, Cheroutre H, Mitchell B, Teitell M, Mixter P et al (1992) Failed self-tolerance and autoimmunity in IgG anti-DNA transgenic mice. J Immunol 149(1):350–358

    Article  PubMed  CAS  Google Scholar 

  89. Stopforth RJ, Oldham RJ, Tutt AL, Duriez P, Chan HTC, Binkowski BF et al (2018) Detection of experimental and clinical immune complexes by measuring SHIP-1 recruitment to the inhibitory FcgammaRIIB. J Immunol 200(5):1937–1950

    Article  PubMed  CAS  Google Scholar 

  90. Massardo L, Bravo-Zehnder M, Calderon J, Flores P, Padilla O, Aguirre JM et al (2015) Anti-N-methyl-D-aspartate receptor and anti-ribosomal-P autoantibodies contribute to cognitive dysfunction in systemic lupus erythematosus. Lupus 24(6):558–568

    Article  PubMed  CAS  Google Scholar 

  91. Kowal C, Degiorgio LA, Lee JY, Edgar MA, Huerta PT, Volpe BT et al (2006) Human lupus autoantibodies against NMDA receptors mediate cognitive impairment. Proc Natl Acad Sci U S A 103(52):19854–19859

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Yoshio T, Onda K, Nara H, Minota S (2006) Association of IgG anti-NR2 glutamate receptor antibodies in cerebrospinal fluid with neuropsychiatric systemic lupus erythematosus. Arthritis Rheum 54(2):675–678

    Article  PubMed  CAS  Google Scholar 

  93. Choi MY, FitzPatrick RD, Buhler K, Mahler M, Fritzler MJ (2020) A review and meta-analysis of anti-ribosomal P autoantibodies in systemic lupus erythematosus. Autoimmun Rev 19(3):102463

    Google Scholar 

  94. Gonzalez A, Massardo L (2018) Antibodies and the brain: antiribosomal P protein antibody and the clinical effects in patients with systemic lupus erythematosus. Curr Opin Neurol 31(3):300–305

    Article  PubMed  CAS  Google Scholar 

  95. Vincent FB, Morand EF, Mackay F (2012) BAFF and innate immunity: new therapeutic targets for systemic lupus erythematosus. Immunol Cell Biol 90(3):293–303

    Article  PubMed  CAS  Google Scholar 

  96. Kanapathippillai P, Hedberg A, Fenton CG, Fenton KA (2013) Nucleosomes contribute to increase mesangial cell chemokine expression during the development of lupus nephritis. Cytokine 62(2):244–252

    Article  PubMed  CAS  Google Scholar 

  97. Vincent FB, Kandane-Rathnayake R, Hoi AY, Slavin L, Godsell JD, Kitching AR et al (2018) Urinary B-cell-activating factor of the tumour necrosis factor family (BAFF) in systemic lupus erythematosus. Lupus 27(13):2029–2040

    Article  PubMed  CAS  Google Scholar 

  98. Yu CL, Sun KH, Tsai CY, Hsieh SC, Yu HS (2001) Anti-dsDNA antibody up-regulates interleukin 6, but not cyclo-oxygenase, gene expression in glomerular mesangial cells: a marker of immune-mediated renal damage? Inflamm Res 50(1):12–18

    Article  PubMed  CAS  Google Scholar 

  99. Yung S, Zhang Q, Zhang CZ, Chan KW, Lui SL, Chan TM (2009) Anti-DNA antibody induction of protein kinase C phosphorylation and fibronectin synthesis in human and murine lupus and the effect of mycophenolic acid. Arthritis Rheum 60(7):2071–2082

    Article  PubMed  CAS  Google Scholar 

  100. Apel F, Zychlinsky A, Kenny EF (2018) The role of neutrophil extracellular traps in rheumatic diseases. Nat Rev Rheumatol 14(8):467–475

    Article  PubMed  CAS  Google Scholar 

  101. van der Linden M, van den Hoogen LL, Westerlaken GHA, Fritsch-Stork RDE, van Roon JAG, Radstake T et al (2018) Neutrophil extracellular trap release is associated with antinuclear antibodies in systemic lupus erythematosus and anti-phospholipid syndrome. Rheumatology (Oxford) 57(7):1228–1234

    Article  Google Scholar 

  102. Mackay F, Figgett WA, Saulep D, Lepage M, Hibbs ML (2010) B-cell stage and context-dependent requirements for survival signals from BAFF and the B-cell receptor. Immunol Rev 237(1):205–225

    Article  PubMed  CAS  Google Scholar 

  103. Smulski CR, Eibel H (2018) BAFF and BAFF-receptor in B Cell selection and survival. Front Immunol 9:2285

    Article  PubMed  PubMed Central  Google Scholar 

  104. Schweighoffer E, Tybulewicz VL (2018) Signalling for B cell survival. Curr Opin Cell Biol 51:8–14

    Article  PubMed  CAS  Google Scholar 

  105. Xu Y, Harder KW, Huntington ND, Hibbs ML, Tarlinton DM (2005) Lyn tyrosine kinase; accentuating the positive and the negative. Immunity 22(1):9–18

    PubMed  Google Scholar 

  106. Smith KG, Tarlinton DM, Doody GM, Hibbs ML, Fearon DT (1998) Inhibition of the B cell by CD22: a requirement for Lyn. J Exp Med 187(5):807–811

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Cornall RJ, Cyster JG, Hibbs ML, Dunn AR, Otipoby KL, Clark EA et al (1998) Polygenic autoimmune traits: Lyn, CD22, and SHP-1 are limiting elements of a biochemical pathway regulating BCR signaling and selection. Immunity 8(4):497–508

    Article  PubMed  CAS  Google Scholar 

  108. Chan VWF, Lowell CA, DeFranco AL (1998) Defective negative regulation of antigen receptor signaling in lyn-deficient B lymphocytes. Curr Biol 8(10):545–553

    Article  PubMed  CAS  Google Scholar 

  109. Nishizumi H, Horikawa K, Mlinaric-Rascan I, Yamamoto T (1998) A double-edged kinase Lyn: a positive and negative regulator for antigen receptor-mediated signals. J Exp Med 187(8):1343–1348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Inaoki M, Sato S, Weintraub BC, Goodnow CC, Tedder TF (1997) CD19-regulated signaling thresholds control peripheral tolerance and autoantibody production in B lymphocytes. J Exp Med 186(11):1923–1931

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Hibbs ML, Tarlinton DM, Armes J, Grail D, Hodgson G, Maglitto R et al (1995) Multiple defects in the immune system of lyn-deficient mice, culminating in autoimmune disease. Cell 83:301–311

    Article  PubMed  CAS  Google Scholar 

  112. Nishizumi H, Taniuchi I, Yamanashi Y, Kitamura D, Iiic D, Mori S et al (1995) Impaired proliferation of peripheral B cells and indication of autoimmune disease in Lyn-deficient mice. Immunity 3:549–560

    Article  PubMed  CAS  Google Scholar 

  113. Chan VWF, Meng F, Soriano P, DeFranco AL, Lowell CA (1997) Characterization of the B lymphocyte populations in lyn deficient mice and the role of lyn in signal initiation and down regulation. Immunity 7:69–81

    Article  PubMed  CAS  Google Scholar 

  114. Bolland S, Ravetch JV (2000) Spontaneous autoimmune disease in Fc(gamma)RIIB-deficient mice results from strain-specific epistasis. Immunity 13(2):277–285

    Article  PubMed  CAS  Google Scholar 

  115. O’Keefe TL, Williams GT, Batista FD, Neuberger MS (1999) Deficiency in CD22, a B cell-specific inhibitory receptor, is sufficient to predispose to development of high affinity autoantibodies. J Exp Med 189(8):1307–1313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Shultz LD, Schweitzer PA, Rajan TV, Yi T, Ihle JN, Matthews RJ et al (1993) Mutations at the murine motheaten locus are within the hematopoietic cell protein-tyrosine phosphatase (Hcph) gene. Cell 73:1445–1454

    Article  PubMed  CAS  Google Scholar 

  117. Tsui HW, Siminovitch KA, de Souza L, Tsui FW (1993) Motheaten and viable motheaten mice have mutations in the hematopoietic cell phosphatase gene. Nat Genet 4:124–129

    Article  PubMed  CAS  Google Scholar 

  118. Shultz LD, Coman DR, Bailey CL, Beamer WG, Sidman CL (1984) Viable motheaten,” a new allele at the motheaten locus. I Pathology Am J Pathol 116(2):179–192

    PubMed  CAS  Google Scholar 

  119. Pao LI, Lam KP, Henderson JM, Kutok JL, Alimzhanov M, Nitschke L et al (2007) B cell-specific deletion of protein-tyrosine phosphatase Shp1 promotes B-1a cell development and causes systemic autoimmunity. Immunity 27(1):35–48

    Article  PubMed  CAS  Google Scholar 

  120. Di Cristofano A, Kotsi P, Peng YF, Cordon-Cardo C, Elkon KB, Pandolfi PP (1999) Impaired fas response and autoimmunity in Pten+/- mice. Science 285(5436):2122–2125

    Google Scholar 

  121. Moody JL, Pereira CG, Magil A, Fritzler MJ, Jirik FR (2003) Loss of a single allele of SHIP exacerbates the immunopathology of Pten heterozygous mice. Genes Immun 4(1):60–66

    Article  PubMed  CAS  Google Scholar 

  122. Suzuki A, Kaisho T, Ohishi M, Tsukio-Yamaguchi M, Tsubata T, Koni PA et al (2003) Critical roles of Pten in B cell homeostasis and immunoglobulin class switch recombination. J Exp Med 197(5):657–667

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Helgason CD, Damen JE, Rosten P, Grewal R, Sorensen P, Chappel SM et al (1998) Targeted disruption of SHIP leads to hemopoietic perturbations, lung pathology, and a shortened life span. Genes Dev 12:1610–1620

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Liu Q, Sasaki T, Kozieradzki I, Wakeham A, Itie A, Dumont DJ et al (1999) SHIP is a negative regulator of growth factor receptor-mediated PKB/Akt activation and myeloid cell survival. Genes Dev 13:786–791

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Hibbs ML, Raftery AL, Tsantikos E (2018) Regulation of hematopoietic cell signaling by SHIP-1 inositol phosphatase: growth factors and beyond. Growth Factors 36:213–231

    Article  PubMed  CAS  Google Scholar 

  126. Maxwell MJ, Duan M, Armes JE, Anderson GP, Tarlinton DM, Hibbs ML (2011) Genetic segregation of inflammatory lung disease and autoimmune disease severity in SHIP-1-/- mice. J Immunol 186(12):7164–7175

    Article  PubMed  CAS  Google Scholar 

  127. O’Neill SK, Getahun A, Gauld SB, Merrell KT, Tamir I, Smith MJ et al (2011) Monophosphorylation of CD79a and CD79b ITAM motifs initiates a SHIP-1 phosphatase-mediated inhibitory signaling cascade required for B cell anergy. Immunity 35(5):746–756

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Yasuda T, Bundo K, Hino A, Honda K, Inoue A, Shirakata M et al (2007) Dok-1 and Dok-2 are negative regulators of T cell receptor signaling. Int Immunol 19(4):487–495

    Article  PubMed  CAS  Google Scholar 

  129. Scapini P, Hu Y, Chu CL, Migone TS, Defranco AL, Cassatella MA et al (2010) Myeloid cells, BAFF, and IFN-gamma establish an inflammatory loop that exacerbates autoimmunity in Lyn-deficient mice. J Exp Med 207(8):1757–1773

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Oracki SA, Tsantikos E, Quilici C, Light A, Schmidt T, Lew AM et al (2010) CTLA4Ig alters the course of autoimmune disease development in Lyn-/- mice. J Immunol 184(2):757–763

    Article  PubMed  CAS  Google Scholar 

  131. Hua Z, Gross AJ, Lamagna C, Ramos-Hernandez N, Scapini P, Ji M et al (2014) Requirement for MyD88 signaling in B cells and dendritic cells for germinal center anti-nuclear antibody production in Lyn-deficient mice. J Immunol 192(3):875–885

    Article  PubMed  CAS  Google Scholar 

  132. Silver KL, Crockford TL, Bouriez-Jones T, Milling S, Lambe T, Cornall RJ (2007) MyD88-dependent autoimmune disease in Lyn-deficient mice. Eur J Immunol 37(10):2734–2743

    Article  PubMed  CAS  Google Scholar 

  133. Gutierrez T, Halcomb KE, Coughran AJ, Li QZ, Satterthwaite AB (2010) Separate checkpoints regulate splenic plasma cell accumulation and IgG autoantibody production in Lyn-deficient mice. Eur J Immunol 40(7):1897–1905

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Maxwell MJ, Tsantikos E, Kong AM, Vanhaesebroeck B, Tarlinton DM, Hibbs ML (2012) Attenuation of phosphoinositide 3-kinase delta signaling restrains autoimmune disease. J Autoimmun 38(4):381–391

    Article  PubMed  CAS  Google Scholar 

  135. Scapini P, Lamagna C, Hu Y, Lee K, Tang Q, DeFranco AL et al (2011) B cell-derived IL-10 suppresses inflammatory disease in Lyn-deficient mice. Proc Natl Acad Sci USA 108(41):E823–E832

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Lamagna C, Hu Y, DeFranco AL, Lowell CA (2014) B cell-specific loss of Lyn kinase leads to autoimmunity. J Immunol 192(3):919–928

    Article  PubMed  CAS  Google Scholar 

  137. Lamagna C, Scapini P, van Ziffle JA, DeFranco AL, Lowell CA (2013) Hyperactivated MyD88 signaling in dendritic cells, through specific deletion of Lyn kinase, causes severe autoimmunity and inflammation. Proc Natl Acad Sci USA 110(35):E3311–E3320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Ma J, Abram CL, Hu Y, Lowell CA (2019) CARD9 mediates dendritic cell-induced development of Lyn deficiency-associated autoimmune and inflammatory diseases. Sci Signal 12(602)

    Google Scholar 

  139. Ban T, Sato GR, Nishiyama A, Akiyama A, Takasuna M, Umehara M et al (2016) Lyn kinase suppresses the transcriptional activity of IRF5 in the TLR-MyD88 pathway to restrain the development of autoimmunity. Immunity 45(2):319–332

    Article  PubMed  CAS  Google Scholar 

  140. Petersone L, Edner NM, Ovcinnikovs V, Heuts F, Ross EM, Ntavli E et al (2018) T cell/B cell collaboration and autoimmunity: an intimate relationship. Front Immunol 9:1941

    Article  PubMed  PubMed Central  Google Scholar 

  141. Mesin L, Ersching J, Victora GD (2016) Germinal center B cell dynamics. Immunity 45(3):471–482

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. De Silva NS, Klein U (2015) Dynamics of B cells in germinal centres. Nat Rev Immunol 15(3):137–148

    Article  PubMed  PubMed Central  Google Scholar 

  143. Takahashi Y, Ohta H, Takemori T (2001) Fas is required for clonal selection in germinal centers and the subsequent establishment of the memory B cell repertoire. Immunity 14(2):181–192

    Article  PubMed  CAS  Google Scholar 

  144. Strasser A, Jost PJ, Nagata S (2009) The many roles of FAS receptor signaling in the immune system. Immunity 30(2):180–192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Crotty S (2011) Follicular helper CD4 T cells (TFH). Annu Rev Immunol 29:621–663

    Article  PubMed  CAS  Google Scholar 

  146. Watanabe-Fukunaga R, Brannan CI, Copeland NG, Jenkins NA, Nagata S (1992) Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356(6367):314–317

    Article  PubMed  CAS  Google Scholar 

  147. Hao Z, Duncan GS, Seagal J, Su YW, Hong C, Haight J et al (2008) Fas receptor expression in germinal-center B cells is essential for T and B lymphocyte homeostasis. Immunity 29(4):615–627

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Cruz AC, Ramaswamy M, Ouyang C, Klebanoff CA, Sengupta P, Yamamoto TN et al (2016) Fas/CD95 prevents autoimmunity independently of lipid raft localization and efficient apoptosis induction. Nat Commun 7:13895

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Biram A, Davidzohn N, Shulman Z (2019) T cell interactions with B cells during germinal center formation, a three-step model. Immunol Rev 288(1):37–48

    Article  PubMed  CAS  Google Scholar 

  150. Beyersdorf N, Kerkau T, Hunig T (2015) CD28 co-stimulation in T-cell homeostasis: a recent perspective. Immunotargets Ther 4:111–122

    PubMed  PubMed Central  Google Scholar 

  151. Julia A, Lopez-Longo FJ, Perez Venegas JJ, Bonas-Guarch S, Olive A, Andreu JL et al (2018) Genome-wide association study meta-analysis identifies five new loci for systemic lupus erythematosus. Arthritis Res Ther 20(1):100

    Article  PubMed  PubMed Central  Google Scholar 

  152. Crepeau RL, Ford ML (2017) Challenges and opportunities in targeting the CD28/CTLA-4 pathway in transplantation and autoimmunity. Expert Opin Biol Ther 17(8):1001–1012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Kawabe T, Naka T, Yoshida K, Tanaka T, Fujiwara H, Suematsu S et al (1994) The immune responses in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation. Immunity 1(3):167–178

    Article  PubMed  CAS  Google Scholar 

  154. Garrone P, Neidhardt EM, Garcia E, Galibert L, van Kooten C, Banchereau J (1995) Fas ligation induces apoptosis of CD40-activated human B lymphocytes. J Exp Med 182(5):1265–1273

    Article  PubMed  CAS  Google Scholar 

  155. Rousset F, Garcia E, Banchereau J (1991) Cytokine-induced proliferation and immunoglobulin production of human B lymphocytes triggered through their CD40 antigen. J Exp Med 173(3):705–710

    Article  PubMed  CAS  Google Scholar 

  156. Karnell JL, Rieder SA, Ettinger R, Kolbeck R (2019) Targeting the CD40-CD40L pathway in autoimmune diseases: humoral immunity and beyond. Adv Drug Deliv Rev 141:92–103

    Article  PubMed  CAS  Google Scholar 

  157. Aten J, Roos A, Claessen N, Schilder-Tol EJ, Ten Berge IJ, Weening JJ (2000) Strong and selective glomerular localization of CD134 ligand and TNF receptor-1 in proliferative lupus nephritis. J Am Soc Nephrol 11(8):1426–1438

    Article  PubMed  CAS  Google Scholar 

  158. Sitrin J, Suto E, Wuster A, Eastham-Anderson J, Kim JM, Austin CD et al (2017) The Ox40/Ox40 ligand pathway promotes pathogEnic Th cell responses, plasmablast accumulation, and lupus nephritis in NZB/W F1 mice. J Immunol 199(4):1238–1249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Yu D, Tan AH, Hu X, Athanasopoulos V, Simpson N, Silva DG et al (2007) Roquin represses autoimmunity by limiting inducible T-cell co-stimulator messenger RNA. Nature 450(7167):299–303

    Article  PubMed  CAS  Google Scholar 

  160. Vincent FB, Kandane-Rathnayake R, Koelmeyer R, Hoi AY, Harris J, Mackay F et al (2019) Analysis of serum B cell-activating factor from the tumor necrosis factor family (BAFF) and its soluble receptors in systemic lupus erythematosus. Clin Transl Immunol 8(4):e01047

    Google Scholar 

  161. Mackay F, Woodcock SA, Lawton P, Ambrose C, Baetscher M, Schneider P et al (1999) Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J Exp Med 190(11):1697–1710

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Thien M, Phan TG, Gardam S, Amesbury M, Basten A, Mackay F et al (2004) Excess BAFF rescues self-reactive B cells from peripheral deletion and allows them to enter forbidden follicular and marginal zone niches. Immunity 20(6):785–798

    Article  PubMed  CAS  Google Scholar 

  163. Fairfax KA, Tsantikos E, Figgett WA, Vincent FB, Quah PS, LePage M et al (2015) BAFF-driven autoimmunity requires CD19 expression. J Autoimmun 62:1–10

    Article  PubMed  CAS  Google Scholar 

  164. He B, Santamaria R, Xu W, Cols M, Chen K, Puga I et al (2010) The transmembrane activator TACI triggers immunoglobulin class switching by activating B cells through the adaptor MyD88. Nat Immunol 11(9):836–845

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Figgett WA, Fairfax K, Vincent FB, Le Page MA, Katik I, Deliyanti D et al (2013) The TACI receptor regulates T-cell-independent marginal zone B cell responses through innate activation-induced cell death. Immunity 39(3):573–583

    Article  PubMed  CAS  Google Scholar 

  166. Figgett WA, Deliyanti D, Fairfax KA, Quah PS, Wilkinson-Berka JL, Mackay F (2015) Deleting the BAFF receptor TACI protects against systemic lupus erythematosus without extensive reduction of B cell numbers. J Autoimmun 61:9–16

    Article  PubMed  CAS  Google Scholar 

  167. Jacobs HM, Thouvenel CD, Leach S, Arkatkar T, Metzler G, Scharping NE et al (2016) Cutting edge: BAFF promotes autoantibody production via TACI-dependent activation of transitional B cells. J Immunol 196(9):3525–3531

    Article  PubMed  CAS  Google Scholar 

  168. Arkatkar T, Jacobs HM, Du SW, Li QZ, Hudkins KL, Alpers CE et al (2018) TACI deletion protects against progressive murine lupus nephritis induced by BAFF overexpression. Kidney Int 94(4):728–740

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Salzer U, Bacchelli C, Buckridge S, Pan-Hammarstrom Q, Jennings S, Lougaris V et al (2009) Relevance of biallelic versus monoallelic TNFRSF13B mutations in distinguishing disease-causing from risk-increasing TNFRSF13B variants in antibody deficiency syndromes. Blood 113(9):1967–1976

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Romberg N, Virdee M, Chamberlain N, Oe T, Schickel JN, Perkins T et al (2015) TNF receptor superfamily member 13b (TNFRSF13B) hemizygosity reveals transmembrane activator and CAML interactor haploinsufficiency at later stages of B-cell development. J Allergy Clin Immunol 136(5):1315–1325

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Hoffmann FS, Kuhn PH, Laurent SA, Hauck SM, Berer K, Wendlinger SA et al (2015) The immunoregulator soluble TACI is released by ADAM10 and reflects B cell activation in autoimmunity. J Immunol 194(2):542–552

    Article  PubMed  CAS  Google Scholar 

  172. O’Connor BP, Raman VS, Erickson LD, Cook WJ, Weaver LK, Ahonen C et al (2004) BCMA is essential for the survival of long-lived bone marrow plasma cells. J Exp Med 199(1):91–98

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Sasaki Y, Casola S, Kutok JL, Rajewsky K, Schmidt-Supprian M (2004) TNF family member B cell-activating factor (BAFF) receptor-dependent and -independent roles for BAFF in B cell physiology. J Immunol 173(4):2245–2252

    Article  PubMed  CAS  Google Scholar 

  174. Ng LG, Sutherland AP, Newton R, Qian F, Cachero TG, Scott ML et al (2004) B cell-activating factor belonging to the TNF family (BAFF)-R is the principal BAFF receptor facilitating BAFF costimulation of circulating T and B cells. J Immunol 173(2):807–817

    Article  PubMed  CAS  Google Scholar 

  175. Schiemann B, Gommerman JL, Vora K, Cachero TG, Shulga-Morskaya S, Dobles M et al (2001) An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science 293(5537):2111–2114

    Article  PubMed  CAS  Google Scholar 

  176. Mackay F, Schneider P, Rennert P, Browning J (2003) BAFF AND APRIL: a tutorial on B cell survival. Annu Rev Immunol 21:231–264

    Article  PubMed  CAS  Google Scholar 

  177. Gottschalk TA, Tsantikos E, Hibbs ML (2015) Pathogenic inflammation and its therapeutic targeting in systemic lupus erythematosus. Front Immunol 6:550

    Article  PubMed  PubMed Central  Google Scholar 

  178. Ruchakorn N, Ngamjanyaporn P, Suangtamai T, Kafaksom T, Polpanumas C, Petpisit V et al (2019) Performance of cytokine models in predicting SLE activity. Arthritis Res Ther 21(1):287

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Mende R, Vincent FB, Kandane-Rathnayake R, Koelmeyer R, Lin E, Chang J et al (2018) Analysis of serum inteRleukin (IL)-1beta and IL-18 in systemic lupus erythematosus. Front Immunol 9:1250

    Article  PubMed  PubMed Central  Google Scholar 

  180. Grondal G, Gunnarsson I, Ronnelid J, Rogberg S, Klareskog L, Lundberg I (2000) Cytokine production, serum levels and disease activity in systemic lupus erythematosus. Clin Exp Rheumatol 18(5):565–570

    PubMed  CAS  Google Scholar 

  181. Nagafuchi H, Suzuki N, Mizushima Y, Sakane T (1993) Constitutive expression of IL-6 receptors and their role in the excessive B cell function in patients with systemic lupus erythematosus. J Immunol 151(11):6525–6534

    Article  PubMed  CAS  Google Scholar 

  182. Schiffer L, Kumpers P, Davalos-Misslitz AM, Haubitz M, Haller H, Anders HJ et al (2009) B-cell-attracting chemokine CXCL13 as a marker of disease activity and renal involvement in systemic lupus erythematosus (SLE). Nephrol Dial Transplant 24(12):3708–3712

    Article  PubMed  CAS  Google Scholar 

  183. Ishikawa S, Sato T, Abe M, Nagai S, Onai N, Yoneyama H et al (2001) Aberrant high expression of B lymphocyte chemokine (BLC/CXCL13) by C11b+CD11c+ dendritic cells in murine lupus and preferential chemotaxis of B1 cells towards BLC. J Exp Med 193(12):1393–1402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Henneken M, Dorner T, Burmester GR, Berek C (2005) Differential expression of chemokine receptors on peripheral blood B cells from patients with rheumatoid arthritis and systemic lupus erythematosus. Arthritis Res Ther 7(5):R1001–R1013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Wiener A, Schippers A, Wagner N, Tacke F, Ostendorf T, Honke N et al (2016) CXCR5 is critically involved in progression of lupus through regulation of B cell and double-negative T cell trafficking. Clin Exp Immunol 185(1):22–32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Wu BX, Zhao LD, Zhang X (2019) CXCR4 and CXCR5 orchestrate dynamic germinal center reactions and may contribute to the pathogenesis of systemic lupus erythematosus. Cell Mol Immunol 16(8):724–726

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Lee HT, Shiao YM, Wu TH, Chen WS, Hsu YH, Tsai SF et al (2010) Serum BLC/CXCL13 concentrations and renal expression of CXCL13/CXCR5 in patients with systemic lupus erythematosus and lupus nephritis. J Rheumatol 37(1):45–52

    Article  PubMed  CAS  Google Scholar 

  188. Breitbach ME, Ramaker RC, Roberts K, Kimberly RP, Absher D (2020) Population-specific patterns of epigenetic defects in the B cell lineage in patients with systemic lupus erythematosus. Arthritis Rheumatol 72(2):282–291

    Article  PubMed  CAS  Google Scholar 

  189. Brookfield JF (2010) Q&A: promise and pitfalls of genome-wide association studies. BMC Biol 8:41

    Article  PubMed  PubMed Central  Google Scholar 

  190. Jiang SH, Athanasopoulos V, Ellyard JI, Chuah A, Cappello J, Cook A et al (2019) Functional rare and low frequency variants in BLK and BANK1 contribute to human lupus. Nat Commun 10(1):2201

    Article  PubMed  PubMed Central  Google Scholar 

  191. Mistry P, Nakabo S, O’Neil L, Goel RR, Jiang K, Carmona-Rivera C et al (2019) Transcriptomic, epigenetic, and functional analyses implicate neutrophil diversity in the pathogenesis of systemic lupus erythematosus. Proc Natl Acad Sci USA 116(50):25222–25228

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Figgett WA, Monaghan K, Ng M, Alhamdoosh M, Maraskovsky E, Wilson NJ et al (2019) Machine learning applied to whole-blood RNA-sequencing data uncovers distinct subsets of patients with systemic lupus erythematosus. Clin Transl Immunol 8(12):e01093

    Google Scholar 

  193. Panousis NI, Bertsias GK, Ongen H, Gergianaki I, Tektonidou MG, Trachana M et al (2019) Combined genetic and transcriptome analysis of patients with SLE: distinct, targetable signatures for susceptibility and severity. Ann Rheum Dis 78(8):1079–1089

    Article  PubMed  CAS  Google Scholar 

  194. Rai R, Chauhan SK, Singh VV, Rai M, Rai G (2016) RNA-seq analysis reveals unique transcriptome signatures in systemic lupus erythematosus patients with distinct autoantibody specificities. PLoS One 11(11):e0166312

    Google Scholar 

  195. Theodorou E, Nezos A, Antypa E, Ioakeimidis D, Koutsilieris M, Tektonidou M et al (2018) B-cell activating factor and related genetic variants in lupus related atherosclerosis. J Autoimmun 92:87–92

    Article  PubMed  CAS  Google Scholar 

  196. Lowenstein EJ, Daly RJ, Batzer AG, Li W, Margolis B, Lammers R et al (1992) The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling. Cell 70(3):431–442

    Article  PubMed  CAS  Google Scholar 

  197. Jang IK, Cronshaw DG, Xie LK, Fang G, Zhang J, Oh H et al (2011) Growth-factor receptor-bound protein-2 (Grb2) signaling in B cells controls lymphoid follicle organization and germinal center reaction. Proc Natl Acad Sci U S A 108(19):7926–7931

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Ackermann JA, Radtke D, Maurberger A, Winkler TH, Nitschke L (2011) Grb2 regulates B-cell maturation, B-cell memory responses and inhibits B-cell Ca2+ signalling. EMBO J 30(8):1621–1633

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Xu M, Liu Y, Li X, Cheng C, Liu Y, Dong W et al (2019) Evaluation of genetic susceptibility between systemic lupus erythematosus and GRB2 gene. Sci Rep 9(1):10335

    Article  PubMed  PubMed Central  Google Scholar 

  200. Scharer CD, Blalock EL, Barwick BG, Haines RR, Wei C, Sanz I et al (2016) ATAC-seq on biobanked specimens defines a unique chromatin accessibility structure in naive SLE B cells. Sci Rep 6:27030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Garrett-Sinha LA, Kearly A, Satterthwaite AB (2016) The role of the transcription factor ets1 in lupus and other autoimmune diseases. Crit Rev Immunol 36(6):485–510

    Article  PubMed  PubMed Central  Google Scholar 

  202. Beltran Ramirez O, Mendoza Rincon JF, Barbosa Cobos RE, Aleman Avila I, Ramirez BJ (2016) STAT4 confers risk for rheumatoid arthritis and systemic lupus erythematosus in Mexican patients. Immunol Lett 175:40–43

    Article  PubMed  CAS  Google Scholar 

  203. Palomino-Morales RJ, Rojas-Villarraga A, Gonzalez CI, Ramirez G, Anaya JM, Martin J (2008) STAT4 but not TRAF1/C5 variants influence the risk of developing rheumatoid arthritis and systemic lupus erythematosus in Colombians. Genes Immun 9(4):379–382

    Article  PubMed  CAS  Google Scholar 

  204. Remmers EF, Plenge RM, Lee AT, Graham RR, Hom G, Behrens TW et al (2007) STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N Engl J Med 357(10):977–986

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Saelee P, Kearly A, Nutt SL, Garrett-Sinha LA (2017) Genome-wide identification of target genes for the key B cell transcription factor Ets1. Front Immunol 8:383

    Article  PubMed  PubMed Central  Google Scholar 

  206. Kim SJ, Caton M, Wang C, Khalil M, Zhou ZJ, Hardin J et al (2008) Increased IL-12 inhibits B cells’ differentiation to germinal center cells and promotes differentiation to short-lived plasmablasts. J Exp Med 205(10):2437–2448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Dam EM, Habib T, Chen J, Funk A, Glukhova V, Davis-Pickett M et al (2016) The BANK1 SLE-risk variants are associated with alterations in peripheral B cell signaling and development in humans. Clin Immunol 173:171–180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  208. Schickel JN, Pasquali JL, Soley A, Knapp AM, Decossas M, Kern A et al (2012) Carabin deficiency in B cells increases BCR-TLR9 costimulation-induced autoimmunity. EMBO Mol Med 4(12):1261–1275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Ruer-Laventie J, Simoni L, Schickel JN, Soley A, Duval M, Knapp AM et al (2015) Overexpression of Fkbp11, a feature of lupus B cells, leads to B cell tolerance breakdown and initiates plasma cell differentiation. Immun Inflamm Dis 3(3):265–279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. Brodie EJ, Infantino S, Low MSY, Tarlinton DM (2018) Lyn, lupus, and (B) lymphocytes, a lesson on the critical balance of kinase signaling in immunity. Front Immunol 9:401

    Article  PubMed  PubMed Central  Google Scholar 

  211. Simoni L, Delgado V, Ruer-Laventie J, Bouis D, Soley A, Heyer V et al (2018) Trib1 is overexpressed in systemic lupus erythematosus, while it regulates immunoglobulin production in murine B cells. Front Immunol 9:373

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabien B. Vincent .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vincent, F.B., Figgett, W.A., Hibbs, M.L. (2021). Hallmark of Systemic Lupus Erythematosus: Role of B Cell Hyperactivity. In: Hoi, A. (eds) Pathogenesis of Systemic Lupus Erythematosus. Springer, Cham. https://doi.org/10.1007/978-3-030-85161-3_2

Download citation

Publish with us

Policies and ethics