Skip to main content

Innovations in Placental Pathology

  • Chapter
  • First Online:
Benirschke's Pathology of the Human Placenta

Abstract

Over the past two decades, multiple new methods have been developed for probing the structure and function of human tissues and organ systems. These innovative methods have paved the road toward a new era in medicine, where diseases are subclassified, not only based on histology but also at the molecular level, and often based on an integrated assessment of clinical signs and symptoms, detailed in vivo imaging, and histologic and molecular evaluation of biopsied tissues. Advances in detection, identification, and quantification of both cell-free and extracellular vesicle-derived biomarkers in the blood are more commonly allowing for noninvasive measures of organ function, precluding the need for invasive biopsies. In addition, stem cells, “organoids,” and “organ-on-a-chip” models have permitted the study of human cells and tissues in greater detail and complexity. The application of these innovative methods to the human placenta is detailed in this chapter, highlighting not only the new information gained about the structure and function of this important transient organ but also the ways in which this information can be translated into, and thus transform, the practice of placental pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3D-PD:

3D power doppler

aCGH:

Array-based comparative genomic hybridization

ADC:

Apparent diffusion coefficient

AFP :

Alpha feto-protein

ARFI:

Acoustic radiation force impulse

ASL:

Arterial spin labeling

BAP:

BMP4, A83-01, PD173074

BMP4:

Bone morphogenetic protein-4

BOLD:

Blood oxygen level-dependent

C19MC:

Chromosome 19 miRNA cluster

cffDNA:

Cell-free fetal DNA

CHM:

Complete hydatidiform mole

CRH:

Corticotrophin releasing hormone

CTB:

Cytotrophoblast

DCE:

Dynamic contrast enhancement

DESI:

Desorption electrospray ionization

DNA:

Deoxyribonucleic acid

DSP:

Digital spatial profiling

EPSC:

Expanded Potential Stem Cells

EV:

Extracellular vesicles

EVT:

Extravillous trophoblast

FCE:

Fetal central nervous system-derived extracellular vesicles

ff:

Fetal fraction

FFPE:

Formalin-fixed paraffin-embedded

FGF4:

Fibroblast growth factor 4

fMRI:

Functional magnetic resonance imaging

FrVol-PD:

Fractional volume of pulse Doppler

FSH :

Follicle-stimulating hormone

GDM:

Gestational diabetes mellitus

GO:

Gene ontology

GTD:

Gestational trophoblastic disease

hCG:

Human chorionic gonadotropin

hESC:

Human embryonic stem cells

HIF:

Hypoxia-inducible factor

hiPSC:

Human induced pluripotent stem cells

HPA:

Hypothalamic-pituitary axis

hPL:

Human placental lactogen

hPSC:

Human pluripotent stem cells

hTSC:

Human trophoblast stem cells

ICM:

Inner cell mass

ICP:

Intrahepatic cholestasis of pregnancy

IHC:

Immunohistochemistry

IMC:

Imaging mass cytometry

ISH:

In situ hybridization

IUGR:

Intrauterine growth restriction

LCM:

Laser-capture microdissection

LGA:

Large for gestational age

LH:

Luteinizing hormone

lncRNA:

Long noncoding RNA

MALDI:

Matrix-assisted laser desorption/ionization

MIBI:

Multiplex ion beam imaging

miRNA:

Micro-RNA

MRI:

Magnetic resonance imaging

MSAFP:

Maternal serum alpha feto-protein

MSI:

Mass spectrometric imaging

NK cells:

Natural killer cells

PAPP-A:

Pregnancy-associated plasma protein A

PBMC:

Peripheral blood mononuclear cells

pCASL:

Pseudocontinuous arterial spin labeling

PE:

Preeclampsia

PET:

Positron emission tomography

PHT:

Primary human trophoblast

PLAP:

Placental alkaline phosphatase

PlGF:

Placental growth factor

RNA:

Ribonucleic acid

ROI:

Region of interest

RT-PCR:

Reverse transcription polymerase chain reaction

scRNAseq:

Single cell RNA sequencing

sFlt1:

Soluble fms-like tyrosine kinase 1

SGA:

Small for gestational age

SNA:

Syncytial nuclear aggregates

SNR:

Signal-to-noise ratio

SOLiD:

Sequencing by Oligonucleotide Ligation and Detection

STB :

Syncytiotrophoblast

STBM:

Syncytiotrophoblast microvesicles or microparticles

SWE:

Shear-wave elastography

TE:

Trophectoderm

TSH:

Thyroid-stimulating hormone

UBE:

Ubiquitin-conjugating enzymes

VI:

Vascularization index

XEN:

Extraembryonic endoderm

References

  1. Aach J, Lunshof J, Iyer E, Church GM. Addressing the ethical issues raised by synthetic human entities with embryo-like features. eLife. 2017;6:e20674.

    PubMed Central  Google Scholar 

  2. Aagaard KM, Lahon A, Suter MA, Arya RP, Seferovic MD, Vogt MB, et al. Primary human placental trophoblasts are permissive for Zika virus (ZIKV) replication. Sci Rep. 2017;7:41389.

    CAS  PubMed Central  Google Scholar 

  3. Abdelmoula WM, Pezzotti N, Holt T, Dijkstra J, Vilanova A, McDonnell LA, et al. Interactive visual exploration of 3D mass spectrometry imaging data using hierarchical stochastic neighbor embedding reveals spatiomolecular structures at full data resolution. J Proteome Res. 2018;17(3):1054–64.

    CAS  PubMed Central  Google Scholar 

  4. Abumaree MH, Chamley LW, Badri M, El-Muzaini MF. Trophoblast debris modulates the expression of immune proteins in macrophages: a key to maternal tolerance of the fetal allograft? J Reprod Immunol. 2012;94(2):131–41.

    CAS  Google Scholar 

  5. Adams EK, Johnston EM. Insuring women in the United States before, during, and after pregnancies. Am J Public Health. 2016;106(4):585–6.

    PubMed Central  Google Scholar 

  6. Adeniji B, Williams J 3rd, Solt I, Morales C, Alanakian A, Rotmensch S. Clinical trial of multiplanar real-time 4- versus 2-dimensional sonographic guidance for transcervical chorionic villus sampling. J Ultrasound Med. 2011;30(3):309–12.

    Google Scholar 

  7. Aghajanova L, Shen S, Rojas AM, Fisher SJ, Irwin JC, Giudice LC. Comparative transcriptome analysis of human trophectoderm and embryonic stem cell-derived trophoblasts reveal key participants in early implantation. Biol Reprod. 2012;86(1):1–21.

    Google Scholar 

  8. Aitken DA, Wallace EM, Crossley JA, Swanston IA, van Pareren Y, van Maarle M, et al. Dimeric inhibin A as a marker for Down's syndrome in early pregnancy. N Engl J Med. 1996;334(19):1231–6.

    CAS  Google Scholar 

  9. Al Nakib M, Desbriere R, Bonello N, Bretelle F, Boubli L, Gabert J, et al. Total and fetal cell-free DNA analysis in maternal blood as markers of placental insufficiency in intrauterine growth restriction. Fetal Diagn Ther. 2009;26(1):24–8.

    Google Scholar 

  10. Alison M, Quibel T, Balvay D, Autret G, Bourillon C, Chalouhi GE, et al. Measurement of placental perfusion by dynamic contrast-enhanced MRI at 4.7 T. Investig Radiol. 2013;48(7):535–42.

    Google Scholar 

  11. Amita M, Adachi K, Alexenko AP, Sinha S, Schust DJ, Schulz LC, et al. Complete and unidirectional conversion of human embryonic stem cells to trophoblast by BMP4. Proc Natl Acad Sci U S A. 2013;110(13):E1212–21.

    CAS  PubMed Central  Google Scholar 

  12. Anderson CM, Zhang B, Miller M, Butko E, Wu X, Laver T, et al. Fully automated RNAscope in situ hybridization assays for formalin-fixed paraffin-embedded cells and tissues. J Cell Biochem. 2016;117(10):2201–8.

    CAS  PubMed Central  Google Scholar 

  13. Anton L, Olarerin-George AO, Schwartz N, Srinivas S, Bastek J, Hogenesch JB, et al. miR-210 inhibits trophoblast invasion and is a serum biomarker for preeclampsia. Am J Pathol. 2013;183(5):1437–45.

    CAS  PubMed Central  Google Scholar 

  14. Aparicio SA, Caldas C, Ponder B. Does massively parallel transcriptome analysis signify the end of cancer histopathology as we know it? Genome Biol. 2000;1(3):REVIEWS1021.

    CAS  PubMed Central  Google Scholar 

  15. Apps R, Murphy SP, Fernando R, Gardner L, Ahad T, Moffett A. Human leucocyte antigen (HLA) expression of primary trophoblast cells and placental cell lines, determined using single antigen beads to characterize allotype specificities of anti-HLA antibodies. Immunology. 2009;127(1):26–39.

    CAS  PubMed Central  Google Scholar 

  16. Aquilina J, Maplethorpe R, Ellis P, Harrington K. Correlation between second trimester maternal serum inhibin-A and human chorionic gonadotrophin for the prediction of pre-eclampsia. Placenta. 2000;21(5–6):487–92.

    CAS  Google Scholar 

  17. Arumugasaamy N, Ettehadieh LE, Kuo CY, Paquin-Proulx D, Kitchen SM, Santoro M, et al. Biomimetic placenta-fetus model demonstrating maternal-fetal transmission and fetal neural toxicity of Zika virus. Ann Biomed Eng. 2018;46(12):1963–74.

    Google Scholar 

  18. Aryananda RA, Akbar A, Wardhana MP, Gumilar KE, Wicaksono B, Ernawati E, et al. New three-dimensional/four-dimensional volume rendering imaging software for detecting the abnormally invasive placenta. J Clin Ultrasound. 2019;47(1):9–13.

    Google Scholar 

  19. Atay S, Gercel-Taylor C, Kesimer M, Taylor DD. Morphologic and proteomic characterization of exosomes released by cultured extravillous trophoblast cells. Exp Cell Res. 2011a;317(8):1192–202.

    CAS  Google Scholar 

  20. Atay S, Gercel-Taylor C, Suttles J, Mor G, Taylor DD. Trophoblast-derived exosomes mediate monocyte recruitment and differentiation. Am J Reprod Immunol. 2011b;65(1):65–77.

    CAS  Google Scholar 

  21. Baczyk D, Dunk C, Huppertz B, Maxwell C, Reister F, Giannoulias D, et al. Bi-potential behaviour of cytotrophoblasts in first trimester chorionic villi. Placenta. 2006;27(4–5):367–74.

    CAS  Google Scholar 

  22. Bai Q, Assou S, Haouzi D, Ramirez JM, Monzo C, Becker F, et al. Dissecting the first transcriptional divergence during human embryonic development. Stem Cell Rev Rep. 2012;8(1):150–62.

    CAS  Google Scholar 

  23. Baig S, Lim JY, Fernandis AZ, Wenk MR, Kale A, Su LL, et al. Lipidomic analysis of human placental syncytiotrophoblast microvesicles in adverse pregnancy outcomes. Placenta. 2013;34(5):436–42.

    CAS  Google Scholar 

  24. Baker M. RNA imaging in situ. Nat Methods. 2012;9:787–90.

    CAS  Google Scholar 

  25. Bari MF, Ngo S, Bastie CC, Sheppard AM, Vatish M. Gestational diabetic transcriptomic profiling of microdissected human trophoblast. J Endocrinol. 2016;229(1):47–59.

    CAS  Google Scholar 

  26. Benton SJ, Leavey K, Grynspan D, Cox BJ, Bainbridge SA. The clinical heterogeneity of preeclampsia is related to both placental gene expression and placental histopathology. Am J Obstet Gynecol. 2018;219(6):604 e1–e25.

    Google Scholar 

  27. Bernardo AS, Faial T, Gardner L, Niakan KK, Ortmann D, Senner CE, et al. BRACHYURY and CDX2 mediate BMP-induced differentiation of human and mouse pluripotent stem cells into embryonic and extraembryonic lineages. Cell Stem Cell. 2011;9(2):144–55.

    CAS  PubMed Central  Google Scholar 

  28. Bhatnagar J, Rabeneck DB, Martines RB, Reagan-Steiner S, Ermias Y, Estetter LB, et al. Zika virus RNA replication and persistence in brain and placental tissue. Emerg Infect Dis. 2017;23(3):405–14.

    PubMed Central  Google Scholar 

  29. Bilban M, Tauber S, Haslinger P, Pollheimer J, Saleh L, Pehamberger H, et al. Trophoblast invasion: assessment of cellular models using gene expression signatures. Placenta. 2010;31(11):989–96.

    CAS  Google Scholar 

  30. Blakeley P, Fogarty NM, Del Valle I, Wamaitha SE, Hu TX, Elder K, et al. Defining the three cell lineages of the human blastocyst by single-cell RNA-seq. Development. 2015;142(20):3613.

    PubMed Central  Google Scholar 

  31. Blundell C, Tess ER, Schanzer AS, Coutifaris C, Su EJ, Parry S, et al. A microphysiological model of the human placental barrier. Lab Chip. 2016;16(16):3065–73.

    CAS  PubMed Central  Google Scholar 

  32. Blundell C, Yi YS, Ma L, Tess ER, Farrell MJ, Georgescu A, et al. Placental drug transport-on-a-chip: A microengineered in vitro model of transporter-mediated drug efflux in the human placental barrier. Adv Healthc Mater. 2018;7(2) https://doi.org/10.1002/adhm.201700786.

  33. Bockoven C, Gastfield RD, Victor T, Venkatasubramanian PN, Wyrwicz AM, Ernst LM. Correlation of placental magnetic resonance imaging with histopathologic diagnosis: detection of aberrations in structure and water diffusivity. Pediatr Dev Pathol. 2020;23(4):260–6.

    Google Scholar 

  34. Bogart MH, Pandian MR, Jones OW. Abnormal maternal serum chorionic gonadotropin levels in pregnancies with fetal chromosome abnormalities. Prenat Diagn. 1987;7(9):623–30.

    CAS  Google Scholar 

  35. Bonel HM, Stolz B, Diedrichsen L, Frei K, Saar B, Tutschek B, et al. Diffusion-weighted MR imaging of the placenta in fetuses with placental insufficiency. Radiology. 2010;257(3):810–9.

    Google Scholar 

  36. Brownbill P, Sebire N, McGillick EV, Ellery S, Murthi P. Ex vivo dual perfusion of the human placenta: disease simulation, therapeutic pharmacokinetics and analysis of off-target effects. Methods Mol Biol. 2018;1710:173–89.

    CAS  Google Scholar 

  37. Buchberger AR, DeLaney K, Johnson J, Li L. Mass spectrometry imaging: a review of emerging advancements and future insights. Anal Chem. 2018;90(1):240–65.

    CAS  Google Scholar 

  38. Caillon H, Tardif C, Dumontet E, Winer N, Masson D. Evaluation of sFlt-1/PlGF ratio for predicting and improving clinical management of pre-eclampsia: experience in a specialized perinatal care center. Ann Lab Med. 2018;38(2):95–101.

    Google Scholar 

  39. Cajigas IJ, Tushev G, Will TJ, tom Dieck S, Fuerst N, Schuman EM. The local transcriptome in the synaptic neuropil revealed by deep sequencing and high-resolution imaging. Neuron. 2012;74(3):453–66.

    CAS  PubMed Central  Google Scholar 

  40. Canfield RE, O'Connor JF, Birken S, Krichevsky A, Wilcox AJ. Development of an assay for a biomarker of pregnancy and early fetal loss. Environ Health Perspect. 1987;74:57–66.

    CAS  PubMed Central  Google Scholar 

  41. Canick JA, Knight GJ, Palomaki GE, Haddow JE, Cuckle HS, Wald NJ. Low second trimester maternal serum unconjugated oestriol in pregnancies with Down's syndrome. Br J Obstet Gynaecol. 1988;95(4):330–3.

    CAS  Google Scholar 

  42. Caniggia I, Mostachfi H, Winter J, Gassmann M, Lye SJ, Kuliszewski M, et al. Hypoxia-inducible factor-1 mediates the biological effects of oxygen on human trophoblast differentiation through TGFbeta(3). J Clin Invest. 2000;105(5):577–87.

    CAS  PubMed Central  Google Scholar 

  43. Cavaliere G. A 14-day limit for bioethics: the debate over human embryo research. BMC Med Ethics. 2017;18(1):38.

    PubMed Central  Google Scholar 

  44. Cerneus DP, van der Ende A. Apical and basolateral transferrin receptors in polarized BeWo cells recycle through separate endosomes. J Cell Biol. 1991;114(6):1149–58.

    CAS  Google Scholar 

  45. Cetin O, Karaman E, Arslan H, Akbudak I, Yildizhan R, Kolusari A. Acoustic radiation force impulse elastosonography of placenta in maternal red blood cell alloimmunization: a preliminary and descriptive study. Med Ultrason. 2017;19(1):73–8.

    Google Scholar 

  46. Challis JR, Kendall JZ, Robinson JS, Thorburn GD. The regulation of corticosteroids during late pregnancy and their role in parturition. Biol Reprod. 1977;16(1):57–69.

    CAS  Google Scholar 

  47. Chawengsaksophak K, James R, Hammond VE, Kontgen F, Beck F. Homeosis and intestinal tumours in Cdx2 mutant mice. Nature. 1997;386(6620):84–7.

    CAS  Google Scholar 

  48. Chen B, Duan J, Chabot-Lecoanet AC, Lu H, Tonnelet R, Morel O, et al. Ex vivo magnetic resonance angiography to explore placental vascular anatomy. Placenta. 2017;58:40–5.

    Google Scholar 

  49. Chen B, Nelson DM, Sadovsky Y. N-myc down-regulated gene 1 modulates the response of term human trophoblasts to hypoxic injury. J Biol Chem. 2006;281(5):2764–72.

    CAS  Google Scholar 

  50. Chen Q, Wang Y, Zhao M, Hyett J, da Silva CF, Nie G. Serum levels of GDF15 are reduced in preeclampsia and the reduction is more profound in late-onset than early-onset cases. Cytokine. 2016;83:226–30.

    CAS  Google Scholar 

  51. Chim SS, Shing TK, Hung EC, Leung TY, Lau TK, Chiu RW, et al. Detection and characterization of placental microRNAs in maternal plasma. Clin Chem. 2008;54(3):482–90.

    CAS  Google Scholar 

  52. Chughtai K, Jiang L, Greenwood TR, Klinkert I, Amstalden van Hove ER, Heeren RM, et al. Fiducial markers for combined 3-dimensional mass spectrometric and optical tissue imaging. Anal Chem. 2012;84(4):1817–23.

    CAS  PubMed Central  Google Scholar 

  53. Cim N, Tolunay HE, Boza B, Arslan H, Ates C, Ilik I, et al. Use of ARFI elastography in the prediction of placental invasion anomaly via a new Virtual Touch Quantification Technique. J Obstet Gynaecol. 2018;38(7):911–5.

    Google Scholar 

  54. Clausen H, Larsen GL, Gunderson HGJ. Simple and efficient stereological quantitation of some placental structures: a review. Placenta. 1998;19:41–56.

    Google Scholar 

  55. Collett GP, Redman CW, Sargent IL, Vatish M. Endoplasmic reticulum stress stimulates the release of extracellular vesicles carrying danger-associated molecular pattern (DAMP) molecules. Oncotarget. 2018;9(6):6707–17.

    PubMed Central  Google Scholar 

  56. Coltart RM, Seller MJ, Singer JD, Campbell S. Amniotic fluid concentrations of alpha-fetoprotein (AFP) in early normal pregnancy, and pregnancy complicated by neural tube defects. A review of 18 months experience. Guys Hosp Rep. 1974;123(2):121–9.

    CAS  Google Scholar 

  57. Committee on Obstetric Practice American Institute of Ultrasound in Medicine Society for Maternal–Fetal Medicine. Committee opinion no 700: methods for estimating the due date. Obstet Gynecol. 2017;129(5):e150–e4.

    Google Scholar 

  58. Coscia F, Doll S, Bech JM, Schweizer L, Mund A, Lengyel E, et al. A streamlined mass spectrometry-based proteomics workflow for large-scale FFPE tissue analysis. J Pathol. 2020;251(1):100–12.

    CAS  Google Scholar 

  59. Coucouvanis E, Martin GR. BMP signaling plays a role in visceral endoderm differentiation and cavitation in the early mouse embryo. Development. 1999;126(3):535–46.

    CAS  Google Scholar 

  60. Davis S, Miura S, Hill C, Mishina Y, Klingensmith J. BMP receptor IA is required in the mammalian embryo for endodermal morphogenesis and ectodermal patterning. Dev Biol. 2004;270(1):47–63.

    CAS  Google Scholar 

  61. Decalf J, Albert ML, Ziai J. New tools for pathology: a user's review of a highly multiplexed method for in situ analysis of protein and RNA expression in tissue. J Pathol. 2019;247(5):650–61.

    Google Scholar 

  62. Deglincerti A, Croft GF, Pietila LN, Zernicka-Goetz M, Siggia ED, Brivanlou AH. Self-organization of the in vitro attached human embryo. Nature. 2016;533(7602):251–4.

    CAS  Google Scholar 

  63. Deloison B, Siauve N, Aimot S, Balvay D, Thiam R, Cuenod CA, et al. SPIO-enhanced magnetic resonance imaging study of placental perfusion in a rat model of intrauterine growth restriction. BJOG. 2012;119(5):626–33.

    CAS  Google Scholar 

  64. Delorme-Axford E, Donker RB, Mouillet JF, Chu T, Bayer A, Ouyang Y, et al. Human placental trophoblasts confer viral resistance to recipient cells. Proc Natl Acad Sci U S A. 2013;110(29):12048–53.

    CAS  PubMed Central  Google Scholar 

  65. Donker RB, Mouillet JF, Chu T, Hubel CA, Stolz DB, Morelli AE, et al. The expression profile of C19MC microRNAs in primary human trophoblast cells and exosomes. Mol Hum Reprod. 2012;18(8):417–24.

    CAS  PubMed Central  Google Scholar 

  66. Dragovic RA, Southcombe JH, Tannetta DS, Redman CWG, Sargent IL. Multicolor flow cytometry and nanoparticle tracking analysis of extracellular vesicles in the plasma of normal pregnant and pre-eclamptic women. Biol Reprod. 2013;89(6):151.

    Google Scholar 

  67. Du Q, Pan Y, Zhang Y, Zhang H, Zheng Y, Lu L, et al. Placental gene-expression profiles of intrahepatic cholestasis of pregnancy reveal involvement of multiple molecular pathways in blood vessel formation and inflammation. BMC Med Genet. 2014;7:42.

    Google Scholar 

  68. Duenas ME, Essner JJ, Lee YJ. 3D MALDI mass spectrometry imaging of a single cell: spatial mapping of lipids in the embryonic development of zebrafish. Sci Rep. 2017;7(1):14946.

    PubMed Central  Google Scholar 

  69. Duenhoelter JH, Whalley PJ, MacDonald PC. An analysis of the utility of plasma immunoreactive estrogen measurements in determining delivery time of gravidas with a fetus considered at high risk. Am J Obstet Gynecol. 1976;125(7):889–98.

    CAS  Google Scholar 

  70. Dugoff L, Hobbins JC, Malone FD, Porter TF, Luthy D, Comstock CH, et al. First-trimester maternal serum PAPP-A and free-beta subunit human chorionic gonadotropin concentrations and nuchal translucency are associated with obstetric complications: a population-based screening study (the FASTER trial). Am J Obstet Gynecol. 2004;191(4):1446–51.

    CAS  Google Scholar 

  71. Dugoff L, Hobbins JC, Malone FD, Vidaver J, Sullivan L, Canick JA, et al. Quad screen as a predictor of adverse pregnancy outcome. Obstet Gynecol. 2005;106(2):260–7.

    Google Scholar 

  72. Ellis MJ, Livesey JH, Inder WJ, Prickett TC, Reid R. Plasma corticotropin-releasing hormone and unconjugated estriol in human pregnancy: gestational patterns and ability to predict preterm delivery. Am J Obstet Gynecol. 2002;186(1):94–9.

    CAS  Google Scholar 

  73. Erlebacher A, Price KA, Glimcher LH. Maintenance of mouse trophoblast stem cell proliferation by TGF-beta/activin. Dev Biol. 2004;275(1):158–69.

    CAS  Google Scholar 

  74. Farina A, Sekizawa A, Purwosunu Y, Rizzo N, Banzola I, Concu M, et al. Quantitative distribution of a panel of circulating mRNA in preeclampsia versus controls. Prenat Diagn. 2006;26(12):1115–20.

    CAS  Google Scholar 

  75. Farina A, Zucchini C, Sekizawa A, Purwosunu Y, de Sanctis P, Santarsiero G, et al. Performance of messenger RNAs circulating in maternal blood in the prediction of preeclampsia at 10-14 weeks. Am J Obstet Gynecol. 2010;203(6):575 e1–7.

    Google Scholar 

  76. Fisher NL, Luthy DA, Peterson A, Karp LE, Williamson R, Cheng E. Prenatal diagnosis of neural tube defects: predictive value of AF-AFP in a low-risk population. Am J Med Genet. 1981;9(3):201–9.

    CAS  Google Scholar 

  77. Fisher SJ, Cui TY, Zhang L, Hartman L, Grahl K, Zhang GY, et al. Adhesive and degradative properties of human placental cytotrophoblast cells in vitro. J Cell Biol. 1989;109(2):891–902.

    CAS  Google Scholar 

  78. Fitzgerald W, Gomez-Lopez N, Erez O, Romero R, Margolis L. Extracellular vesicles generated by placental tissues ex vivo: a transport system for immune mediators and growth factors. Am J Reprod Immunol. 2018;80(1):e12860.

    PubMed Central  Google Scholar 

  79. Francis ST, Duncan KR, Moore RJ, Baker PN, Johnson IR, Gowland PA. Non-invasive mapping of placental perfusion. Lancet. 1998;351(9113):1397–9.

    CAS  Google Scholar 

  80. Fu G, Ye G, Nadeem L, Ji L, Manchanda T, Wang Y, et al. MicroRNA-376c impairs transforming growth factor-beta and nodal signaling to promote trophoblast cell proliferation and invasion. Hypertension. 2013;61(4):864–72.

    CAS  Google Scholar 

  81. Fujito N, Samura O, Miharu N, Tanigawa M, Hyodo M, Kudo Y. Increased plasma mRNAs of placenta-specific 1 (PLAC1) and glial cells-missing 1 (GCM1) in mothers with pre-eclampsia. Hiroshima J Med Sci. 2006;55(1):9–15.

    CAS  Google Scholar 

  82. Furukawa S, Kuroda Y, Sugiyama A. A comparison of the histological structure of the placenta in experimental animals. J Toxicol Pathol. 2014;27(1):11–8.

    PubMed Central  Google Scholar 

  83. Gagnon A, Wilson RD, Society of Obstetricians and Gynaecologists of Canada Genetics Committee. Obstetrical complications associated with abnormal maternal serum markers analytes. J Obstet Gynaecol Can. 2008;30(10):918–32.

    Google Scholar 

  84. Ganer Herman H, Miremberg H, Schreiber L, Bar J, Kovo M. The association between disproportionate birth weight to placental weight ratio, clinical outcome, and placental histopathological lesions. Fetal Diagn Ther. 2017;41(4):300–6.

    Google Scholar 

  85. Gao X, Nowak-Imialek M, Chen X, Chen D, Herrmann D, Ruan D, et al. Establishment of porcine and human expanded potential stem cells. Nat Cell Biol. 2019;21(6):687–99.

    CAS  PubMed Central  Google Scholar 

  86. Gerami-Naini B, Dovzhenko OV, Durning M, Wegner FH, Thomson JA, Golos TG. Trophoblast differentiation in embryoid bodies derived from human embryonic stem cells. Endocrinology. 2004;145(4):1517–24.

    CAS  Google Scholar 

  87. Germain SJ, Sacks GP, Sooranna SR, Sargent IL, Redman CW. Systemic inflammatory priming in normal pregnancy and preeclampsia: the role of circulating syncytiotrophoblast microparticles. J Immunol. 2007;178(9):5949–56.

    CAS  Google Scholar 

  88. Gibbs I, Leavey K, Benton SJ, Grynspan D, Bainbridge SA, Cox BJ. Placental transcriptional and histologic subtypes of normotensive fetal growth restriction are comparable to preeclampsia. Am J Obstet Gynecol. 2019;220(1):110 e1–e21.

    Google Scholar 

  89. Goetzinger KR, Cahill AG, Macones GA, Odibo AO. Association of first-trimester low PAPP-A levels with preterm birth. Prenat Diagn. 2010;30(4):309–13.

    CAS  Google Scholar 

  90. Goetzl L, Darbinian N, Goetzl EJ. Novel window on early human neurodevelopment via fetal exosomes in maternal blood. Ann Clin Transl Neur. 2016;3(5):381–5.

    Google Scholar 

  91. Goetzl L, Darbinian N, Merabova N. Noninvasive assessment of fetal central nervous system insult: potential application to prenatal diagnosis. Prenat Diagn. 2019;39(8):609–15.

    CAS  Google Scholar 

  92. Gordon Y, Partovi S, Muller-Eschner M, Amarteifio E, Bauerle T, Weber MA, et al. Dynamic contrast-enhanced magnetic resonance imaging: fundamentals and application to the evaluation of the peripheral perfusion. Cardiovasc Diagn Ther. 2014;4(2):147–64.

    PubMed Central  Google Scholar 

  93. Gormley M, Ona K, Kapidzic M, Garrido-Gomez T, Zdravkovic T, Fisher SJ. Preeclampsia: novel insights from global RNA profiling of trophoblast subpopulations. Am J Obstet Gynecol. 2017;217(2):200 e1–e17.

    Google Scholar 

  94. Gowland PA, Francis ST, Duncan KR, Freeman AJ, Issa B, Moore RJ, et al. In vivo perfusion measurements in the human placenta using echo planar imaging at 0.5 T. Magn Reson Med. 1998;40(3):467–73.

    CAS  Google Scholar 

  95. Graham CH, Hawley TS, Hawley RG, MacDougall JR, Kerbel RS, Khoo N, et al. Establishment and characterization of first trimester human trophoblast cells with extended lifespan. Exp Cell Res. 1993;206(2):204–11.

    CAS  Google Scholar 

  96. Graham SJ, Wicher KB, Jedrusik A, Guo G, Herath W, Robson P, et al. BMP signalling regulates the pre-implantation development of extra-embryonic cell lineages in the mouse embryo. Nat Commun. 2014;5:5667.

    CAS  Google Scholar 

  97. Greening DW, Nguyen HP, Elgass K, Simpson RJ, Salamonsen LA. Human endometrial exosomes contain hormone-specific cargo modulating trophoblast adhesive capacity: insights into endometrial-embryo interactions. Biol Reprod. 2016;94(2):38.

    Google Scholar 

  98. Gunel T, Zeybek YG, Akcakaya P, Kalelioglu I, Benian A, Ermis H, et al. Serum microRNA expression in pregnancies with preeclampsia. Genet Mol Res. 2011;10(4):4034–40.

    CAS  Google Scholar 

  99. Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 2010;466(7308):835–40.

    CAS  PubMed Central  Google Scholar 

  100. Gupta AK, Rusterholz C, Huppertz B, Malek A, Schneider H, Holzgreve W, et al. A comparative study of the effect of three different syncytiotrophoblast micro-particles preparations on endothelial cells. Placenta. 2005;26(1):59–66.

    CAS  Google Scholar 

  101. Hadley EE, Sheller-Miller S, Saade G, Salomon C, Mesiano S, Taylor RN, et al. Amnion epithelial cell-derived exosomes induce inflammatory changes in uterine cells. Am J Obstet Gynecol. 2018;219(5):478 e1–e21.

    Google Scholar 

  102. Hagerman DD. Clinical use of plasma total estriol measurements in late pregnancy. J Reprod Med. 1979;23(4):179–84.

    CAS  Google Scholar 

  103. Haider S, Meinhardt G, Saleh L, Kunihs V, Gamperl M, Kaindl U, et al. Self-renewing trophoblast organoids recapitulate the developmental program of the early human placenta. Stem Cell Rep. 2018;11(2):537–51.

    CAS  Google Scholar 

  104. Handwerger S. New insights into the regulation of human cytotrophoblast cell differentiation. Mol Cell Endocrinol. 2010;323(1):94–104.

    CAS  Google Scholar 

  105. Hao S, You J, Chen L, Zhao H, Huang Y, Zheng L, et al. Changes in pregnancy-related serum biomarkers early in gestation are associated with later development of preeclampsia. PLoS One. 2020;15(3):e0230000.

    CAS  PubMed Central  Google Scholar 

  106. Harrison SE, Sozen B, Christodoulou N, Kyprianou C, Zernicka-Goetz M. Assembly of embryonic and extraembryonic stem cells to mimic embryogenesis in vitro. Science. 2017;356(6334):eaal1810.

    Google Scholar 

  107. Hayashi Y, Furue MK, Tanaka S, Hirose M, Wakisaka N, Danno H, et al. BMP4 induction of trophoblast from mouse embryonic stem cells in defined culture conditions on laminin. In Vitro Cell Dev Biol Anim. 2010;46(5):416–30.

    CAS  Google Scholar 

  108. Heine RP, McGregor JA, Dullien VK. Accuracy of salivary estriol testing compared to traditional risk factor assessment in predicting preterm birth. Am J Obstet Gynecol. 1999;180(1 Pt 3):S214–8.

    CAS  Google Scholar 

  109. Heine RP, McGregor JA, Goodwin TM, Artal R, Hayashi RH, Robertson PA, et al. Serial salivary estriol to detect an increased risk of preterm birth. Obstet Gynecol. 2000;96(4):490–7.

    CAS  Google Scholar 

  110. Hemberger M, Udayashankar R, Tesar P, Moore H, Burton GJ. ELF5-enforced transcriptional networks define an epigenetically regulated trophoblast stem cell compartment in the human placenta. Hum Mol Genet. 2010;19(12):2456–67.

    CAS  Google Scholar 

  111. Hewitt DP, Mark PJ, Dharmarajan AM, Waddell BJ. Placental expression of secreted frizzled related protein-4 in the rat and the impact of glucocorticoid-induced fetal and placental growth restriction. Biol Reprod. 2006;75(1):75–81.

    CAS  Google Scholar 

  112. Hilgers RD, Lewis JL Jr. Gestational trophoblastic neoplasms. Gynecol Oncol. 1974;2(4):460–75.

    CAS  Google Scholar 

  113. Hobel CJ, Arora CP, Korst LM. Corticotrophin-releasing hormone and CRH-binding protein. Differences between patients at risk for preterm birth and hypertension. Ann N Y Acad Sci. 1999a;897:54–65.

    CAS  Google Scholar 

  114. Hobel CJ, Dunkel-Schetter C, Roesch SC, Castro LC, Arora CP. Maternal plasma corticotropin-releasing hormone associated with stress at 20 weeks' gestation in pregnancies ending in preterm delivery. Am J Obstet Gynecol. 1999b;180(1 Pt 3):S257–63.

    CAS  Google Scholar 

  115. Holder B, Jones T, Sancho Shimizu V, Rice TF, Donaldson B, Bouqueau M, et al. Macrophage exosomes induce placental inflammatory cytokines: a novel mode of maternal-placental messaging. Traffic. 2016;17(2):168–78.

    CAS  PubMed Central  Google Scholar 

  116. Holder BS, Tower CL, Jones CJ, Aplin JD, Abrahams VM. Heightened pro-inflammatory effect of preeclamptic placental microvesicles on peripheral blood immune cells in humans. Biol Reprod. 2012;86(4):103.

    Google Scholar 

  117. Home P, Kumar RP, Ganguly A, Saha B, Milano-Foster J, Bhattacharya B, et al. Genetic redundancy of GATA factors in the extraembryonic trophoblast lineage ensures the progression of preimplantation and postimplantation mammalian development. Development. 2017;144(5):876–88.

    CAS  PubMed Central  Google Scholar 

  118. Horii M, Bui T, Touma O, Cho HY, Parast MM. An improved two-step protocol for trophoblast differentiation of human pluripotent stem cells. Curr Protoc Stem Cell Biol. 2019;50(1):e96.

    PubMed Central  Google Scholar 

  119. Horii M, Li Y, Wakeland AK, Pizzo DP, Nelson KK, Sabatini K, et al. Human pluripotent stem cells as a model of trophoblast differentiation in both normal development and disease. Proc Natl Acad Sci U S A. 2016;113(27):E3882–91.

    CAS  PubMed Central  Google Scholar 

  120. Hoseini MS, Sheibani S, Sheikhvatan M. The evaluating of pregnancy-associated plasma protein-A with the likelihood of small for gestational age. Obstet Gynecol Sci. 2020;63(3):225–30.

    PubMed Central  Google Scholar 

  121. Hromadnikova I, Kotlabova K, Doucha J, Dlouha K, Krofta L. Absolute and relative quantification of placenta-specific micrornas in maternal circulation with placental insufficiency-related complications. J Mol Diagn. 2012;14(2):160–7.

    CAS  Google Scholar 

  122. https://www.marchofdimes.org/peristats/Peristats.aspx. March of Dimes: Peristats 2020.

  123. Hu Y, Yan R, Zhang C, Zhou Z, Liu M, Wang C, et al. High-mobility group box 1 from hypoxic trophoblasts promotes endothelial microparticle production and thrombophilia in preeclampsia. Arterioscler Thromb Vasc Biol. 2018;38(6):1381–91.

    CAS  PubMed Central  Google Scholar 

  124. Hung TH, Shau WY, Hsieh CC, Chiu TH, Hsu JJ, Hsieh TT. Risk factors for placenta accreta. Obstet Gynecol. 1999;93(4):545–50.

    CAS  Google Scholar 

  125. Huppertz B, Sammar M, Chefetz I, Neumaier-Wagner P, Bartz C, Meiri H. Longitudinal determination of serum placental protein 13 during development of preeclampsia. Fetal Diagn Ther. 2008;24(3):230–6.

    Google Scholar 

  126. Hutter J, Slator PJ, Jackson L, Gomes ADS, Ho A, Story L, et al. Multi-modal functional MRI to explore placental function over gestation. Magn Reson Med. 2019;81(2):1191–204.

    Google Scholar 

  127. Hyun I, Munsie M, Pera MF, Rivron NC, Rossant J. Toward guidelines for research on human embryo models formed from stem cells. Stem Cell Rep. 2020;14(2):169–74.

    CAS  Google Scholar 

  128. Hyun I, Wilkerson A, Johnston J. Embryology policy: revisit the 14-day rule. Nature. 2016;533(7602):169–71.

    CAS  Google Scholar 

  129. Jadlowiec J, Dongell D, Smith J, Conover C, Campbell P. Pregnancy-associated plasma protein-a is involved in matrix mineralization of human adult mesenchymal stem cells and angiogenesis in the chick chorioallontoic membrane. Endocrinology. 2005;146(9):3765–72.

    CAS  Google Scholar 

  130. Jimbo M, Sekizawa A, Sugito Y, Matsuoka R, Ichizuka K, Saito H, et al. Placenta increta: postpartum monitoring of plasma cell-free fetal DNA. Clin Chem. 2003;49(9):1540–1.

    CAS  Google Scholar 

  131. Jones NW, Deshpande R, Mousa HA, Mansell P, Raine-Fenning N, Bugg G. Fractional volume of placental vessels in women with diabetes using a novel stereological 3D power Doppler technique. Placenta. 2013;34(11):1002–8.

    CAS  Google Scholar 

  132. Junaid TO, Bradley RS, Lewis RM, Aplin JD, Johnstone ED. Whole organ vascular casting and microCT examination of the human placental vascular tree reveals novel alterations associated with pregnancy disease. Sci Rep. 2017;7(1):4144.

    PubMed Central  Google Scholar 

  133. Kaartokallio T, Cervera A, Kyllonen A, Laivuori K, Kere J, Laivuori H, et al. Gene expression profiling of pre-eclamptic placentae by RNA sequencing. Sci Rep. 2015;5:14107.

    CAS  PubMed Central  Google Scholar 

  134. Kambe S, Yoshitake H, Yuge K, Ishida Y, Ali MM, Takizawa T, et al. Human exosomal placenta-associated miR-517a-3p modulates the expression of PRKG1 mRNA in Jurkat cells. Biol Reprod. 2014;91(5):129.

    Google Scholar 

  135. Kilic F, Kayadibi Y, Yuksel MA, Adaletli I, Ustabasioglu FE, Oncul M, et al. Shear wave elastography of placenta: in vivo quantitation of placental elasticity in preeclampsia. Diagn Interv Radiol. 2015;21(3):202–7.

    PubMed Central  Google Scholar 

  136. Kim MJ, Kim SY, Park SY, Ahn HK, Chung JH, Ryu HM. Association of fetal-derived hypermethylated RASSF1A concentration in placenta-mediated pregnancy complications. Placenta. 2013a;34(1):57–61.

    CAS  Google Scholar 

  137. Kim SH, Shim SH, Sung SR, Lee KA, Shim JY, Cha DH, et al. Gene expression analysis of the microdissected trophoblast layer of human placenta after the spontaneous onset of labor. PLoS One. 2013b;8(10):e77648.

    CAS  PubMed Central  Google Scholar 

  138. Kingsley DM. The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev. 1994;8(2):133–46.

    CAS  Google Scholar 

  139. Kliman HJ, Nestler JE, Sermasi E, Sanger JM, Strauss JF 3rd. Purification, characterization, and in vitro differentiation of cytotrophoblasts from human term placentae. Endocrinology. 1986;118(4):1567–82.

    CAS  Google Scholar 

  140. Klinkert I, Chughtai K, Ellis RS, Heeren RMA. Methods for full resolution data exploration and visualization for large 2D and 3D mass spectrometry imaging datasets. Int J Mass Spec. 2014;362:40–7.

    CAS  Google Scholar 

  141. Knight M, Redman CWG, Linton EA, Sargent IL. Shedding of syncytiotrophoblast microvilli into the maternal circulation in pre-eclamptic pregnancies. Brit J Obstet Gynaec. 1998;105(6):632–40.

    CAS  Google Scholar 

  142. Knofler M, Pollheimer J. Human placental trophoblast invasion and differentiation: a particular focus on Wnt signaling. Front Genet. 2013;4:190.

    PubMed Central  Google Scholar 

  143. Kodama M, Miyoshi H, Fujito N, Samura O, Kudo Y. Plasma mRNA concentrations of placenta-specific 1 (PLAC1) and pregnancy associated plasma protein A (PAPP-A) are higher in early-onset than late-onset pre-eclampsia. J Obstet Gynaecol Res. 2011;37(4):313–8.

    CAS  Google Scholar 

  144. Kohler PO, Bridson WE. Isolation of hormone-producing clonal lines of human choriocarcinoma. J Clin Endocrinol Metab. 1971;32(5):683–7.

    CAS  Google Scholar 

  145. Krendl C, Shaposhnikov D, Rishko V, Ori C, Ziegenhain C, Sass S, et al. GATA2/3-TFAP2A/C transcription factor network couples human pluripotent stem cell differentiation to trophectoderm with repression of pluripotency. Proc Natl Acad Sci U S A. 2017;114(45):E9579–E88.

    CAS  PubMed Central  Google Scholar 

  146. Kunath T, Yamanaka Y, Detmar J, MacPhee D, Caniggia I, Rossant J, et al. Developmental differences in the expression of FGF receptors between human and mouse embryos. Placenta. 2014;35(12):1079–88.

    CAS  Google Scholar 

  147. Kurek D, Neagu A, Tastemel M, Tuysuz N, Lehmann J, van de Werken HJG, et al. Endogenous WNT signals mediate BMP-induced and spontaneous differentiation of epiblast stem cells and human embryonic stem cells. Stem Cell Rep. 2015;4(1):114–28.

    CAS  Google Scholar 

  148. Lancaster MA, Knoblich JA. Organogenesis in a dish: modeling development and disease using organoid technologies. Science. 2014;345(6194):1247125.

    Google Scholar 

  149. Lapaire O, Holzgreve W, Oosterwijk JC, Brinkhaus R, Bianchi DW. Georg Schmorl on trophoblasts in the maternal circulation. Placenta. 2007;28(1):1–5.

    CAS  Google Scholar 

  150. Leavey K, Bainbridge SA, Cox BJ. Large scale aggregate microarray analysis reveals three distinct molecular subclasses of human preeclampsia. PLoS One. 2015;10(2):e0116508.

    PubMed Central  Google Scholar 

  151. Leavey K, Benton SJ, Grynspan D, Kingdom JC, Bainbridge SA, Cox BJ. Unsupervised placental gene expression profiling identifies clinically relevant subclasses of human preeclampsia. Hypertension. 2016;68(1):137–47.

    CAS  Google Scholar 

  152. Leavey K, Wilson SL, Bainbridge SA, Robinson WP, Cox BJ. Epigenetic regulation of placental gene expression in transcriptional subtypes of preeclampsia. Clin Epigenetics. 2018;10:28.

    PubMed Central  Google Scholar 

  153. Lee JS, Romero R, Han YM, Kim HC, Kim CJ, Hong JS, et al. Placenta-on-a-chip: a novel platform to study the biology of the human placenta. J Matern Fetal Neonatal Med. 2016;29(7):1046–54.

    CAS  Google Scholar 

  154. Lee SM, Romero R, Lee YJ, Park IS, Park CW, Yoon BH. Systemic inflammatory stimulation by microparticles derived from hypoxic trophoblast as a model for inflammatory response in preeclampsia. Am J Obstet Gynecol. 2012;207(4):337.e1–8.

    CAS  Google Scholar 

  155. Leguy MC, Brun S, Pidoux G, Salhi H, Choiset A, Menet MC, et al. Pattern of secretion of pregnancy-associated plasma protein-A (PAPP-A) during pregnancies complicated by fetal aneuploidy, in vivo and in vitro. Reprod Biol Endocrinol. 2014;12:129.

    PubMed Central  Google Scholar 

  156. Leon M, Ferreira CR, Eberlin LS, Jarmusch AK, Pirro V, Rodrigues ACB, et al. Metabolites and lipids associated with fetal swine anatomy via desorption electrospray ionization – mass spectrometry imaging. Sci Rep. 2019;9(1):7247.

    PubMed Central  Google Scholar 

  157. Levine RJ, Maynard SE, Qian C, Lim KH, England LJ, Yu KF, et al. Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med. 2004a;350(7):672–83.

    CAS  Google Scholar 

  158. Levine RJ, Qian C, LeShane ES, Yu KF, England LJ, Schisterman EF, et al. Two-stage elevation of cell-free fetal DNA in maternal sera before onset of preeclampsia. Am J Obstet Gynecol. 2004b;190(3):707–13.

    CAS  Google Scholar 

  159. Li H, Ge Q, Guo L, Lu Z. Maternal plasma miRNAs expression in preeclamptic pregnancies. Biomed Res Int. 2013a;2013:970265.

    PubMed Central  Google Scholar 

  160. Li HM, Han L, Yang ZL, Huang W, Zhang X, Gu Y, et al. Differential proteomic analysis of syncytiotrophoblast extracellular vesicles from early-onset severe preeclampsia, using 8-Plex iTRAQ labeling coupled with 2D Nano LC-MS/MS. Cell Physiol Biochem. 2015;36(3):1116–30.

    CAS  Google Scholar 

  161. Li Y, Moretto-Zita M, Soncin F, Wakeland A, Wolfe L, Leon-Garcia S, et al. BMP4-directed trophoblast differentiation of human embryonic stem cells is mediated through a DeltaNp63+ cytotrophoblast stem cell state. Development. 2013b;140(19):3965–76.

    CAS  PubMed Central  Google Scholar 

  162. Linduska N, Dekan S, Messerschmidt A, Kasprian G, Brugger PC, Chalubinski K, et al. Placental pathologies in fetal MRI with pathohistological correlation. Placenta. 2009;30(6):555–9.

    CAS  Google Scholar 

  163. Link D, Many A, Ben-Sira L, Tarrasch R, Bak S, Kidron D, et al. Placental vascular tree characterization based on ex-vivo MRI with a potential application for placental insufficiency assessment. Placenta. 2020;96:34–43.

    Google Scholar 

  164. Liu D, Shao X, Danyalov A, Chanlaw T, Masamed R, Wang DJJ, et al. Human placenta blood flow during early gestation with pseudocontinuous arterial spin labeling MRI. J Magn Reson Imaging. 2020;51(4):1247–57.

    Google Scholar 

  165. Liu HY, Kang M, Wang J, Blenkiron C, Lee A, Wise M, et al. Estimation of the burden of human placental micro- and nano-vesicles extruded into the maternal blood from 8 to 12 weeks of gestation. Placenta. 2018a;72–73:41–7.

    Google Scholar 

  166. Liu Y, Fan X, Wang R, Lu X, Dang YL, Wang H, et al. Single-cell RNA-seq reveals the diversity of trophoblast subtypes and patterns of differentiation in the human placenta. Cell Res. 2018b;28(8):819–32.

    CAS  PubMed Central  Google Scholar 

  167. Lo YM, Tein MS, Lau TK, Haines CJ, Leung TN, Poon PM, et al. Quantitative analysis of fetal DNA in maternal plasma and serum: implications for noninvasive prenatal diagnosis. Am J Hum Genet. 1998;62(4):768–75.

    CAS  PubMed Central  Google Scholar 

  168. Los FJ, de Wolf BT, Huisjes HJ. Raised maternal serum-alpha-fetoprotein levels and spontaneous fetomaternal transfusion. Lancet. 1979;2(8154):1210–2.

    CAS  Google Scholar 

  169. Lowry WE, Richter L, Yachechko R, Pyle AD, Tchieu J, Sridharan R, et al. Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci U S A. 2008;105(8):2883–8.

    CAS  PubMed Central  Google Scholar 

  170. Luewan S, Teja-Intr M, Sirichotiyakul S, Tongsong T. Low maternal serum pregnancy-associated plasma protein-A as a risk factor of preeclampsia. Singap Med J. 2018;59(1):55–9.

    Google Scholar 

  171. Manokhina I, Wilson SL, Robinson WP. Noninvasive nucleic acid-based approaches to monitor placental health and predict pregnancy-related complications. Am J Obstet Gynecol. 2015;213(4 Suppl):S197–206.

    Google Scholar 

  172. Mayhew TM. Fetoplacental angiogenesis during gestation is biphasic, longitudinal and occurs by proliferation and remodelling of vascular endothelial cells. Placenta. 2002;23(10):742–50.

    Google Scholar 

  173. Mayhew TM, Burton GJ. Stereology and its impact on our understanding of human placental functional morphology. Microsc Res Tech. 1997;38(1–2):195–205.

    CAS  Google Scholar 

  174. Mayhew TM, Charnock-Jones DS, Kaufmann P. Aspects of human fetoplacental vasculogenesis and angiogenesis. III. Changes in complicated pregnancies. Placenta. 2004;25(2–3):127–39.

    CAS  Google Scholar 

  175. Mayhew TM, Leach L, McGee R, Ismail WW, Myklebust R, Lammiman MJ. Proliferation, differentiation and apoptosis in villous trophoblast at 13-41 weeks of gestation (including observations on annulate lamellae and nuclear pore complexes). Placenta. 1999;20(5–6):407–22.

    CAS  Google Scholar 

  176. Mayhew TM, Ohadike C, Baker PN, Crocker IP, Mitchell C, Ong SS. Stereological investigation of placental morphology in pregnancies complicated by pre-eclampsia with and without intrauterine growth restriction. Placenta. 2003;24(2–3):219–26.

    CAS  Google Scholar 

  177. Maynard SE, Min JY, Merchan J, Lim KH, Li J, Mondal S, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest. 2003;111(5):649–58.

    CAS  PubMed Central  Google Scholar 

  178. Mazor M, Hershkovitz R, Chaim W, Levy J, Sharony Y, Leiberman JR, et al. Human preterm birth is associated with systemic and local changes in progesterone/17 beta-estradiol ratios. Am J Obstet Gynecol. 1994;171(1):231–6.

    CAS  Google Scholar 

  179. Mclean M, Bisits A, Davies J, Woods R, Lowry P, Smith R. A placental clock controlling the length of human-pregnancy. Nat Med. 1995;1(5):460–3.

    CAS  Google Scholar 

  180. Menon R, Bonney EA, Condon J, Mesiano S, Taylor RN. Novel concepts on pregnancy clocks and alarms: redundancy and synergy in human parturition. Hum Reprod Update. 2016;22(5):535–60.

    CAS  PubMed Central  Google Scholar 

  181. Menon R, Debnath C, Lai A, Guanzon D, Bhatnagar S, Kshetrapal P, et al. Protein profile changes in circulating placental extracellular vesicles in term and preterm births: a longitudinal study. Endocrinology. 2020;161(4):bqaa009.

    PubMed Central  Google Scholar 

  182. Menon R, Debnath C, Lai A, Guanzon D, Bhatnagar S, Kshetrapal PK, et al. Circulating exosomal miRNA profile during term and preterm birth pregnancies: a longitudinal study. Endocrinology. 2019;160(2):249–75.

    CAS  Google Scholar 

  183. Merkatz IR, Nitowsky HM, Macri JN, Johnson WE. An association between low maternal serum alpha-fetoprotein and fetal chromosomal abnormalities. Am J Obstet Gynecol. 1984;148(7):886–94.

    CAS  Google Scholar 

  184. Michelsen TM, Henriksen T, Reinhold D, Powell TL, Jansson T. The human placental proteome secreted into the maternal and fetal circulations in normal pregnancy based on 4-vessel sampling. FASEB J. 2019;33(2):2944–56.

    CAS  Google Scholar 

  185. Mikheev AM, Nabekura T, Kaddoumi A, Bammler TK, Govindarajan R, Hebert MF, et al. Profiling gene expression in human placentae of different gestational ages: an OPRU Network and UW SCOR Study. Reprod Sci. 2008;15(9):866–77.

    CAS  Google Scholar 

  186. Millischer AE, Deloison B, Silvera S, Ville Y, Boddaert N, Balvay D, et al. Dynamic contrast enhanced MRI of the placenta: a tool for prenatal diagnosis of placenta accreta? Placenta. 2017;53:40–7.

    CAS  Google Scholar 

  187. Mincheva-Nilsson L, Nagaeva O, Chen T, Stendahl U, Antsiferova J, Mogren I, et al. Placenta-derived soluble MHC class I chain-related molecules down-regulate NKG2D receptor on peripheral blood mononuclear cells during human pregnancy: a possible novel immune escape mechanism for fetal survival. J Immunol. 2006;176(6):3585–92.

    CAS  Google Scholar 

  188. Miranda J, Paules C, Nair S, Lai A, Palma C, Scholz-Romero K, et al. Placental exosomes profile in maternal and fetal circulation in intrauterine growth restriction – liquid biopsies to monitoring fetal growth. Placenta. 2018;64:34–43.

    CAS  Google Scholar 

  189. Mishell DR Jr, Davajan V. Quantitative immunologic assay of human chorionic gonadotropin in normal and abnormal pregnancies. Am J Obstet Gynecol. 1966;96(2):231–9.

    CAS  Google Scholar 

  190. Mishell DR Jr, Thorneycroft IH, Nagata Y, Murata T, Nakamura RM. Serum gonadotropin and steroid patterns in early human gestation. Am J Obstet Gynecol. 1973;117(5):631–42.

    Google Scholar 

  191. Mishina Y, Hanks MC, Miura S, Tallquist MD, Behringer RR. Generation of Bmpr/Alk3 conditional knockout mice. Genesis. 2002;32(2):69–72.

    CAS  Google Scholar 

  192. Morgan TK. Cell- and size-specific analysis of placental extracellular vesicles in maternal plasma and pre-eclampsia. Transl Res. 2018;201:40–8.

    CAS  PubMed Central  Google Scholar 

  193. Muttukrishna S, Knight PG, Groome NP, Redman CW, Ledger WL. Activin A and inhibin A as possible endocrine markers for pre-eclampsia. Lancet. 1997;349(9061):1285–8.

    CAS  Google Scholar 

  194. Nair S, Jayabalan N, Guanzon D, Palma C, Scholz-Romero K, Elfeky O, et al. Human placental exosomes in gestational diabetes mellitus carry a specific set of miRNAs associated with skeletal muscle insulin sensitivity. Clin Sci (Lond). 2018;132(22):2451–67.

    CAS  Google Scholar 

  195. Natale BV, Schweitzer C, Hughes M, Globisch MA, Kotadia R, Tremblay E, et al. Sca-1 identifies a trophoblast population with multipotent potential in the mid-gestation mouse placenta. Sci Rep. 2017;7(1):5575.

    PubMed Central  Google Scholar 

  196. Ng EKO, Tsui NBY, Lau TK, Leung TN, Chiu RWK, Panesar NS, et al. mRNA of placental origin is readily detectable in maternal plasma. P Natl Acad Sci U S A. 2003;100(8):4748–53.

    CAS  Google Scholar 

  197. Ngo TTM, Moufarrej MN, Rasmussen MH, Camunas-Soler J, Pan W, Okamoto J, et al. Noninvasive blood tests for fetal development predict gestational age and preterm delivery. Science. 2018;360(6393):1133–6.

    CAS  PubMed Central  Google Scholar 

  198. Niakan KK, Eggan K. Analysis of human embryos from zygote to blastocyst reveals distinct gene expression patterns relative to the mouse. Dev Biol. 2013;375(1):54–64.

    CAS  Google Scholar 

  199. Nishiguchi A, Gilmore C, Sood A, Matsusaki M, Collett G, Tannetta D, et al. In vitro placenta barrier model using primary human trophoblasts, underlying connective tissue and vascular endothelium. Biomaterials. 2019;192:140–8.

    CAS  Google Scholar 

  200. Noguer-Dance M, Abu-Amero S, Al-Khtib M, Lefevre A, Coullin P, Moore GE, et al. The primate-specific microRNA gene cluster (C19MC) is imprinted in the placenta. Hum Mol Genet. 2010;19(18):3566–82.

    CAS  Google Scholar 

  201. Norwitz ER, Bonney EA, Snegovskikh VV, Williams MA, Phillippe M, Park JS, et al. Molecular regulation of parturition: the role of the decidual clock. Cold Spring Harb Perspect Med. 2015;5(11):a023143.

    PubMed Central  Google Scholar 

  202. O'Keeffe DF, Abuhamad A. Obstetric ultrasound utilization in the United States: data from various health plans. Semin Perinatol. 2013;37(5):292–4.

    Google Scholar 

  203. Okae H, Toh H, Sato T, Hiura H, Takahashi S, Shirane K, et al. Derivation of human trophoblast stem cells. Cell Stem Cell. 2018;22(1):50–63. e6.

    CAS  Google Scholar 

  204. Orozco AF, Jorgez CJ, Ramos-Perez WD, Popek EJ, Yu X, Kozinetz CA, et al. Placental release of distinct DNA-associated micro-particles into maternal circulation: reflective of gestation time and preeclampsia. Placenta. 2009;30(10):891–7.

    CAS  PubMed Central  Google Scholar 

  205. Ouyang Y, Mouillet JF, Coyne CB, Sadovsky Y. Review: placenta-specific microRNAs in exosomes - good things come in nano-packages. Placenta. 2014;35(Suppl):S69–73.

    CAS  Google Scholar 

  206. Ouyang YS, Bayer A, Chu TJ, Tyurin VA, Kagan VE, Morelli AE, et al. Isolation of human trophoblastic extracellular vesicles and characterization of their cargo and antiviral activity. Placenta. 2016;47:86–95.

    CAS  PubMed Central  Google Scholar 

  207. Panigel M, Dixon T, Constantinidis I, Sheppard S, Swenson R, McLure H, et al. Fast scan magnetic resonance imaging and Doppler ultrasonography of uteroplacental hemodynamics in the rhesus monkey (Macaca mulatta). J Med Primatol. 1993;22(7–8):393–9.

    CAS  Google Scholar 

  208. Parra-Saavedra M, Crovetto F, Triunfo S, Savchev S, Peguero A, Nadal A, et al. Association of Doppler parameters with placental signs of underperfusion in late-onset small-for-gestational-age pregnancies. Ultrasound Obstet Gynecol. 2014;44(3):330–7.

    CAS  Google Scholar 

  209. Pavlicev M, Wagner GP, Chavan AR, Owens K, Maziarz J, Dunn-Fletcher C, et al. Single-cell transcriptomics of the human placenta: inferring the cell communication network of the maternal-fetal interface. Genome Res. 2017;27(3):349–61.

    CAS  PubMed Central  Google Scholar 

  210. Pera MF. Human embryo research and the 14-day rule. Development. 2017;144(11):1923–5.

    CAS  Google Scholar 

  211. Petraglia F, Aguzzoli L, Gallinelli A, Florio P, Zonca M, Benedetto C, et al. Hypertension in pregnancy: changes in activin A maternal serum concentration. Placenta. 1995;16(5):447–54.

    CAS  Google Scholar 

  212. Pillay P, Maharaj N, Moodley J, Mackraj I. Placental exosomes and pre-eclampsia: maternal circulating levels in normal pregnancies and, early and late onset pre-eclamptic pregnancies. Placenta. 2016;46:18–25.

    CAS  Google Scholar 

  213. Pique-Regi R, Romero R, Tarca AL, Sendler ED, Xu Y, Garcia-Flores V, et al. Single cell transcriptional signatures of the human placenta in term and preterm parturition. eLife. 2019;8:e52004.

    CAS  PubMed Central  Google Scholar 

  214. Pobbati AV, Chan SW, Lee I, Song H, Hong W. Structural and functional similarity between the Vgll1-TEAD and the YAP-TEAD complexes. Structure. 2012;20(7):1135–40.

    CAS  Google Scholar 

  215. Purwosunu Y, Sekizawa A, Farina A, Wibowo N, Okazaki S, Nakamura M, et al. Cell-free mRNA concentrations of CRH, PLAC1, and selectin-P are increased in the plasma of pregnant women with preeclampsia. Prenat Diagn. 2007;27(8):772–7.

    CAS  Google Scholar 

  216. Purwosunu Y, Sekizawa A, Okazaki S, Farina A, Wibowo N, Nakamura M, et al. Prediction of preeclampsia by analysis of cell-free messenger RNA in maternal plasma. Am J Obstet Gynecol. 2009;200(4):386 e1–7.

    Google Scholar 

  217. Qu J, Thomas K. Inhibin and activin production in human placenta. Endocr Rev. 1995;16(4):485–507.

    CAS  Google Scholar 

  218. Quinodoz S, Guttman M. Long noncoding RNAs: an emerging link between gene regulation and nuclear organization. Trends Cell Biol. 2014;24(11):651–63.

    CAS  PubMed Central  Google Scholar 

  219. Ralston A, Rossant J. Cdx2 acts downstream of cell polarization to cell-autonomously promote trophectoderm fate in the early mouse embryo. Dev Biol. 2008;313(2):614–29.

    CAS  Google Scholar 

  220. Ranta JK, Raatikainen K, Romppanen J, Pulkki K, Heinonen S. Decreased PAPP-A is associated with preeclampsia, premature delivery and small for gestational age infants but not with placental abruption. Eur J Obstet Gyn R B. 2011;157(1):48–52.

    CAS  Google Scholar 

  221. Rasmussen AS, Lauridsen H, Laustsen C, Jensen BG, Pedersen SF, Uhrenholt L, et al. High-resolution ex vivo magnetic resonance angiography: a feasibility study on biological and medical tissues. BMC Physiol. 2010;10:3.

    PubMed Central  Google Scholar 

  222. Redman CWG, Tannetta DS, Dragovic RA, Gardiner C, Southcombe JH, Collett GP, et al. Review: does size matter? Placental debris and the pathophysiology of pre-eclampsia. Placenta. 2012;33:S48–54.

    Google Scholar 

  223. Rice TF, Donaldson B, Bouqueau M, Kampmann B, Holder B. Macrophage- but not monocyte-derived extracellular vesicles induce placental pro-inflammatory responses. Placenta. 2018;69:92–5.

    CAS  PubMed Central  Google Scholar 

  224. Richards RG, Hartman SM, Handwerger S. Human cytotrophoblast cells cultured in maternal serum progress to a differentiated syncytial phenotype expressing both human chorionic gonadotropin and human placental lactogen. Endocrinology. 1994;135(1):321–9.

    CAS  Google Scholar 

  225. Rifai K, Cornberg J, Mederacke I, Bahr MJ, Wedemeyer H, Malinski P, et al. Clinical feasibility of liver elastography by acoustic radiation force impulse imaging (ARFI). Dig Liver Dis. 2011;43(6):491–7.

    Google Scholar 

  226. Romero R, Erez O, Maymon E, Chaemsaithong P, Xu ZH, Pacora P, et al. The maternal plasma proteome changes as a function of gestational age in normal pregnancy: a longitudinal study. Am J Obstet Gynecol. 2017;217(1):67.e1–67.e21.

    CAS  Google Scholar 

  227. Rosal TP, Saxena BB, Landesman R. Application of a radioreceptorassay of human chorionic gonadotropin in the diagnosis of early abortion. Fertil Steril. 1975;26(11):1105–12.

    CAS  Google Scholar 

  228. Rossant J, Cross JC. Placental development: lessons from mouse mutants. Nat Rev Genet. 2001;2(7):538–48.

    CAS  Google Scholar 

  229. Russ AP, Wattler S, Colledge WH, Aparicio SA, Carlton MB, Pearce JJ, et al. Eomesodermin is required for mouse trophoblast development and mesoderm formation. Nature. 2000;404(6773):95–9.

    CAS  Google Scholar 

  230. Saade GR, Boggess KA, Sullivan SA, Markenson GR, Iams JD, Coonrod DV, et al. Development and validation of a spontaneous preterm delivery predictor in asymptomatic women. Am J Obstet Gynecol. 2016;214(5):633 e1–e24.

    Google Scholar 

  231. Saez T, de Vos P, Kuipers J, Sobrevia L, Faas MM. Fetoplacental endothelial exosomes modulate high d-glucose-induced endothelial dysfunction. Placenta. 2018;66:26–35.

    CAS  Google Scholar 

  232. Salomon C, Guanzon D, Scholz-Romero K, Longo S, Correa P, Illanes SE, et al. Placental exosomes as early biomarker of preeclampsia: potential role of exosomal MicroRNAs across gestation. J Clin Endocr Metab. 2017;102(9):3182–94.

    Google Scholar 

  233. Salomon C, Ryan J, Sobrevia L, Kobayashi M, Ashman K, Mitchell M, et al. Exosomal signaling during hypoxia mediates microvascular endothelial cell migration and vasculogenesis. PLoS One. 2013;8(7):e68451.

    CAS  PubMed Central  Google Scholar 

  234. Salomon C, Yee S, Scholz-Romero K, Kobayashi M, Vaswani K, Kvaskoff D, et al. Extravillous trophoblast cells-derived exosomes promote vascular smooth muscle cell migration. Front Pharmacol. 2014;5:175.

    PubMed Central  Google Scholar 

  235. Salomon LJ, Siauve N, Balvay D, Cuenod CA, Vayssettes C, Luciani A, et al. Placental perfusion MR imaging with contrast agents in a mouse model. Radiology. 2005;235(1):73–80.

    Google Scholar 

  236. Salomon LJ, Siauve N, Taillieu F, Balvay D, Vayssettes C, Frija G, et al. In vivo dynamic MRI measurement of the noradrenaline-induced reduction in placental blood flow in mice. Placenta. 2006;27(9–10):1007–13.

    CAS  Google Scholar 

  237. Sarker S, Scholz-Romero K, Perez A, Illanes SE, Mitchell MD, Rice GE, et al. Placenta-derived exosomes continuously increase in maternal circulation over the first trimester of pregnancy. J Transl Med. 2014;12:204.

    PubMed Central  Google Scholar 

  238. Saxena BB, Landesman R. The use of a radioreceptorassay of human chorionic gonadotropin for the diagnosis and management of ectopic pregnancy. Fertil Steril. 1975;26(5):397–404.

    CAS  Google Scholar 

  239. Schabel MC, Roberts VHJ, Lo JO, Platt S, Grant KA, Frias AE, et al. Functional imaging of the nonhuman primate Placenta with endogenous blood oxygen level-dependent contrast. Magn Reson Med. 2016;76(5):1551–62.

    CAS  Google Scholar 

  240. Schlembach D, Hund M, Schroer A, Wolf C. Economic assessment of the use of the sFlt-1/PlGF ratio test to predict preeclampsia in Germany. BMC Health Serv Res. 2018;18(1):603.

    PubMed Central  Google Scholar 

  241. Schoen E, Norem C, O'Keefe J, Krieger R, Walton D, To TT. Maternal serum unconjugated estriol as a predictor for Smith-Lemli-Opitz syndrome and other fetal conditions. Obstet Gynecol. 2003;102(1):167–72.

    CAS  Google Scholar 

  242. Seferovic M, Sanchez-San Martin C, Tardif SD, Rutherford J, Castro ECC, Li T, et al. Experimental Zika virus infection in the pregnant common marmoset induces spontaneous fetal loss and neurodevelopmental abnormalities. Sci Rep. 2018;8(1):6851.

    PubMed Central  Google Scholar 

  243. Segawa K, Nagata S. An apoptotic 'Eat Me' signal: phosphatidylserine exposure. Trends Cell Biol. 2015;25(11):639–50.

    CAS  Google Scholar 

  244. Sekizawa A, Jimbo M, Saito H, Iwasaki M, Matsuoka R, Okai T, et al. Cell-free fetal DNA in the plasma of pregnant women with severe fetal growth restriction. Am J Obstet Gynecol. 2003;188(2):480–4.

    CAS  Google Scholar 

  245. Sekizawa A, Jimbo M, Saito H, Iwasaki M, Sugito Y, Yukimoto Y, et al. Increased cell-free fetal DNA in plasma of two women with invasive placenta. Clin Chem. 2002;48(2):353–4.

    CAS  Google Scholar 

  246. Senner CE, Hemberger M. Regulation of early trophoblast differentiation – lessons from the mouse. Placenta. 2010;31(11):944–50.

    CAS  Google Scholar 

  247. Shahbazi MN, Jedrusik A, Vuoristo S, Recher G, Hupalowska A, Bolton V, et al. Self-organization of the human embryo in the absence of maternal tissues. Nat Cell Biol. 2016;18(6):700–8.

    CAS  PubMed Central  Google Scholar 

  248. Shao X, Liu D, Martin T, Chanlaw T, Devaskar SU, Janzen C, et al. Measuring human placental blood flow with multidelay 3D GRASE pseudocontinuous arterial spin labeling at 3T. J Magn Reson Imaging. 2018;47(6):1667–76.

    Google Scholar 

  249. Sheller S, Papaconstantinou J, Urrabaz-Garza R, Richardson L, Saade G, Salomon C, et al. Amnion-epithelial-cell-derived exosomes demonstrate physiologic state of cell under oxidative stress. PLoS One. 2016;11(6):e0157614.

    PubMed Central  Google Scholar 

  250. Sheridan MA, Yang Y, Jain A, Lyons AS, Yang P, Brahmasani SR, et al. Early onset preeclampsia in a model for human placental trophoblast. Proc Natl Acad Sci U S A. 2019;116(10):4336–45.

    CAS  PubMed Central  Google Scholar 

  251. Shi R, Zhao L, Cai W, Wei M, Zhou X, Yang G, et al. Maternal exosomes in diabetes contribute to the cardiac development deficiency. Biochem Biophys Res Commun. 2017;483(1):602–8.

    CAS  Google Scholar 

  252. Siauve N, Chalouhi GE, Deloison B, Alison M, Clement O, Ville Y, et al. Functional imaging of the human placenta with magnetic resonance. Am J Obstet Gynecol. 2015;213(4 Suppl):S103–14.

    Google Scholar 

  253. Sifakis S, Zaravinos A, Maiz N, Spandidos DA, Nicolaides KH. First-trimester maternal plasma cell-free fetal DNA and preeclampsia. Am J Obstet Gynecol. 2009;201(5):472 e1–7.

    Google Scholar 

  254. Sinding M, Peters DA, Frokjaer JB, Christiansen OB, Petersen A, Uldbjerg N, et al. Prediction of low birth weight: comparison of placental T2* estimated by MRI and uterine artery pulsatility index. Placenta. 2017;49:48–54.

    Google Scholar 

  255. Sinding M, Peters DA, Frokjaer JB, Christiansen OB, Uldbjerg N, Sorensen A. Reduced placental oxygenation during subclinical uterine contractions as assessed by BOLD MRI. Placenta. 2016;39:16–20.

    CAS  Google Scholar 

  256. Sinding M, Peters DA, Poulsen SS, Frokjaer JB, Christiansen OB, Petersen A, et al. Placental baseline conditions modulate the hyperoxic BOLD-MRI response. Placenta. 2018;61:17–23.

    Google Scholar 

  257. Smid M, Galbiati S, Lojacono A, Valsecchi L, Platto C, Cavoretto P, et al. Correlation of fetal DNA levels in maternal plasma with Doppler status in pathological pregnancies. Prenat Diagn. 2006;26(9):785–90.

    CAS  Google Scholar 

  258. Soares RJ, Maglieri G, Gutschner T, Diederichs S, Lund AH, Nielsen BS, et al. Evaluation of fluorescence in situ hybridization techniques to study long non-coding RNA expression in cultured cells. Nucleic Acids Res. 2018;46(1):e4.

    Google Scholar 

  259. Sober S, Reiman M, Kikas T, Rull K, Inno R, Vaas P, et al. Extensive shift in placental transcriptome profile in preeclampsia and placental origin of adverse pregnancy outcomes. Sci Rep. 2015;5:13336.

    CAS  PubMed Central  Google Scholar 

  260. Soleymanlou N, Jurisica I, Nevo O, Ietta F, Zhang X, Zamudio S, et al. Molecular evidence of placental hypoxia in preeclampsia. J Clin Endocrinol Metab. 2005;90(7):4299–308.

    CAS  Google Scholar 

  261. Soncin F, Khater M, To C, Pizzo D, Farah O, Wakeland A, et al. Comparative analysis of mouse and human placentae across gestation reveals species-specific regulators of placental development. Development. 2018;145(2):dev156273.

    PubMed Central  Google Scholar 

  262. Soncin F, Parast MM. Role of Hippo signaling pathway in early placental development. Proc Natl Acad Sci U S A. 2020;117(34):20354–6.

    CAS  PubMed Central  Google Scholar 

  263. Sorensen A, Pedersen M, Tietze A, Ottosen L, Duus L, Uldbjerg N. BOLD MRI in sheep fetuses: a non-invasive method for measuring changes in tissue oxygenation. Ultrasound Obstet Gynecol. 2009;34(6):687–92.

    CAS  Google Scholar 

  264. Sourbron S. Technical aspects of MR perfusion. Eur J Radiol. 2010;76(3):304–13.

    Google Scholar 

  265. Sozen B, Amadei G, Cox A, Wang R, Na E, Czukiewska S, et al. Self-assembly of embryonic and two extra-embryonic stem cell types into gastrulating embryo-like structures. Nat Cell Biol. 2018;20(8):979–89.

    CAS  Google Scholar 

  266. Spencer K, Cowans NJ, Nicolaides KH. Low levels of maternal serum PAPP-A in the first trimester and the risk of pre-eclampsia. Prenat Diagn. 2008;28(1):7–10.

    Google Scholar 

  267. Srinivasan S, Treacy R, Herrero T, Olsen R, Leonardo TR, Zhang X, et al. Discovery and verification of extracellular miRNA biomarkers for non-invasive prediction of pre-eclampsia in asymptomatic women. Cell Rep Med. 2020;1(2):1–17.

    Google Scholar 

  268. Srinivasan S, Yeri A, Cheah PS, Chung A, Danielson K, De Hoff P, et al. Small RNA sequencing across diverse biofluids identifies optimal methods for exRNA isolation. Cell. 2019;177(2):446. –+.

    CAS  PubMed Central  Google Scholar 

  269. Stenqvist AC, Nagaeva O, Baranov V, Mincheva-Nilsson L. Exosomes secreted by human placenta carry functional Fas ligand and TRAIL molecules and convey apoptosis in activated immune cells, suggesting exosome-mediated immune privilege of the fetus. J Immunol. 2013;191(11):5515–23.

    CAS  Google Scholar 

  270. Steyn A, Crowther NJ, Norris SA, Rabionet R, Estivill X, Ramsay M. Epigenetic modification of the pentose phosphate pathway and the IGF-axis in women with gestational diabetes mellitus. Epigenomics. 2019;11(12):1371–85.

    CAS  Google Scholar 

  271. Stout JN, Rouhani S, Turk EA, Ha CG, Luo J, Rich K, et al. Placental MRI: development of an MRI compatible ex vivo system for whole placenta dual perfusion. Placenta. 2020;101:4–12.

    PubMed Central  Google Scholar 

  272. Straszewski-Chavez SL, Abrahams VM, Alvero AB, Aldo PB, Ma Y, Guller S, et al. The isolation and characterization of a novel telomerase immortalized first trimester trophoblast cell line, Swan 71. Placenta. 2009;30(11):939–48.

    CAS  PubMed Central  Google Scholar 

  273. Strumpf D, Mao CA, Yamanaka Y, Ralston A, Chawengsaksophak K, Beck F, et al. Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development. 2005;132(9):2093–102.

    CAS  Google Scholar 

  274. Sugitani M, Fujita Y, Yumoto Y, Fukushima K, Takeuchi T, Shimokawa M, et al. A new method for measurement of placental elasticity: acoustic radiation force impulse imaging. Placenta. 2013;34(11):1009–13.

    CAS  Google Scholar 

  275. Suri S, Muttukrishna S, Jauniaux E. 2D-ultrasound and endocrinologic evaluation of placentation in early pregnancy and its relationship to fetal birthweight in normal pregnancies and pre-eclampsia. Placenta. 2013;34(9):745–50.

    CAS  Google Scholar 

  276. Suryawanshi H, Morozov P, Straus A, Sahasrabudhe N, Max KEA, Garzia A, et al. A single-cell survey of the human first-trimester placenta and decidua. Sci Adv. 2018;4(10):eaau4788.

    CAS  PubMed Central  Google Scholar 

  277. Taglauer ES, Wilkins-Haug L, Bianchi DW. Review: cell-free fetal DNA in the maternal circulation as an indication of placental health and disease. Placenta. 2014;35:S64–S8.

    CAS  Google Scholar 

  278. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.

    CAS  Google Scholar 

  279. Takahashi S, Okae H, Kobayashi N, Kitamura A, Kumada K, Yaegashi N, et al. Loss of p57(KIP2) expression confers resistance to contact inhibition in human androgenetic trophoblast stem cells. Proc Natl Acad Sci U S A. 2019;116(52):26606–13.

    CAS  PubMed Central  Google Scholar 

  280. TambyRaja RL, Lun KC. Plasma estradiol as a predictor of preterm labor. Int J Gynaecol Obstet. 1978;15(6):535–8.

    CAS  Google Scholar 

  281. Tanaka S, Kunath T, Hadjantonakis AK, Nagy A, Rossant J. Promotion of trophoblast stem cell proliferation by FGF4. Science. 1998;282(5396):2072–5.

    CAS  Google Scholar 

  282. Tang L, Li P, Li L. Whole transcriptome expression profiles in placenta samples from women with gestational diabetes mellitus. J Diabetes Investig. 2020;11(5):1307–17.

    CAS  PubMed Central  Google Scholar 

  283. Tannetta DS, Dragovic RA, Gardiner C, Redman CW, Sargent IL. Characterisation of syncytiotrophoblast vesicles in normal pregnancy and pre-eclampsia: expression of Flt-1 and endoglin. PLoS One. 2013;8(2):e56754.

    CAS  PubMed Central  Google Scholar 

  284. Taylor AM, Dieterich DC, Ito HT, Kim SA, Schuman EM. Microfluidic local perfusion chambers for the visualization and manipulation of synapses. Neuron. 2010;66(1):57–68.

    CAS  PubMed Central  Google Scholar 

  285. Than NG, Romero R, Tarca AL, Kekesi KA, Xu Y, Xu Z, et al. Integrated systems biology approach identifies novel maternal and placental pathways of preeclampsia. Front Immunol. 2018;9:1661.

    PubMed Central  Google Scholar 

  286. Thery C, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7(1):1535750.

    PubMed Central  Google Scholar 

  287. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.

    CAS  Google Scholar 

  288. Tilburgs T, Crespo AC, van der Zwan A, Rybalov B, Raj T, Stranger B, et al. Human HLA-G+ extravillous trophoblasts: immune-activating cells that interact with decidual leukocytes. Proc Natl Acad Sci U S A. 2015;112(23):7219–24.

    CAS  PubMed Central  Google Scholar 

  289. Tojo S, Mochizuki M, Kanazawa S. Comparative assay of HCG, HCT and HCS in molar pregnancy. Acta Obstet Gynecol Scand. 1974;53(4):369–73.

    CAS  Google Scholar 

  290. Tong M, Abrahams VM, Chamley LW. Immunological effects of placental extracellular vesicles. Immunol Cell Biol. 2018; https://doi.org/10.1111/imcb.12049.

  291. Tong M, Chamley LW. Placental extracellular vesicles and feto-maternal communication. Csh Perspect Med. 2015;5(3):a023028.

    CAS  Google Scholar 

  292. Tong M, Chamley LW. Isolation and characterization of extracellular vesicles from ex vivo cultured human placental explants. Methods Mol Biol. 2018;1710:117–29.

    CAS  Google Scholar 

  293. Tong M, Chen Q, James JL, Stone PR, Chamley LW. Micro- and Nano-vesicles from first trimester human placentae carry Flt-1 and levels are increased in severe preeclampsia. Front Endocrinol (Lausanne). 2017a;8:174.

    Google Scholar 

  294. Tong M, Kleffmann T, Pradhan S, Johansson CL, DeSousa J, Stone PR, et al. Proteomic characterization of macro-, micro- and nano-extracellular vesicles derived from the same first trimester placenta: relevance for feto-maternal communication. Hum Reprod. 2016;31(4):687–99.

    CAS  Google Scholar 

  295. Tong M, Stanley JL, Chen Q, James JL, Stone PR, Chamley LW. Placental nano-vesicles target to specific organs and modulate vascular tone in vivo. Hum Reprod. 2017b;32(11):2188–98.

    CAS  Google Scholar 

  296. Truong G, Guanzon D, Kinhal V, Elfeky O, Lai A, Longo S, et al. Oxygen tension regulates the miRNA profile and bioactivity of exosomes released from extravillous trophoblast cells – liquid biopsies for monitoring complications of pregnancy. PLoS One. 2017;12(3):e0174514.

    PubMed Central  Google Scholar 

  297. Tsang JCH, Vong JSL, Ji L, Poon LCY, Jiang P, Lui KO, et al. Integrative single-cell and cell-free plasma RNA transcriptomics elucidates placental cellular dynamics. Proc Natl Acad Sci U S A. 2017;114(37):E7786–E95.

    CAS  PubMed Central  Google Scholar 

  298. Tsui NB, Chim SS, Chiu RW, Lau TK, Ng EK, Leung TN, et al. Systematic micro-array based identification of placental mRNA in maternal plasma: towards non-invasive prenatal gene expression profiling. J Med Genet. 2004;41(6):461–7.

    CAS  PubMed Central  Google Scholar 

  299. Turco MY, Gardner L, Kay RG, Hamilton RS, Prater M, Hollinshead MS, et al. Trophoblast organoids as a model for maternal-fetal interactions during human placentation. Nature. 2018;564(7735):263–7.

    CAS  PubMed Central  Google Scholar 

  300. Van Lith JM, Pratt JJ, Beekhuis JR, Mantingh A. Second-trimester maternal serum immunoreactive inhibin as a marker for fetal Down’s syndrome. Prenat Diagn. 1992;12(10):801–6.

    Google Scholar 

  301. van Niel G, D'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213–28.

    Google Scholar 

  302. Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, Meyer KB, et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature. 2018;563(7731):347–53.

    CAS  PubMed Central  Google Scholar 

  303. Vincent K, Moore J, Kennedy S, Tracey I. Blood oxygenation level dependent functional magnetic resonance imaging: current and potential uses in obstetrics and gynaecology. BJOG. 2009;116(2):240–6.

    CAS  Google Scholar 

  304. Wadhwa PD, Porto M, Garite TJ, Chicz-DeMet A, Sandman CA. Maternal corticotropin-releasing hormone levels in the early third trimester predict length of gestation in human pregnancy. Am J Obstet Gynecol. 1998;179(4):1079–85.

    CAS  Google Scholar 

  305. Wakeland AK, Soncin F, Moretto-Zita M, Chang CW, Horii M, Pizzo D, et al. Hypoxia directs human extravillous trophoblast differentiation in a hypoxia-inducible factor-dependent manner. Am J Pathol. 2017;187(4):767–80.

    CAS  PubMed Central  Google Scholar 

  306. Wald NJ, Cuckle HS, Densem JW, Nanchahal K, Royston P, Chard T, et al. Maternal serum screening for Down’s syndrome in early pregnancy. BMJ. 1988;297(6653):883–7.

    CAS  PubMed Central  Google Scholar 

  307. Wald NJ, Densem JW, George L, Muttukrishna S, Knight PG. Prenatal screening for Down's syndrome using inhibin-A as a serum marker. Prenat Diagn. 1996;16(2):143–53.

    CAS  Google Scholar 

  308. Wald NJ, Watt HC, Hackshaw AK. Integrated screening for Down's syndrome based on tests performed during the first and second trimesters. N Engl J Med. 1999;341(7):461–7.

    CAS  Google Scholar 

  309. Wang E, Batey A, Struble C, Musci T, Song K, Oliphant A. Gestational age and maternal weight effects on fetal cell-free DNA in maternal plasma. Prenat Diagn. 2013;33(7):662–6.

    CAS  Google Scholar 

  310. Wang F, Flanagan J, Su N, Wang LC, Bui S, Nielson A, et al. RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J Mol Diagn. 2012;14(1):22–9.

    CAS  PubMed Central  Google Scholar 

  311. Wedegartner U, Tchirikov M, Schafer S, Priest AN, Kooijman H, Adam G, et al. Functional MR imaging: comparison of BOLD signal intensity changes in fetal organs with fetal and maternal oxyhemoglobin saturation during hypoxia in sheep. Radiology. 2006;238(3):872–80.

    Google Scholar 

  312. Williams K, Johnson MH. Adapting the 14-day rule for embryo research to encompass evolving technologies. Reprod Biomed Soc Online. 2020;10:1–9.

    PubMed Central  Google Scholar 

  313. Williams Z, Ben-Dov IZ, Elias R, Mihailovic A, Brown M, Rosenwaks Z, et al. Comprehensive profiling of circulating microRNA via small RNA sequencing of cDNA libraries reveals biomarker potential and limitations. Proc Natl Acad Sci U S A. 2013;110(11):4255–60.

    CAS  PubMed Central  Google Scholar 

  314. Winnier G, Blessing M, Labosky PA, Hogan BL. Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev. 1995;9(17):2105–16.

    CAS  Google Scholar 

  315. Wolfe LM, Thiagarajan RD, Boscolo F, Tache V, Coleman RL, Kim J, et al. Banking placental tissue: an optimized collection procedure for genome-wide analysis of nucleic acids. Placenta. 2014;35(8):645–54.

    CAS  PubMed Central  Google Scholar 

  316. Wong EC. An introduction to ASL labeling techniques. J Magn Reson Imaging. 2014;40(1):1–10.

    Google Scholar 

  317. Wu HH, Choi S, Levitt P. Differential patterning of genes involved in serotonin metabolism and transport in extra-embryonic tissues of the mouse. Placenta. 2016;42:74–83.

    CAS  PubMed Central  Google Scholar 

  318. Wu L, Zhou H, Lin H, Qi J, Zhu C, Gao Z, et al. Circulating microRNAs are elevated in plasma from severe preeclamptic pregnancies. Reproduction. 2012;143(3):389–97.

    CAS  Google Scholar 

  319. Wu Q, Liu J, Wang X, Feng L, Wu J, Zhu X, et al. Organ-on-a-chip: recent breakthroughs and future prospects. Biomed Eng Online. 2020;19(1):9.

    PubMed Central  Google Scholar 

  320. Wu Z, Zhang W, Chen G, Cheng L, Liao J, Jia N, et al. Combinatorial signals of activin/nodal and bone morphogenic protein regulate the early lineage segregation of human embryonic stem cells. J Biol Chem. 2008;283(36):24991–5002.

    CAS  PubMed Central  Google Scholar 

  321. Xiang L, Yin Y, Zheng Y, Ma Y, Li Y, Zhao Z, et al. A developmental landscape of 3D-cultured human pre-gastrulation embryos. Nature. 2020;577(7791):537–42.

    CAS  Google Scholar 

  322. Xu RH, Chen X, Li DS, Li R, Addicks GC, Glennon C, et al. BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat Biotechnol. 2002;20(12):1261–4.

    CAS  Google Scholar 

  323. Yagi R, Kohn MJ, Karavanova I, Kaneko KJ, Vullhorst D, DePamphilis ML, et al. Transcription factor TEAD4 specifies the trophectoderm lineage at the beginning of mammalian development. Development. 2007;134(21):3827–36.

    CAS  Google Scholar 

  324. Yang J, Ryan DJ, Wang W, Tsang JC, Lan G, Masaki H, et al. Establishment of mouse expanded potential stem cells. Nature. 2017a;550(7676):393–7.

    CAS  PubMed Central  Google Scholar 

  325. Yang Q, Lu J, Wang S, Li H, Ge Q, Lu Z. Application of next-generation sequencing technology to profile the circulating microRNAs in the serum of preeclampsia versus normal pregnant women. Clin Chim Acta. 2011;412(23–24):2167–73.

    CAS  Google Scholar 

  326. Yang Y, Liu B, Xu J, Wang J, Wu J, Shi C, et al. Derivation of pluripotent stem cells with in vivo embryonic and extraembryonic potency. Cell. 2017b;169(2):243–57. e25.

    CAS  PubMed Central  Google Scholar 

  327. Ying SY. Inhibins and activins: chemical properties and biological activity. Proc Soc Exp Biol Med. 1987;186(3):253–64.

    CAS  Google Scholar 

  328. Yu P, Pan G, Yu J, Thomson JA. FGF2 sustains NANOG and switches the outcome of BMP4-induced human embryonic stem cell differentiation. Cell Stem Cell. 2011;8(3):326–34.

    CAS  PubMed Central  Google Scholar 

  329. Zhabin SG, Gorin VS, Judin NS. Review: immunomodulatory activity of pregnancy-associated plasma protein-A. J Clin Lab Immunol. 2003;52:41–50.

    CAS  Google Scholar 

  330. Zhang P, Li J, Tan Z, Wang C, Liu T, Chen L, et al. Short-term BMP-4 treatment initiates mesoderm induction in human embryonic stem cells. Blood. 2008;111(4):1933–41.

    CAS  Google Scholar 

  331. Zhang Y, Zhang T, Chen Y. Comprehensive analysis of gene expression profiles and DNA methylome reveals Oas1, Ppie, Polr2g as pathogenic target genes of gestational diabetes mellitus. Sci Rep. 2018;8(1):16244.

    PubMed Central  Google Scholar 

  332. Zhao Z, Moley KH, Gronowski AM. Diagnostic potential for miRNAs as biomarkers for pregnancy-specific diseases. Clin Biochem. 2013;46(10–11):953–60.

    CAS  Google Scholar 

  333. Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-Adkins A, Smets M, et al. Comparative analysis of single-cell RNA sequencing methods. Mol Cell. 2017;65(4):631–43. e4.

    CAS  Google Scholar 

  334. Zollinger DR, Lingle SE, Sorg K, Beechem JM, Merritt CR. GeoMx RNA assay: high multiplex, digital, spatial analysis of RNA in FFPE tissue. Methods Mol Biol. 2020;2148:331–45.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mana M. Parast .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pantham, P. et al. (2022). Innovations in Placental Pathology. In: Baergen, R.N., Burton, G.J., Kaplan, C.G. (eds) Benirschke's Pathology of the Human Placenta. Springer, Cham. https://doi.org/10.1007/978-3-030-84725-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84725-8_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84724-1

  • Online ISBN: 978-3-030-84725-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics