Skip to main content

Abstract

Since the sun is a usable source of energy available throughout the year and can be used effectively for electricity production. However, owing to the reflection at the interface of air and the top surface of the photovoltaic (PV) module and some time the deposition of dust on the panels, a substantial percentage of solar energy is wasted. As a result, multipurpose slim coatings or layers have been used in recent times to improve the surface morphology and characteristics of solar panel surfaces to improve their energy transmittance, self-cleaning, antireflection, and antifogging properties of the PV modules. This research talks about the super hydrophilic surface coating for the solar PV module. Some of the main roles that super hydrophilic coating contributes are being discussed here, such as improved solar panel efficiency, greater power accumulation, and self-cleaning properties. In recent years, TiO2 based hydrophilic coating has been extensively studied. This oxide has a few constraints since it diminishes the glass conveyance and it quickly restores the water contact angle in dim conditions. In this chapter, major characteristics, principles, techniques, methods, advantages, and disadvantages of TiObased super hydrophilic coating for PV modules has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmad T, Zhang D (2020) A critical review of comparative global historical energy consumption and future demand: The story told so far. Energy Rep 6:1973–1991

    Article  Google Scholar 

  2. Soklič A, Tasbihi M, Kete M, Štangar UL (2015) Deposition and possible influence of a self-cleaning thin TiO2/SiO2 film on a photovoltaic module efficiency. Catal Today 252:54–60

    Article  Google Scholar 

  3. Mondal AK, Bansal K (2015) A brief history and future aspects in automatic cleaning systems for solar photovoltaic panels. Adv Robot 29(8):515–524

    Article  Google Scholar 

  4. Anon (2017) Renewable energy medium-term market report 2017. IEA Publications, Paris, France

    Google Scholar 

  5. Razykov TM, Ferekides CS, Morel D, Stefanakos E, Ullal HS, Upadhyaya HM (2011) Solar photovoltaic electricity: current status and future prospects. Sol Energy 85(8):1580–1608

    Article  Google Scholar 

  6. Singh R, Banerjee R (2016) Impact of solar panel orientation on large scale rooftop solar photovoltaic scenario for Mumbai. Energy Procedia 90:401–411

    Article  Google Scholar 

  7. Rajput P, Sastry OS, Tiwari GN (2017) Effect of irradiance, temperature exposure and an Arrhenius approach to estimating weathering acceleration factor of Glass, EVA and Tedlar in a composite climate of India. Sol Energy 144:267–277

    Article  Google Scholar 

  8. Thong LW, Murugan S, Ng PK, Sun CC (2016) Analysis of photovoltaic panel temperature effects on its efficiency. System 18(19)

    Google Scholar 

  9. Katkar AA, Shinde NN, Patil PS (2011) Performance & evaluation of industrial solar cell wrt temperature and humidity. Int J Res Mech Eng Technol 1(1):69–73

    Google Scholar 

  10. Kaldellis JK, Kapsali M, Kavadias KA (2014) Temperature and wind speed impact on the efficiency of PV installations. Experience obtained from outdoor measurements in Greece. Renew Energy 66:612–624

    Google Scholar 

  11. Malik AQ, Damit SJBH (2003) Outdoor testing of single crystal silicon solar cells. Renew Energy 28(9):1433–1445

    Google Scholar 

  12. Rahman MM, Hasanuzzaman M, Rahim NA (2015) Effects of various parameters on PV-module power and efficiency. Energy Convers Manage 103:348–358

    Article  Google Scholar 

  13. Singh GK, Agrawal S, Tiwari GN (2012) Analysis of different types of hybrid photovoltaic thermal air collectors: a comparative study. J Fundamentals Renew Energy Appl

    Google Scholar 

  14. Said SA, Walwil HM (2014) Fundamental studies on dust fouling effects on PV module performance. Sol Energy 107:328–337

    Article  Google Scholar 

  15. He G, Zhou C, Li Z (2011) Review of self-cleaning method for solar cell array. Proc Eng 16:640–645

    Article  Google Scholar 

  16. Kawamoto H, Guo B (2018) Improvement of an electrostatic cleaning system for removal of dust from solar panels. J Electrostat 91:28–33

    Article  Google Scholar 

  17. Kumar BS, Sudhakar K (2015) Performance evaluation of 10 MW grid connected solar photovoltaic power plant in India. Energy Rep 1:184–192

    Article  Google Scholar 

  18. Charfi W, Chaabane M, Mhiri H, Bournot P (2018) Performance evaluation of a solar photovoltaic system. Energy Rep 4:400–406

    Article  Google Scholar 

  19. Idoko L, Anaya-Lara O, McDonald A (2018) Enhancing PV modules efficiency and power output using multi-concept cooling technique. Energy Rep 4:357–369

    Article  Google Scholar 

  20. Zaihidee FM, Mekhilef S, Seyedmahmoudian M, Horan B (2016) Dust as an unalterable deteriorative factor affecting PV panel’s efficiency: Why and how. Renew Sustain Energy Rev 65:1267–1278

    Article  Google Scholar 

  21. Fan DF (2015) Research progress of self-cleaning technologies on solar panels. Mater Rev 29(10):111–115

    Google Scholar 

  22. International Organization for Standardization (2006) Air quality-particle size fraction definitions for health-related sampling. ISO

    Google Scholar 

  23. Mani M, Pillai R (2010) Impact of dust on solar photovoltaic (PV) performance: Research status, challenges and recommendations. Renew Sustain Energy Rev 14(9):3124–3131

    Article  Google Scholar 

  24. Haeberlin H, Graf JD (1998) Gradual reduction of PV generator yield due to pollution. Power [W] 1200:1400

    Google Scholar 

  25. Bombach E, Röver I, Müller A, Schlenker S, Wambach K, Kopecek R, Wefringhaus E (2006) Technical experience during thermal and chemical recycling of a 23 year old PV generator formerly installed on Pellworm island. In: 21st European photovoltaic solar energy conference (pp. 4–8)

    Google Scholar 

  26. Syafiq A, Pandey AK, Rahim NA (2016) Photovoltaic glass cleaning methods: an overview

    Google Scholar 

  27. Qasem H, Betts TR, Müllejans H, AlBusairi H, Gottschalg R (2014) Dust-induced shading on photovoltaic modules. Prog Photovoltaics Res Appl 22(2):218–226

    Article  Google Scholar 

  28. Meng G (2015) Research on mechanism of dust particle adhesion and removal from solar panel surface in desert area. Qinghai University, Qinghai

    Google Scholar 

  29. Maghami MR, Hizam H, Gomes C, Radzi MA, Rezadad MI, Hajighorbani S (2016) Power loss due to soiling on solar panel: A review. Renew Sustain Energy Rev 59:1307–1316

    Article  Google Scholar 

  30. Salim AA, Huraib FS, Eugenio NN (1988) PV power-study of system options and optimization. In: EC photovoltaic solar conference, vol 8, pp 688–692

    Google Scholar 

  31. Wakim F (1981) Introduction of PV power generation to Kuwait. Kuwait Institute for Scientific Researchers, Kuwait City

    Google Scholar 

  32. Adinoyi MJ, Said SA (2013) Effect of dust accumulation on the power outputs of solar photovoltaic modules. Renew Energy 60:633–636

    Google Scholar 

  33. Ramli MA, Prasetyono E, Wicaksana RW, Windarko NA, Sedraoui K, Al-Turki YA (2016) On the investigation of photovoltaic output power reduction due to dust accumulation and weather conditions. Renew Energy 99:836–844

    Google Scholar 

  34. Giolando DM (2016) Transparent self-cleaning coating applicable to solar energy consisting of nano-crystals of titanium dioxide in fluorine doped tin dioxide. Sol Energy 124:76–81

    Article  Google Scholar 

  35. Alam K, Saher S, Ali S, Mujtaba A, Qamar A (2019) Super hydrophilic nano particulate coating for solar PV module. In: 2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST) (pp. 14–19). IEEE

    Google Scholar 

  36. Ali AHH, ElDin S, Abdel-Gaie SM (2015) Effect of dust and ambient temperature on PV panels performance in Egypt

    Google Scholar 

  37. Yao L, He J (2014) Recent progress in antireflection and self-cleaning technology–From surface engineering to functional surfaces. Prog Mater Sci 61:94–143

    Article  Google Scholar 

  38. Elnozahy A, Rahman AKA, Ali AHH, Abdel-Salam M, Ookawara S (2015) Performance of a PV module integrated with standalone building in hot arid areas as enhanced by surface cooling and cleaning. Energy and Buildings 88:100–109

    Article  Google Scholar 

  39. Lopez-Garcia J, Pozza A, Sample T (2016) Long-term soiling of silicon PV modules in a moderate subtropical climate. Sol Energy 130:174–183

    Article  Google Scholar 

  40. Jamil WJ, Rahman HA, Shaari S, Salam Z (2017) Performance degradation of photovoltaic power system: Review on mitigation methods. Renew Sustain Energy Rev 67:876–891

    Article  Google Scholar 

  41. Zhou C, Xiao H, Zhang J, Sun S (2015) The electric curtain method of dust removal and measurement of particle size and density on solar cells. Energy Environ Eng:33–37

    Google Scholar 

  42. Arabatzis I, Todorova N, Fasaki I, Tsesmeli C, Peppas A, Li WX, Zhao Z (2018) Photocatalytic, self-cleaning, antireflective coating for photovoltaic panels: Characterization and monitoring in real conditions. Sol Energy 159:251–259

    Article  Google Scholar 

  43. Nishioka K, Moe SP, Ota Y (2019) Long-term reliability evaluation of silica-based coating with antireflection effect for photovoltaic modules. Coatings 9(1):49

    Article  Google Scholar 

  44. Shao T, Tang F, Sun L, Ye X, He J, Yang L, Zheng W (2019) Fabrication of antireflective nanostructures on a transmission grating surface using a one-step self-masking method. Nanomaterials 9(2):180

    Article  Google Scholar 

  45. Chen TC, Kuo TW, Lin YL, Ku CH, Yang ZP, Yu IS (2018) Enhancement for potential-induced degradation resistance of crystalline silicon solar cells via anti-reflection coating by industrial PECVD methods. Coatings 8(12):418

    Article  Google Scholar 

  46. Lin H, Ouyang M, Chen B, Zhu Q, Wu J, Lou N, Dong L, Wang Z, Fu Y (2018) Design and fabrication of moth-eye subwavelength structure with a waist on silicon for broadband and wide-angle anti-reflection property. Coatings 8(10):360

    Article  Google Scholar 

  47. Quéré D, Reyssat M (2008) Non-adhesive lotus and other hydrophobic materials. Philos Trans R Soc A Math Phys Eng Sci 366(1870):1539–1556

    Article  Google Scholar 

  48. Liu K, Jiang L (2011) Bio-inspired design of multiscale structures for function integration. Nano Today 6(2):155–175

    Article  Google Scholar 

  49. Ganesh VA, Raut HK, Nair AS, Ramakrishna S (2011) A review on self-cleaning coatings. J Mater Chem 21(41):16304–16322

    Article  Google Scholar 

  50. Yao X, Song Y, Jiang L (2011) Applications of bio-inspired special wettable surfaces. Adv Mater 23(6):719–734

    Article  Google Scholar 

  51. Jiang L, Wang R, Yang B, Li TJ, Tryk DA, Fujishima A, Hashimoto K, Zhu DB (2000) Binary cooperative complementary nanoscale interfacial materials. Pure Appl Chem 72(1–2):73–81

    Article  Google Scholar 

  52. Shibuichi S, Yamamoto T, Onda T, Tsujii K (1998) Super water-and oil-repellent surfaces resulting from fractal structure. J Colloid Interface Sci 208(1):287–294

    Article  Google Scholar 

  53. Shibuichi S, Onda T, Satoh N, Tsujii K (1996) Super water-repellent surfaces resulting from fractal structure. J Phys Chem 100(50):19512–19517

    Article  Google Scholar 

  54. Padmanabhan NT, John H (2020) Titanium dioxide based self-cleaning smart surfaces: A short review. J Environ Chem Eng:104211

    Google Scholar 

  55. Oberli L, Caruso D, Hall C, Fabretto M, Murphy PJ, Evans D. Condensation and freezing of droplets on superhydrophobic surfaces. Adv Colloid Interface Sci 2014;210(0):47e57

    Google Scholar 

  56. Erbil HY (2006) Solid and liquid interfaces, vol. 646, p. 647. Oxford: Blackwell

    Google Scholar 

  57. Ellinas K, Tserepi A, Gogolides E (2011) From superamphiphobic to amphiphilic polymeric surfaces with ordered hierarchical roughness fabricated with colloidal lithography and plasma nanotexturing. Langmuir 27(7):3960–3969

    Article  Google Scholar 

  58. Gilles de Gennes P, Brochard PF, Quéré D (2003) Capillarity and wetting phenomena

    Google Scholar 

  59. Song M, Liu Y, Cui S, Liu L, Yang M (2013) Fabrication and icing property of superhydrophilic and superhydrophobic aluminum surfaces derived from anodizing aluminum foil in a sodium chloride aqueous solution. Appl Surf Sci 283:19–24

    Article  Google Scholar 

  60. Drelich J, Chibowski E, Meng DD, Terpilowski K (2011) Hydrophilic and superhydrophilic surfaces and materials. Soft Matter 7(21):9804–9828

    Article  Google Scholar 

  61. Erbil HY, Cansoy CE (2009) Range of applicability of the Wenzel and Cassie− Baxter equations for superhydrophobic surfaces. Langmuir 25(24):14135–14145

    Article  Google Scholar 

  62. Cengiz U, Cansoy CE (2015) Applicability of Cassie-Baxter equation for superhydrophobic fluoropolymer–silica composite films. Appl Surf Sci 335:99–106

    Article  Google Scholar 

  63. Marmur A (2009) A guide to the equilibrium contact angles maze. Contact Angle Wettability Adhesion 6(3)

    Google Scholar 

  64. Marmur A, Della Volpe C, Siboni S, Amirfazli A, Drelich JW (2017) Contact angles and wettability: towards common and accurate terminology. Surface Innovations 5(1):3–8

    Article  Google Scholar 

  65. Bormashenko EY (2018) Wetting of real surfaces, vol 19. Walter de Gruyter GmbH & Co KG

    Google Scholar 

  66. Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28(8):988–994

    Article  Google Scholar 

  67. Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551

    Article  Google Scholar 

  68. David Q (2008) Wetting and roughness. Annu Rev Mater Res 38:71–99

    Article  Google Scholar 

  69. Bixler GD, Bhushan B (2012) Bioinspired rice leaf and butterfly wing surface structures combining shark skin and lotus effects. Soft Matter 8(44):11271–11284

    Article  Google Scholar 

  70. Comanns P, Buchberger G, Buchsbaum A, Baumgartner R, Kogler A, Bauer S, Baumgartner W (2015) Directional, passive liquid transport: the Texas horned lizard as a model for a biomimetic ‘liquid diode.’ J R Soc Interface 12(109):20150415

    Article  Google Scholar 

  71. Li H, Yu S, Hu J, Liu E (2018) A robust superhydrophobic Zn coating with ZnO nanosheets on steel substrate and its self-cleaning property. Thin Solid Films 666:100–107

    Article  Google Scholar 

  72. Koch K, Barthlott W (2009) Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials. Philos Trans R Soc A Math Phys Eng Sci 367(1893):1487–1509

    Article  Google Scholar 

  73. Tulloch AW, Chun Y, Levi DS, Mohanchandra KP, Carman GP, Lawrence PF, Rigberg DA (2011) Super hydrophilic thin film nitinol demonstrates reduced platelet adhesion compared with commercially available endograft materials. J Surg Res 171(1):317–322

    Article  Google Scholar 

  74. Son J, Kundu S, Verma LK, Sakhuja M, Danner AJ, Bhatia CS, Yang H (2012) A practical superhydrophilic self cleaning and antireflective surface for outdoor photovoltaic applications. Sol Energy Mater Sol Cells 98:46–51

    Article  Google Scholar 

  75. Garlisi C, Palmisano G (2017) Radiation-free superhydrophilic and antifogging properties of e-beam evaporated TiO2 films on glass. Appl Surf Sci 420:83–93

    Article  Google Scholar 

  76. Özgür C, Şan O (2011) Fabrication of superhydrophilic membrane filters using spherical glass particles obtained by ultrasonic spray pyrolysis. Ceram Int 37(3):965–970

    Article  Google Scholar 

  77. Li X, Du X, He J (2010) Self-cleaning antireflective coatings assembled from peculiar mesoporous silica nanoparticles. Langmuir 26(16):13528–13534

    Article  Google Scholar 

  78. Geng Z, He J, Xu L (2012) Fabrication of superhydrophilic and antireflective silica coatings on poly (methyl methacrylate) substrates. Mater Res Bull 47(6):1562–1567

    Article  Google Scholar 

  79. Zhu J, Xu L, He J (2012) Assembly of graphene nanosheets and SiO2 nanoparticles towards transparent, antireflective, conductive, and superhydrophilic multifunctional hybrid films. Chem Eur J 18(51):16393–16401

    Google Scholar 

  80. Liu X, He J (2009) Superhydrophilic and antireflective properties of silica nanoparticle coatings fabricated via layer-by-layer assembly and postcalcination. J Phys Chem C 113(1):148–152

    Article  Google Scholar 

  81. Kesmez Ö, Burunkaya E, Kiraz N, Çamurlu HE, Asiltürk M, Arpaç E (2011) Effect of acid, water and alcohol ratios on sol-gel preparation of antireflective amorphous SiO2 coatings. J Non-Cryst Solids 357(16–17):3130–3135

    Article  Google Scholar 

  82. Permpoon S, Houmard M, Riassetto D, Rapenne L, Berthomé G, Baroux B, Joud JC, Langlet M (2008) Natural and persistent superhydrophilicity of SiO2/TiO2 and TiO2/SiO2 bi-layer films. Thin Solid Films 516(6):957–966

    Article  Google Scholar 

  83. Horiuchi Y, Yamashita H (2011) Design of mesoporous silica thin films containing single-site photocatalysts and their applications to superhydrophilic materials. Appl Catal A 400(1–2):1–8

    Article  Google Scholar 

  84. Anandan S, Narasinga Rao T, Sathish M, Rangappa D, Honma I, Miyauchi M (2013) Superhydrophilic graphene-loaded TiO2 thin film for self-cleaning applications. ACS Appl Mater Interfaces 5(1):207–212

    Article  Google Scholar 

  85. Caschera D, Cortese B, Mezzi A, Brucale M, Ingo GM, Gigli G, Padeletti G (2013) Ultra hydrophobic/superhydrophilic modified cotton textiles through functionalized diamond-like carbon coatings for self-cleaning applications. Langmuir 29(8):2775–2783

    Article  Google Scholar 

  86. Permpoon S, Berthomé G, Baroux B, Joud JC, Langlet M (2006) Natural superhydrophilicity of sol–gel derived SiO2–TiO2 composite films. J Mater Sci 41(22):7650–7662

    Article  Google Scholar 

  87. Asthana Y, Hong LY, Kim DP, Lee TS, Sung YM (2007) Formulation of thermally cured organic-inorganic superhydrophilic coating for antifogging optical application. Mol Cryst Liq Cryst 463(1):117–399

    Article  Google Scholar 

  88. Du X, Liu X, Chen H, He J (2009) Facile fabrication of raspberry-like composite nanoparticles and their application as building blocks for constructing superhydrophilic coatings. J Phys Chem C 113(21):9063–9070

    Article  Google Scholar 

  89. Chang CC, Huang FH, Chang HH, Don TM, Chen CC, Cheng LP (2012) Preparation of water-resistant antifog hard coatings on plastic substrate. Langmuir 28(49):17193–17201

    Article  Google Scholar 

  90. Howarter JA, Youngblood JP (2008) Self-Cleaning and Next Generation Anti-Fog Surfaces and Coatings. Macromol Rapid Commun 29(6):455–466

    Article  Google Scholar 

  91. Howarter JA, Youngblood JP (2007) Self-cleaning and anti-fog surfaces via stimuli-responsive polymer brushes. Adv Mater 19(22):3838–3843

    Article  Google Scholar 

  92. Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T (1997) Light-induced amphiphilic surfaces. Nature 388(6641):431–432

    Article  Google Scholar 

  93. Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T (1998) Photogeneration of highly amphiphilic TiO2 surfaces. Adv Mater 10(2):135–138

    Article  Google Scholar 

  94. Ashkarran AA, Mohammadizadeh MR (2008) Superhydrophilicity of TiO2 thin films using TiCl4 as a precursor. Mater Res Bull 43(3):522–530

    Article  Google Scholar 

  95. Lai Y, Lin C, Wang H, Huang J, Zhuang H, Sun L (2008) Superhydrophilic–superhydrophobic micropattern on TiO2 nanotube films by photocatalytic lithography. Electrochem Commun 10(3):387–391

    Article  Google Scholar 

  96. Liu H, Feng L, Zhai J, Jiang L, Zhu D (2004) Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and superhydrophilicity. Langmuir 20(14):5659–5661

    Article  Google Scholar 

  97. Wu J, Xia J, Lei W, Wang BP (2011) A one-step method to fabricate lotus leaves-like ZnO film. Mater Lett 65(3):477–479

    Article  Google Scholar 

  98. Liu X, He J (2007) Hierarchically structured superhydrophilic coatings fabricated by self-assembling raspberry-like silica nanospheres. J Colloid Interface Sci 314(1):341–345

    Article  Google Scholar 

  99. McDonald BT, Cui T (2011) Superhydrophilic surface modification of copper surfaces by layer-by-layer self-assembly and liquid phase deposition of TiO2 thin film. J Colloid Interface Sci 354(1):1–6

    Article  Google Scholar 

  100. Denison KR, Boxall C (2007) Photoinduced “Stick− Slip” on Superhydrophilic Semiconductor Surfaces. Langmuir 23(8):4358–4366

    Article  Google Scholar 

  101. Liu YY, Qian LQ, Guo C, Jia X, Wang JW, Tang WH (2009) Natural superhydrophilic TiO2/SiO2 composite thin films deposited by radio frequency magnetron sputtering. J Alloy Compd 479(1–2):532–535

    Article  Google Scholar 

  102. Tang D, Cheng K, Weng W, Song C, Du P, Shen G, Han G (2011) TiO2 nanorod films grown on Si wafers by a nanodot-assisted hydrothermal growth. Thin Solid Films 519(22):7644–7649

    Article  Google Scholar 

  103. Zang J, Li CM, Bao SJ, Cui X, Bao Q, Sun CQ (2008) Template-free electrochemical synthesis of superhydrophilic polypyrrole nanofiber network. Macromolecules 41(19):7053–7057

    Article  Google Scholar 

  104. Kobayashi M, Terayama Y, Yamaguchi H, Terada M, Murakami D, Ishihara K, Takahara A (2012) Wettability and antifouling behavior on the surfaces of superhydrophilic polymer brushes. Langmuir 28(18):7212–7222

    Article  Google Scholar 

  105. Li L, Zhang G, Su Z (2016) One-step assembly of phytic acid metal complexes for superhydrophilic coatings. Angew Chem Int Ed 55(31):9093–9096

    Article  Google Scholar 

  106. Bai Z, Hu Y, Yan S, Shan W, Wei C (2017) Preparation of mesoporous SiO2/Bi2O2/TiO2 superhydrophilic thin films and their surface self-cleaning properties. RSC Adv

    Google Scholar 

  107. Liu X, He J (2009) One-step hydrothermal creation of hierarchical microstructures toward superhydrophilic and superhydrophobic surfaces. Langmuir 25(19):11822–11826

    Article  Google Scholar 

  108. Hosono E, Matsuda H, Honma I, Ichihara M, Zhou H (2007) Synthesis of a perpendicular TiO2 nanosheet film with the superhydrophilic property without UV irradiation. Langmuir 23(14):7447–7450

    Article  Google Scholar 

  109. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PS, Hamilton JW, Byrne JA, O’shea, K. and Entezari, M.H., (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B 125:331–349

    Article  Google Scholar 

  110. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959

    Article  Google Scholar 

  111. Liqiang J, Yichun Q, Baiqi W, Shudan L, Baojiang J, Libin Y, Wei F, Honggang F, Jiazhong S (2006) Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Sol Energy Mater Sol Cells 90(12):1773–1787

    Article  Google Scholar 

  112. Parkin IP, Palgrave RG (2005) Self-cleaning coatings. J Mater Chem 15:1689–1695

    Article  Google Scholar 

  113. Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63(12):515–582

    Article  Google Scholar 

  114. Nursam NM, Wang X, Caruso RA (2015) High-throughput synthesis and screening of titania-based photocatalysts. ACS Comb Sci 17(10):548–569

    Article  Google Scholar 

  115. Li Z, Luan Y, Qu Y, Jing L (2015) Modification strategies with inorganic acids for efficient photocatalysts by promoting the adsorption of O2. ACS Appl Mater Interfaces 7(41):22727–22740

    Article  Google Scholar 

  116. Banerjee S, Dionysiou DD, Pillai SC (2015) Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Appl Catal B 176:396–428

    Article  Google Scholar 

  117. Sakai N, Fujishima A, Watanabe T, Hashimoto K (2003) Quantitative evaluation of the photoinduced hydrophilic conversion properties of TiO2 thin film surfaces by the reciprocal of contact angle. J Phys Chem B 107(4):1028–1035

    Article  Google Scholar 

  118. Sakai N, Fujishima A, Watanabe T, Hashimoto K (2001) Enhancement of the photoinduced hydrophilic conversion rate of TiO2 film electrode surfaces by anodic polarization. J Phys Chem B 105(15):3023–3026

    Article  Google Scholar 

  119. Fujishima A, Hashimoto K, Watanabe T (1999) TiO2 photocatalysis: fundamentals and applications. BKC, Tokyo

    Google Scholar 

  120. Guo K, Jiang B, Zhao P, Wu Y, Tian S, Gao Z, Zong L, Yao S (2021) Review on the Superhydrophilic coating of Electric insulator. In: IOP conference series: earth and environmental science (Vol. 651, No. 2, p. 022037). IOP Publishing

    Google Scholar 

  121. Li Q, Shang JK (2010) Composite photocatalyst of nitrogen and fluorine codoped titanium oxide nanotube arrays with dispersed palladium oxide nanoparticles for enhanced visible light photocatalytic performance. Environ Sci Technol 44(9):3493–3499

    Article  Google Scholar 

  122. Rico V, Borrás A, Yubero F, Espinós JP, Frutos F, Gonzalez-Elipe AR (2009) Wetting angles on illuminated Ta2O5 thin films with controlled nanostructure. J Phys Chem C 113(9):3775–3784

    Article  Google Scholar 

  123. Masuda Y, Kato K (2008) Liquid-phase patterning and microstructure of anatase TiO2 films on SnO2: F substrates using superhydrophilic surface. Chem Mater 20(3):1057–1063

    Article  Google Scholar 

  124. Li D, Zhang J, Shao L, Chen C, Liu G, Yang Y (2011) Preparation and photocatalytic properties of nanometer TiO2 thin films by improved ultrasonic spray pyrolysis. Rare Met 30(1):233–237

    Article  Google Scholar 

  125. Han Y, Wu G, Wang M, Chen H (2009) The growth of a c-axis highly oriented sandwiched TiO2 film with superhydrophilic properties without UV irradiation on SnO: F substrate. Nanotechnology 20(23):235605

    Google Scholar 

  126. Peng B, Tan L, Chen D, Meng X, Tang F (2012) Programming surface morphology of TiO2 hollow spheres and their superhydrophilic films. ACS Appl Mater Interfaces 4(1):96–101

    Article  Google Scholar 

  127. Limage H, Tichelaar FD, Closset R, Delvaux S, Cloots R, Lucas S (2011) Study of the effect of a silver nanoparticle seeding layer on the crystallisation temperature, photoinduced hydrophylic and catalytic properties of TiO2 thin films deposited on glass by magnetron sputtering. Surf Coat Technol 205(13–14):3774–3778

    Article  Google Scholar 

  128. Tao C, Zou X, Du K, Zhou G, Yan H, Yuan X, Zhang L (2018) Fabrication of robust, self-cleaning, broadband TiO2SiO2 double-layer antireflective coatings with closed-pore structure through a surface sol-gel process. J Alloy Compd 747:43–49

    Article  Google Scholar 

  129. Ren D, Cui X, Shen J, Zhang Q, Yang X, Zhang Z, Ming L (2004) Study on the superhydrophilicity of the SiO2-TiO2 thin films prepared by sol-gel method at room temperature. J Sol-Gel Sci Technol 29(3):131–136

    Article  Google Scholar 

  130. Yang H, Zhang X (2009) Synthesis, characterization and computational simulation of visible-light irradiated fluorine-doped titanium oxide thin films. J Mater Chem 19(37):6907–6914

    Article  Google Scholar 

  131. Xu QC, Wellia DV, Sk MA, Lim KH, Loo JSC, Amal R, Tan TTY (2010) Transparent visible light activated C-N–F-codoped TiO2 films for self-cleaning applications. J Photochem Photobiol A 210(2–3):181–187

    Article  Google Scholar 

  132. Kuo CS, Tseng YH, Li YY (2006) Wettability and superhydrophilic TiO2 film formed by chemical vapor deposition. Chem Lett 35(4):356–357

    Article  Google Scholar 

  133. Song S, Jing L, Li S, Fu H, Luan Y (2008) Superhydrophilic anatase TiO2 film with the micro-and nanometer-scale hierarchical surface structure. Mater Lett 62(20):3503–3505

    Article  Google Scholar 

  134. Li H, Wang X, He Y, Peng L (2019) Facile preparation of fluorine-free superhydrophobic/superoleophilic paper via layer-by-layer deposition for self-cleaning and oil/water separation. Cellulose 26(3):2055–2074

    Article  Google Scholar 

  135. Raut HK, Ganesh VA, Nair AS, Ramakrishna S (2011) Anti-reflective coatings: a critical, in-depth review. Energy Environ Sci 4(10):3779–3804

    Article  Google Scholar 

  136. Brinker CJ, Hurd AJ (1994) Fundamentals of sol-gel dip-coating. J Phys III 4(7):1231–1242

    Google Scholar 

  137. Biswas PK, Devi PS, Chakraborty PK, Chatterjee A, Ganguli D, Kamath MP, Joshi AS (2003) Porous anti-reflective silica coatings with a high spectral coverage by sol-gel spin coating technique. J Mater Sci Lett 22(3):181–183

    Article  Google Scholar 

  138. Sakai YW, Obata K, Hashimoto K, Irie H (2008) Enhancement of visible light-induced hydrophilicity on nitrogen and sulfur-codoped TiO2 thin films. Vacuum 83(3):683–687

    Article  Google Scholar 

  139. Huang W, Lei M, Huang H, Chen J, Chen H (2010) Effect of polyethylene glycol on hydrophilic TiO2 films: Porosity-driven superhydrophilicity. Surf Coat Technol 204(24):3954–3961

    Article  Google Scholar 

  140. Tricoli A, Righettoni M, Pratsinis SE (2009) Anti-fogging nanofibrous SiO2 and nanostructured SiO2− TiO2 films made by rapid flame deposition and in situ annealing. Langmuir 25(21):12578–12584

    Article  Google Scholar 

  141. Liu Z, Zhang X, Murakami T, Fujishima A (2008) Sol–gel SiO2/TiO2 bilayer films with self-cleaning and antireflection properties. Sol Energy Mater Sol Cells 92(11):1434–1438

    Article  Google Scholar 

  142. Prado R, Beobide G, Marcaide A, Goikoetxea J, Aranzabe A (2010) Development of multifunctional sol–gel coatings: anti-reflection coatings with enhanced self-cleaning capacity. Sol Energy Mater Sol Cells 94(6):1081–1088

    Article  Google Scholar 

  143. Wang H, Hu Y, Zhang L, Li C (2010) Self-cleaning films with high transparency based on TiO2 nanoparticles synthesized via flame combustion. Ind Eng Chem Res 49(8):3654–3662

    Article  Google Scholar 

  144. Zorba V, Chen X, Mao SS (2010) Superhydrophilic TiO2 surface without photocatalytic activation. Appl Phys Lett 96(9):093702

    Google Scholar 

  145. Li Y, Zhang J, Zhu S, Dong H, Jia F, Wang Z, Sun Z, Zhang L, Li Y, Li H, Xu W (2009) Biomimetic surfaces for high-performance optics. Adv Mater 21(46):4731–4734

    Google Scholar 

  146. Lee D, Rubner MF, Cohen RE (2006) All-nanoparticle thin-film coatings. Nano Lett 6(10):2305–2312

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Washeem, M. et al. (2022). Super Hydrophilic Surface Coating for PV Modules. In: Al-Ahmed, A., Inamuddin, Al-Sulaiman, F.A., Khan, F. (eds) The Effects of Dust and Heat on Photovoltaic Modules: Impacts and Solutions. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-84635-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84635-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84634-3

  • Online ISBN: 978-3-030-84635-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics