Skip to main content

Fission models revisited: structure

  • Chapter
  • First Online:
An Introduction to Nuclear Fission

Part of the book series: Graduate Texts in Physics ((GTP))

  • 1087 Accesses

Abstract

This chapter deals with the nuclear structure aspects of fission at an advanced level. The discussion starts with the isotropic harmonic oscillator potential and describes in detail the Strutinsky shell correction method and its application. Pairing, which plays an important role in fission and more generally in many nuclear physics phenomena, is discussed in detail. Next, we consider the concept of level densities which are used in both nuclear structure and nuclear reaction models and are a critical component of fission cross-section calculations. Therefore, the chapter includes a detailed discussion of the calculation of level densities in nuclei. In the advanced topics section of the chapter, we build up to the Hartree-Fock approximation, the foundation of modern (so-called microscopic) theories of fission. Starting with solutions of the Schrödinger equation for many particles moving in a common potential, we arrive at the concept of a “mean field,” where the particles themselves generate that common potential in a self-consistent way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In more technical terms, this is a thermodynamic approach in the grand-canonical ensemble to the state density problem.

  2. 2.

    A more natural derivation of the Hartree-Fock equation, with antisymmetrization built in from the get-go, requires the use of second quantization, which is beyond the scope of this textbook (but see, e.g., [20, 41]).

  3. 3.

    Most effective interactions used at present also typically include a term that depends nonlinearly on the nucleon density \(\rho \left (\mathbf {r}\right )\). These terms modify somewhat the form of Eq. (6.91), and we will not discuss them here (see [20, 41] for more details).

  4. 4.

    Some authors use a definition that is 1∕2 the one in Eq. (6.95).

References

  1. M. Abramowitz, I. Stegun, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables (Dover Publications, 1965)

    Google Scholar 

  2. Y. Alhassid, in 6th International Workshop on Compound-Nuclear Reactions and Related Topics CNR*18 (2021), pp. 97–112

    Google Scholar 

  3. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  4. H.A. Bethe, Rev. Mod. Phys. 9, 69 (1937)

    Article  ADS  Google Scholar 

  5. A. Bohr, B.R. Mottelson, Nuclear Structure vol. I: Single-Particle Motion (World Scientific, 1998)

    Google Scholar 

  6. M. Bolsterli, E.O. Fiset, J.R. Nix, J.L. Norton, Phys. Rev. C 5, 1050 (1972)

    Article  ADS  Google Scholar 

  7. D.M. Brink, Nucl. Phys. News 12, 27 (2002)

    Article  Google Scholar 

  8. D.M. Brink, R.A. Broglia, Nuclear Superfluidity: Pairing in Finite Systems (Cambridge University Press, 2005)

    Google Scholar 

  9. R. Capote et al., Nucl. Data Sheets 110, 3107 (2009)

    Article  ADS  Google Scholar 

  10. J. Damgaard, H. Pauli, V. Pashkevich, V. Strutinsky, Nucl. Phys. A 135, 432 (1969)

    Article  ADS  Google Scholar 

  11. J. Dechargé, D. Gogny, Phys. Rev. C 21, 1568 (1980)

    Article  ADS  Google Scholar 

  12. A.R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, 1996)

    Google Scholar 

  13. J.M. Eisenberg, W. Greiner, Nuclear Theory: Microscopic Theory of the Nucleus (North-Holland, 1986)

    Google Scholar 

  14. D. Gogny, in Proceedings of the International Conference on Self-Consistent Fields (1975), p. 333

    Google Scholar 

  15. M. Goppert-Mayer, Phys. Rev. 74, 235 (1948)

    Article  ADS  Google Scholar 

  16. M. Goppert-Mayer, Phys. Rev. 78, 16 (1950)

    Article  ADS  Google Scholar 

  17. M. Goppert-Mayer, Phys. Rev. 78, 22 (1950)

    Article  ADS  Google Scholar 

  18. H. Goutte, J.F. Berger, P. Casoli, D. Gogny, Phys. Rev. C 71, 024316 (2005)

    Article  ADS  Google Scholar 

  19. I.S. Grashteyn, I.M. Ryzhik, Table of Integrals, Series and Products, Corrected and Enlarged Edition (Academic Press, 1980)

    Google Scholar 

  20. W. Greiner, J.A. Maruhn, Nuclear Models (Springer, 1996)

    Google Scholar 

  21. M. Harvey, A. Jensen, Nucl. Phys. A 164, 641 (1971)

    Article  ADS  Google Scholar 

  22. R.W. Hasse, W.D. Myers, Geometrical Relationships of Macroscopic Nuclear Physics (Springer, 1988)

    Google Scholar 

  23. K.L.G. Heyde, The Nuclear Shell Model (Springer, 1990)

    Google Scholar 

  24. S. Hilaire, M. Girod, S. Goriely, A.J. Koning, Phys. Rev. C 86, 064317 (2012)

    Article  ADS  Google Scholar 

  25. J.D. Jackson, Classical Electrodynamics (Wiley, 1998)

    Google Scholar 

  26. S. Koonin, D. Dean, K. Langanke, Physics Reports 278, 1 (1997)

    Article  ADS  Google Scholar 

  27. H.J. Krappe, K. Pomorski, Theory of Nuclear Fission (Springer-Verlag GmbH, 2012)

    Google Scholar 

  28. S.J. Krieger, Phys. Rev. C 1, 76 (1970)

    Article  ADS  Google Scholar 

  29. D. Lacroix, e-prints (2010). arXiv:1001.5001v1

    Google Scholar 

  30. J.-F. Lemaître, S. Panebianco, J.-L. Sida, S. Hilaire, S. Heinrich, Phys. Rev. C 92, 034617 (2015)

    Article  ADS  Google Scholar 

  31. J.A. Maruhn, P.-G. Reinhard, E. Suraud, Simple Models of Many-Fermion Systems (Springer, 2010)

    Google Scholar 

  32. A. Messiah, Quantum Mechanics (Dover Publications, Mineola, NY, 1999)

    MATH  Google Scholar 

  33. A.B. Migdal, Qualitative Methods in Quantum Theory (Advanced Book Program, Perseus Pub, Cambridge, MA, 2000)

    Google Scholar 

  34. K. Mon, J. French, Ann. Phys. 95, 90 (1975)

    Article  ADS  Google Scholar 

  35. P. Morse, Methods of Theoretical Physics (McGraw-Hill, New York, 1953)

    MATH  Google Scholar 

  36. W.D. Myers, W.J. Swiatecki, Ann. Phys. 55, 395 (1969)

    Article  ADS  Google Scholar 

  37. W.D. Myers, W.J. Swiatecki, Ann. Phys. 84, 186 (1974)

    Article  ADS  Google Scholar 

  38. S.G. Nilsson, Mat. Fys. Medd. Dan. Vid. Selsk. 29 (1955)

    Google Scholar 

  39. S.G. Nilsson, I. Ragnarsson, Shapes and Shells: Nuclear Structure (Cambridge University Press, 1995)

    Google Scholar 

  40. W. Press, Numerical Recipes in C: The Art of Scientific Computing (Cambridge University Press, Cambridge Cambridgeshire New York, 1992)

    MATH  Google Scholar 

  41. P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer, 1980)

    Google Scholar 

  42. D.J. Rowe, J.L. Wood, Fundamentals of Nuclear Models (World Scientific, 2010)

    Google Scholar 

  43. N. Schunck, L.M. Robledo, Rep. Progress Phys. 79, 116301 (2016)

    Article  ADS  Google Scholar 

  44. T.H.R. Skyrme, Philosophical Magazine 1, 1043 (1956)

    Article  ADS  Google Scholar 

  45. T. Skyrme, Nucl. Phys. 9, 615 (1958)

    Article  Google Scholar 

  46. J. Suhonen, From Nucleons to Nucleus (Springer, Berlin, Heidelberg, 2007)

    Book  Google Scholar 

  47. C. Tannoudji, Quantum Mechanics (Wiley, New York, 1977)

    Google Scholar 

  48. H. Uhrenholt, S. Åberg, A. Dobrowolski, T. Døssing, T. Ichikawa, P. Möller, Nucl. Phys. A 913, 127 (2013)

    Article  ADS  Google Scholar 

  49. D. Vautherin, in Advances in Nuclear Physics (Kluwer Academic Publishers, 2002), pp. 123–172

    Google Scholar 

  50. R.D. Woods, D.S. Saxon, Phys. Rev. 95, 577 (1954)

    Article  ADS  Google Scholar 

  51. W. Younes, tech. rep. UCRL-TR-205363 (LLNL, 2004)

    Google Scholar 

  52. W. Younes, A Microscopic Theory of Fission Dynamics Based on the Generator Coordinate Method (Springer, Cham, Switzerland, 2019)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Cite this chapter

Younes, W., Loveland, W.D. (2021). Fission models revisited: structure. In: An Introduction to Nuclear Fission. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-84592-6_6

Download citation

Publish with us

Policies and ethics