Skip to main content

Fission fragments and products

  • Chapter
  • First Online:
An Introduction to Nuclear Fission

Part of the book series: Graduate Texts in Physics ((GTP))

  • 1100 Accesses

Abstract

This chapter focuses on the properties of the fission fragments. A brief overview of some of the experimental techniques used to study fission is given, and the properties of fission-fragment detectors are presented. The double-energy technique, used to extract fission-fragment properties, is examined in some detail. The functional forms commonly used to model the distribution of the fission fragments as function of both their mass and their charge numbers are discussed. The origin and distribution of excitation energy and angular momentum in the fragments are also discussed and related to experimentally observed quantities. The independent yields of the fission fragments, taken to be the yields of the fragments prior to beta decay, and the cumulative yields after beta decay are discussed. The activities of the beta decaying species can be understood using the Bateman equations, and the chapter concludes with an extensive discussion of the solution of these equations and how they are used to calculate both independent and cumulative yields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Bateman, Proc. Camb. Philos. Soc. 15, 423 (1910)

    Google Scholar 

  2. M. Benedict, Nuclear Chemical Engineering (McGraw-Hill, New York, 1981)

    Google Scholar 

  3. H.R. Bowman, J.C.D. Milton, S.G. Thompson, W.J. Swiatecki, Phys. Rev. 129, 2133 (1963)

    Article  ADS  Google Scholar 

  4. R. Capote, Y.-J. Chen, F.-J. Hambsch, N. Kornilov, J. Lestone, O. Litaize, B. Morillon, D. Neudecker, S. Oberstedt, T. Ohsawa, N. Otuka, V. Pronyaev, A. Saxena, O. Serot, O. Shcherbakov, N.-C. Shu, D. Smith, P. Talou, A. Trkov, A. Tudora, R. Vogt, A. Vorobyev, Nuclear Data Sheets 131, 1 (2016)

    Article  ADS  Google Scholar 

  5. R.M. Cassou, E.V. Benton, Nucl. Track Det. 10, 173 (1978)

    Article  Google Scholar 

  6. G. Charpak, R. Bouclier, T. Bressani, J. Favier, Č. Zupančič, Nucl. Instr. Methods 62, 262 (1968)

    Article  Google Scholar 

  7. A. Göök, F.-J. Hambsch, M. Vidali, Phys. Rev. C 90, 064611 (2014)

    Article  ADS  Google Scholar 

  8. M. Heffner et al., Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 759, 50 (2014)

    Article  Google Scholar 

  9. M. James, R. Mills, D. Weaver, Progr. Nuclear Energy 26, 1 (1991)

    Article  Google Scholar 

  10. B. John, S.K. Kataria, Phys. Rev. C 57, 1337 (1998)

    Article  ADS  Google Scholar 

  11. T. Kawano, P. Talou, M.B. Chadwick, T. Watanabe, J. Nucl. Sci. Technol. 47, 462 (2010)

    Article  Google Scholar 

  12. R. Lamphere, Nucl. Phys. 38, 561 (1962)

    Article  Google Scholar 

  13. E. Levy, Am. J. Phys. 86, 909 (2018)

    Article  ADS  Google Scholar 

  14. O. Litaize, O. Serot, L. Berge, Eur. Phys. J. A 51 (2015) https://doi.org/10.1140/epja/i2015-15177-9

  15. E. Matthews, B. Goldblum, L. Bernstein, B. Quiter, J. Brown, W. Younes, J. Burke, S. Padgett, J. Ressler, A. Tonchev, Nucl. Instr. Meth. Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 891, 111 (2018)

    Article  ADS  Google Scholar 

  16. C. Morariu, A. Tudora, F.-J. Hambsch, S. Oberstedt, C. Manailescu, J. Phys. G: Nucl. Part. Phys. 39, 055103 (2012)

    Article  ADS  Google Scholar 

  17. L.G. Moretto, R.P. Schmitt, Phys. Rev. C 21, 204 (1980)

    Article  ADS  Google Scholar 

  18. L.G. Moretto, G.J. Wozniak, Annu. Rev. Nucl. Part. Sci. 34, 189 (1984)

    Article  ADS  Google Scholar 

  19. L.G. Moretto, G.F. Peaslee, G.J. Wozniak, Nucl. Phys. A 502, 453 (1989)

    Article  ADS  Google Scholar 

  20. R. Müller, A.A. Naqvi, F. Käppeler, F. Dickmann, Phys. Rev. C 29, 885 (1984)

    Article  ADS  Google Scholar 

  21. J.N. Neiler, F.J. Walter, H.W. Schmitt, Phys. Rev. 149, 894 (1966)

    Article  ADS  Google Scholar 

  22. J.R. Nix, Nucl. Phys. A 130, 241 (1969)

    Article  ADS  Google Scholar 

  23. J.R. Nix, W.J. Swiatecki, Nucl. Phys. 71, 1 (1965)

    Article  Google Scholar 

  24. M. Petit, T. Ethvignot, T. Granier, R. Haight, J. O’Donnell, D. Rochman, S. Wender, E. Bond, T. Bredeweg, D. Vieira, J. Wilhelmy, Y. Danon, Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 554, 340 (2005)

    Google Scholar 

  25. D.S. Pressyanov, Am. J. Phys. 70, 444 (2002)

    Article  ADS  Google Scholar 

  26. A. Ruben, H. Märten, D. Seeliger, Zeitschrift für Physik A Hadrons Nuclei 338, 67 (1991)

    Article  ADS  Google Scholar 

  27. K.-H. Schmidt, B. Jurado, C. Amouroux, C. Schmitt, Nuclear Data Sheets 131, 107 (2016)

    Article  ADS  Google Scholar 

  28. H.W. Schmitt, J.H. Neiler, F.J. Walter, Phys. Rev. 141, 1146 (1966)

    Article  ADS  Google Scholar 

  29. C. Straede, C. Budtz-Jørgensen, and H.-H. Knitter, Nucl. Phys. A 462, 85 (1987)

    Article  ADS  Google Scholar 

  30. P. Talou, R. Vogt, J. Randrup, M.E. Rising, S.A. Pozzi, J. Verbeke, M.T. Andrews, S.D. Clarke, P. Jaffke, M. Jandel, T. Kawano, M.J. Marcath, K. Meierbachtol, L. Nakae, G. Rusev, A. Sood, I. Stetcu, C. Walker, Eur. Phys. J. A 54 (2018). https://doi.org/10.1140/epja/i2018-12455-0

  31. R. Vandenbosch, J.R. Huizenga, Nuclear Fission (Academic, New York, 1973)

    Google Scholar 

  32. J. Verbeke, J. Randrup, R. Vogt, Comput. Phys. Commun. 222, 263 (2018)

    Article  ADS  Google Scholar 

  33. R. Vogt, J. Randrup, Phys. Rev. C 96, 064620 (2017)

    Article  ADS  Google Scholar 

  34. R. Vogt, J. Randrup, J. Pruet, W. Younes, Phys. Rev. C 80, 044611 (2009)

    Article  ADS  Google Scholar 

  35. C. Wagemans, The Nuclear Fission Process (CRC Press, Boca Raton, 1991)

    Google Scholar 

  36. S. Wender, S. Balestrini, A. Brown, R. Haight, C. Laymon, T. Lee, P. Lisowski, W. McCorkle, R. Nelson, W. Parker, N. Hill, Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 336, 226 (1993)

    Google Scholar 

  37. W. Younes, J.A. Becker, L.A. Bernstein, P.E. Garrett, C.A. McGrath, D.P. McNabb, R.O. Nelson, G.D. Johns, W.S. Wilburn, D.M. Drake, Phys. Rev. C 64, 054613 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Cite this chapter

Younes, W., Loveland, W.D. (2021). Fission fragments and products. In: An Introduction to Nuclear Fission. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-84592-6_4

Download citation

Publish with us

Policies and ethics