
Chapter 7
The Future of Mobile Edge Computing

Abstract This chapter first introduces the fundamental principles of blockchain and
the integration of blockchain and mobile edge computing (MEC). Blockchain is a
distributed ledger technology with a few desirable security characteristics. The inte-
gration of blockchain and MEC can improve the security of current MEC systems
and provide greater performance benefits in terms of better decentralization, security,
privacy, and service efficiency. Then, the convergence of artificial intelligence (AI)
and MEC is presented. A federated learning–empowered MEC architecture is intro-
duced. To improve the performance of the proposed scheme, asynchronous federated
learning is proposed. The integration of blockchain and federated learning is also
presented to enhance the security and privacy of the federated learning–empowered
MEC scheme. Finally, more MEC enabled applications are discussed.

7.1 The Integration of Blockchain and Mobile Edge
Computing (MEC)

MEC can offer a series of edge services with task processing, data storage, hetero-
geneity support, and QoS improvement capabilities. In close proximity to devices,
MEC can provide instant computing applications with low latency and fast service
response. The distributed structure of edge computing also potentially facilitates
ubiquitous computing services, scalability, and network efficiency improvement.
However, the MEC infrastructure still has unresolved challenges in terms of security
and privacy. First, the large amount of heterogeneous data being collected, trans-
ferred, stored, and used in dynamic MEC networks can easily suffer serious data
leakage. Further, due to the high dynamism and openness of MEC systems, it is very
challenging to save the setting and configuration information of the edge servers in
a reliable and secure way. Blockchain can enhance the security and privacy of MEC
by offering many promising technical properties, such as decentralization, privacy,
immutability, traceability, and transparency. The integration of blockchain andMEC
can enable secure network orchestration, flexible resource management, and sys-
tem performance improvements. In this section, we first introduce the structure of
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blockchain and then present three potential cases of the integration of blockchain
and MEC as future research directions.

7.1.1 The Blockchain Structure

Blockchain is an open database that maintains an immutably distributed ledger typ-
ically deployed in a peer-to-peer network. The structure of blockchain is shown in
Fig. 7.1 and consists of three essential components: transactions, blocks of transac-
tion records, and a consensus algorithm. The transaction information includes node
pseudonyms, data types, metadata tags, a complete index history of metadata, an
encrypted link to transaction records, and a timestamp of a specific transaction. Each
transaction is encrypted and signed with digital signatures to guarantee authentic-
ity. The digitally signed transactions are arbitrarily packed into a cryptographically
tamper-evident data block. The blocks are linked in linear chronological order by
hash pointers to form the blockchain. To maintain the consistency and order of the
blockchain, a consensus algorithm is designed to generate agreement on the order of
the blocks and to validate the correctness of the set of transactions constituting the
block.

Fig. 7.1 The blockchain structure
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7.1.1.1 Transactions

Atransaction is the unit data structure of a blockchain, and it is created by a set of users
to indicate the transfer of tokens from a specific sender to a receiver. Transactions
generally consist of a recipient address, a sender address, and a token value. The input
of a transaction is a reference that contains a cryptographic signature. The output
of a transaction specifies an amount and an address. Transactions are bundled and
broadcast to each node in the form of a block. As new transactions are distributed
throughout the network, they are independently verified by each node. To protect
the authenticity of a transaction, the functionalities of cryptographic hashing and
asymmetric encryption are utilized, as follows.

• Hash function: A cryptographic hash function maps an arbitrary-size binary input
into a fixed-size binary output. For example, SHA-256 maps an arbitrary-size
input to a binary output 256 bits. The binary output is called a hash value. More-
over, the same input will always provide the same hash output. The probability
of generating the same output for any two different inputs is negligible; it is thus
impossible to reconstruct the input based on a hash output. The hash of a transaction
makes it easy to keep track of transactions on the blockchain. In Bitcoin, SHA-
256 and RIPEMD160 are utilized as hash function to produce a bitcoin address.
In Ethereum, Keccak-256 is utilized as a hash function to produce a public key. In
addition, signatures and private keys in blockchain frequently use hash functions
to ensure security.

• Asymmetric encryption: Asymmetric encryption provides a secure method for
authentication and confidentiality. Each node in a blockchain has a pair of keys: a
public key and a private key. The public key can be shared with anyone to encrypt
a message, whereas the private key should only be known to the key’s initiator. In
blockchain, the public key is used as the source address of transactions to verify
their genuineness. The cryptographic private key is used to sign a transaction,
which outputs a fixed-size digital signature for any arbitrary-size input message.
The verification result will be true if the digital signature has the correct private
key and input message. An elliptic curve digital signature algorithm is a typical
algorithm for digital signing transactions. In the elliptic curve digital signature
algorithm, when a user (A) wants to sign a transaction, that user first hashes the
transaction and then uses his or her private key to encrypt the hashed transaction.
The user then broadcasts the encrypted transaction.When another user receives the
transaction and wants to verify its correctness, that user can decrypt the signature
with user A’s public key and hash the received transaction to verify whether the
transaction information has been changed.

In blockchain, each transaction is broadcast over the entire network and cross-
verified by multiple nodes. The verified transactions are ordered consecutively with
linearly ordered timestamps to guarantee correctness.
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Fig. 7.2 Block structure

7.1.1.2 The Block Structure

Ablockchain is a sequence of blocks that holds a complete list of transaction records.
Ablock in a blockchain contains the hash of the current block, the hash of the previous
block, aMerkle tree root, a timestamp, a nonce, and transactions, as shown in Fig. 7.2.

• Block hash: A block hash is the principal block identifier. It is a cryptographic
digest made by hashing the block header twice with the SHA-256 algorithm. It
identifies a block uniquely and unambiguously, and it can be independently derived
by any node by simply hashing the block header.

• Previous hash: The hash of the previous block, which is a 256-bit hash that points
to the previous block, is a necessary data field for the block header. Based on the
previous block hash, all blocks are linked together to form a chain. If any block
is tampered with, this will cause a change in all subsequent block hash pointers.
When a block and all previous blocks are downloaded from an untrusted node,
block hashing can be used to verify whether any block has been modified.

• Merkle tree: A Merkle tree represents a transaction set in the form of a binary tree
for quick validation and synchronization. In the tree, the leaf nodes are the lowest
tier of nodes, and each leaf node is a hash of a transaction. Each non-leaf node is
a hash of the concatenation of two child nodes. The root node of the Merkle tree
is known as the Merkle digest or root. Adjacent leaves are concatenated pairwise,
and the hash of the concatenation constitutes the node’s parent. Parent nodes are
concatenated and hashed similarly to generate another level of parent nodes. This
process is repeated until a single hash remains, which is the Merkle root. The
Merkle tree is useful because it allows users to verify whether a transaction has
occurred, based only on the direct branch from the transaction node to the Merkle
root path. Moreover, the Merkle root allows tampering of any transaction data to
be detected, to ensure their integrity.

• Timestamp: The time the block was generated. In blockchain, every block has a
timestamp and the timestamp can be referred to as proof of existence. According
to Satoshi Nakamoto’s white paper [107], a decentralized timestamp service can
resolve the double-spending problem. It can also help improve the traceability and
transparency of the data stored in the blockchain.

• Nonce: A nonce is random number, and it can be used only once. Each node
competes to find the nonce first to obtain the correct packing transactions for the
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newly generated block. The nonce is difficult to find and is considered a way to
weed out less talented miners. Once the nonce is found, it is added to the hashed
block. With this number, the hash value of that block will be rehashed, creating a
difficult algorithm.

The first block in any blockchain is termed the genesis block. This block is some-
times referred to as block 0. Every block in a blockchain stores a reference to the
previous block. However, the genesis block has no previous block for reference.

7.1.1.3 Consensus Algorithms

Blockchain is a distributed decentralized network that provides immutability, pri-
vacy, security, and transparency. There is no central authority to validate and verify
the transactions, but the transactions are considered secured and verified. This is
possible because of consensus. Consensus is a process that allows all nodes to reach
a common agreement on the state of a distributed ledger. The consensus problem
can be formulated as a Byzantine fault–tolerant problem, that is, how generals can
come to a common conclusion in the presence of a small number of traitors and mis-
communications. The consensus currently used in most blockchain networks can be
split into two categories: probabilistic-finality consensus and absolute-finality con-
sensus. In probabilistic-finality consensus, any block in a blockchain can be reverted
with a certain probability; attackers could thus accumulate a large amount of com-
putational power, or stake, to create a long private chain to replace a valid chain. In
absolute-finality consensus, a transaction is immediately finalized once it is included
in a block. In other words, a new block generated by a leader node is committed
by sufficient nodes before submission to the blockchain. We next present several
common consensus strategies in blockchain.

• Proof of work (PoW): PoW is a consensus strategy used in Bitcoin, where one
node is selected to create a new block in each round of consensus through a com-
putational power competition. In the competition, all participants must solve a
cryptographic puzzle by using different nonces until the target is reached. The
node that first solves the puzzle has the right to create a new block. Solving a PoW
puzzle is costly and time-consuming, but it is easy for other nodes to verify. PoW
guarantees security, based on the principle that it is impossible for a malicious
attacker or group to collect more than 50% of the network’s computational power
to control the consensus process. PoW is a probabilistic-finality consensus proto-
col to guarantee eventual consistency. In PoW, nodes must consume a great deal
of energy to solve the cryptographic puzzle. However, this work is useless and the
energy consumed is wasteful. To tackle the resource waste problem of PoW, the
idea of proof of useful resources was designed. Primecoin proposed a consensus
algorithm to turn useless PoW into a meaningful search for special prime num-
bers when seeking a nonce [108]. Permacoin utilized bitcoin mining resources to
distributively store an extremely large data provided by an authoritative file dealer
based on proof of retrievability [109]. Instead of wasting energy for PoW, proof
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of burn allows miners to burn virtual currency tokens and then grants miners the
right to write blocks in proportion to the number of burned coins [110].

• Proof of stake (PoS): PoS is an energy-saving consensus to replace PoW. Instead
of consuming large amounts of computational power to solve a PoW puzzle, PoS
selects one node to create the next block based on the amount of stake. PoS is
a probabilistic-finality consensus protocol, where the chances of being a block
creator depends on “wealth”. Since the richest node is bound to dominate the
network, creator selection based on the amount of stake is quite unfair. Therefore,
many researchers have proposed new schemes to decide on the node to forge
the next block. Peercoin proposed a metric of coin age to measure the amount
of held coins and their holding time [111]. In Peercoin, the node with older and
larger sets of coins has a higher probability of creating the next block. Compared
with PoW, Peercoin can reduce energy consumption and become more efficient.
Ouroboros proposed PoS-based consensus, considering that stakes will shift over
time [112]. A secure multiparty coin-flipping protocol was proposed in Ouroboros
to guarantee the randomness of the leader election in the block generation process.
To combine the benefits of PoW and PoS, proof of activity was proposed [113].
In proof of activity, the leader in each round of consensus is selected based on a
standard PoW-based puzzle competition to generate an empty block header, where
the stakeholders participating in the block verification receive a reward.

• Delegated PoS (DPoS): The main difference between PoS and DPoS is that
PoS involves direct democracy, whereas DPoS involves representative democ-
racy [114]. In DPoS, stakeholders vote to elect delegates. The elected delegates
are responsible for block creation and verification. Voting in DPoS is important,
since it enables stakeholders to give delegates the right to create blocks, instead of
creating blocks themselves; DPoS can thus reduce the computational power con-
sumption of stakeholders to zero. On the other hand, PoW with plenty of nodes
participating in the block verification process. In DPoS, only fewer delegates par-
ticipate in the block verification process, thus the block can be confirmed quickly
and the transactions can be confirmed quickly. Compared to PoW and PoS, DPoS
is a low-cost, high-efficiency consensus protocol. Additionally, stakeholders do
not need to worry about dishonest delegates, because these delegates can be easily
voted out. There are also cryptocurrencies that implement DPoS, such as BitShares
[115] and EoS. The new version of EoS has extended DPoS to DPoS–Byzantine
fault tolerance. [116].

• Practical Byzantine fault tolerance (PBFT): PBFT is a Byzantine fault tolerance
protocol with low algorithm complexity and high practicality [117]. Even if some
nodes are faulty ormalicious, network liveness and safety are guaranteed by PBFT,
as long as a minimum percentage of nodes are connected, working properly, and
behaving honestly. Hyperledger Fabric [118] utilizes PBFT as its consensus algo-
rithm. In PBFT, a new block is determined in a round. In each round, a primary
node is selected as the leader to broadcast the message sent by the client to other
nodes. PBFT can be divided into three phases: pre-prepare, prepare, and commit.
In each phase, a node enters the next phase if it has received votes from over two-
thirds of all nodes. PBFT guarantees the nodes maintain a common state and take



7.1 The Integration of Blockchain and Mobile Edge Computing (MEC) 87

Table 7.1 Main consensus comparison

Type Fault tolerance Power
consumption

Scalability

PoW Probabilistic
finality

50% Large Good

PoS Probabilistic
finality

50% Less Good

DPoS Probabilistic
finality

50% Less Good

PBFT Absolute finality 33% Negligible Bad

consistent action in each round of consensus. PBFT achieves strong consistency
and is thus an absolute-finality consensus protocol.

In distributed systems, there is no perfect consensus protocol. The consensus
protocol should be adopted based on detailed application requirements. We present
a simplified comparison of different consensus algorithms in Table7.1.

7.1.2 Blockchain Classification

Current blockchain systems can be roughly classified into three types: public
blockchains, consortium blockchains, and private blockchains. We compare these
three types of blockchains from different perspectives.

• Consensus determination: In a public blockchain, each node can take part in the
consensus process. In a consortium blockchain, only a selected set of nodes is
responsible for validating a block. In a private blockchain, one organization fully
controls and determines the final consensus.

• Permission: All transactions in a public blockchain are visible to the public. In
a private or consortium blockchain, permissions depends on the organization or
consortium decides whether the stored information is public or restricted.

• Immutability: Since transactions are stored in different nodes in the distributed
network, it is nearly impossible to tamper with the public blockchain. However, if
the majority of the consortium or the dominant organization wants to tamper with
the blockchain, the consortium blockchain or private blockchain can be reversed
or altered.

• Efficiency: It takes time to propagate transactions and blocks, since there are a
large number of nodes in a public blockchain network. Taking network safety
into consideration, restrictions on a public blockchain are much stricter. There-
fore, transaction throughput is limited and latency is high. With fewer validators,
consortium and private blockchains can be more efficient.
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Table 7.2 Comparison of the different types of blockchains

Public blockchain Private blockchain Consortium
blockchain

Energy cost High Low Low

Delay Long Short Short

Security High Low High

• Centralization: The main difference between the three types of blockchains is
that a public blockchain is decentralized, a consortium blockchain is partially
centralized, and a private blockchain is fully centralized, because it is controlled
by a single group.

• The consensus process: Anyone can join the consensus process of a public
blockchain. Different from public blockchains, both consortium and private
blockchains are permissioned. A node needs to be certified to join the consen-
sus process in consortium and private blockchains.

We compare the three types of blockchains in terms of energy costs, delay, and
security, as shown in Table7.2. Since a public blockchain often uses PoW to achieve
consensus, it incurs high energy costs and long delays. A private blockchain is asso-
ciated with low energy consumption and short delays to achieve consensus because
of centralization. A consortium blockchain utilizes permissioned nodes to create new
blocks without a mining process; it also therefore has low energy consumption and
can achieve consensus quickly.

7.1.3 Integration of Blockchain and MEC

Many devices in MEC share their resources or content openly, without consideration
of personal privacy. The integration of blockchain and MEC can establish a secure
and private MEC system.

7.1.3.1 Blockchain for Edge Caching

With the rapid development of the Internet of Things (IoT) and wireless technolo-
gies, the huge amounts of data and content are undergoing exponential growth. To
support massive content caching while also satisfying the low-latency requirements
of content requesters, MEC provides distributed computing and caching resources
in close proximity to users. Thus, content can be processed and then cached at the
network edge, to alleviate data traffic on backhaul links and reduce content delivery
latency. Since state-of-the-art devices are equipped with a certain amount of caching
resources, a device with sufficient caching resources can be regarded as a caching
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Fig. 7.3 Blockchain-empowered secure content caching

provider, to expand the caching capacity of the network edge. However, content usu-
ally involves the generator’s sensitive personal information, such that devices might
be not willing to store their content with an untrusted caching provider. A secure
caching scheme among untrusted devices therefore needs to be built.

Blockchain enables untrusted nodes to interact with each other in a secure man-
ner and provides a promising method for edge caching. We propose a blockchain-
empowered distributed and secure content caching framework, as shown in Fig. 7.3
In this content caching system, devices can have two roles: a resource-constrained
devicewith large-scale content is defined as a caching requester, and adevicewith suf-
ficient caching resources is defined as a caching provider. Base stations are distributed
in a specific area to work as edge servers. Specifically, if a content is successfully
cached at one caching provider, the caching requester should create a transaction
record and send it to the nearest base station. Base stations collect and manage local
transaction records. The transaction records are structured into blocks after the con-
sensus process among the base stations is completed and then stored permanently in
each base station. The detailed processes are as follows.

• System initialization: For privacy protection, each device needs to register a legit-
imate identity in the system initialization stage. In an edge caching blockchain, an
elliptic curve digital signature algorithm and asymmetric cryptography are used
for system initialization. A device can obtain a legitimate identity after its identity
has been authenticated. The identity includes a public key, a private key, and the
corresponding certificate.

• Roles in edge caching: Devices choose their roles (i.e., caching requester and
caching provider) according to their current caching resource availability state and
future plans. Mobile devices with surplus caching resources can become caching
providers to provide caching services for caching requesters.
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• Caching transactions: Caching requesters send the amount of caching resources
and expected serving time to the nearest base station. The base station broadcasts
all received caching requests to local caching providers. Caching providers provide
feedback on the availability of caching resources to the base station and their future
plans. Each base station then utilizes a deep reinforcement learning algorithm to
match the caching supply and demand pairs among the devices, determines the
caching resources that each caching provider can provide, and allocate bandwidth
between the base station and the devices.

• Building blocks in a caching blockchain: Base stations collect all the transaction
records in a certain period and then encrypt and digitally sign them to guarantee
their authenticity and accuracy. The transaction records are structured into blocks,
and each block contains a cryptographic hash of the prior block in the consortium
blockchain. To verify the correctness of a new block, the consensus algorithm
(e.g., PBFT) is used. In the consensus process, one of the base station is selected
as the leader for creating the new block. Because of broadcasts, each base station
has access to the entire transaction record and has the opportunity to be the leader.
In a consortium blockchain, the leader is chosen before the block building and
does not change before the consensus process is completed.

• The consensus process: The leader broadcasts the created block to other base
stations for verification and audit. All the base stations audit the correctness of
the created block and broadcast their audit results. The leader then analyzes the
audit results and, if necessary, sends the block back to the base stations for another
audit. Following the audit results and corresponding signatures, compromised base
stations will be discovered and held accountable.

The integration of blockchain and MEC can improve the security of edge networks
and extend edge caching and resource sharing among untrusted entities.

7.1.3.2 Blockchain for Energy Trading

Due to harvesting and information communication technologies, distributed renew-
able energy sources are increasingly being integrated into smart grids, and vehicles
not only can charge electricity from a home grid with renewable energy sources,
but also can obtain electricity from other vehicles, to shift peak load through energy
trading. However, because of privacy concerns, smart vehicles with surplus electric-
ity might not be willing to work as energy suppliers in an energy trading market.
To encourage vehicles with surplus electricity to participate in energy trading, the
privacy of smart vehicles during the trade must be protected.

Blockchains, with its desirable characteristics of decentralization, immutability,
accountability, and trustlessness, can significantly improve network security and save
operational costs. Peer-to-peer topology enables electricity trading to be carried out
in a decentralized, transparent, and secure market environment. The authors in [121]
proposed a secure energy trading system with three types of components: vehicles,
edge servers, and smart meters. The vehicles play three roles in electricity trad-
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ing, with charging vehicles, discharging vehicles, and idle vehicles. Each vehicle
chooses its own role based on its current energy state. Edge servers provide elec-
tricity and wireless communication services for the vehicles. Each charging vehicle
sends a request about electricity demand to the nearest edge server. The edge server
announces the energy demand to other vehicles (plug-in hybrid electric vehicles).
Vehicles with surplus electricity submit selling prices to the edge server. After a
double auction, two vehicles carry out an electricity trade. Smart meters are utilized
to calculate and record the amount of electricity traded. Charging vehicles pay the
discharging vehicles, based on the records in the smartmeters. The detailed processes
of the energy blockchain are similar to those in the caching blockchain, but there
is still a very big difference. A caching blockchain utilizes a PBFT consensus algo-
rithm, which requires relatively little energy and time to achieve consensus, because
no mining process is involved. The work to achieve consensus is based on PoW.
Although more energy and time must be spent for consensus, all the vehicles in a
blockchain can participate in the process of verifying transactions, creating blocks,
and achieving consensus.

7.2 Edge Intelligence: The Convergence of AI and MEC

The rapid development of AI techniques and applications has provided new possibil-
ities forMEC. The integration of AI algorithms withMEC can considerably improve
the intelligence and performance of edge computing. Conventional AI approaches
rely on centralizedmechanisms that invite serious security and privacy threats and are
not suitable for resource-constrained edge networks. Federated learning and transfer
learning are two emerging paradigms that shine new light on the convergence of AI
and MEC.

7.2.1 Federated Learning in MEC

Increasing concerns of data privacy and security are hindering the wide implemen-
tation of AI algorithms to edge networks. Federated learning [122, 123] is proposed
as a new learning scheme that enhances data privacy. Users participating in fed-
erated learning collaboratively train a global model and preserve their own data
locally. Thus, by executing distributed training across users locally, federated learn-
ing enhances data privacy and reduces the cost of data transmission. By applying
federated learning in MEC systems, the decision making process can be executed
on edge devices, which reduces system latency and improves decision efficiency.
Federated learning is believed to be one of the strongest enabling paradigms for
large-scale MEC systems.

With the benefits of privacy enhancement, decentralization, and collaboration,
federated learning has attracted significant attention in wireless networks. For exam-
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Fig. 7.4 Federated learning–empowered MEC

ple, Google exploited federated learning to train machine learning (ML) models for
keyboard prediction [124]. Z. Yu et al. [125] proposed a federated learning–based
proactive content caching scheme where the content caching policies are calcu-
lated by federated learning algorithms. However, in federated learning, the iterative
communication between end users and the server and the local training of machine
learning models by end users also consumes a large amount of resources.

To apply federated learning to MEC applications, a good volume of work has
explored how to improve the performance of federated learning by optimizing the
constrained resources in edge networks. J. H. Mills et al. [126] proposed adapting
federated averaging [127] by adopting distributed Adam optimization to reduce the
number of communication rounds for convergence. S. Wang et al. [128] proposed a
control scheme to determine the optimal execution trade-off between local training
and global aggregation within a given resource budget. In [129], C. Dinh et al.
optimally allocated computation and communication resources in the network to
improve the performance of federated learning deployed in wireless networks.

7.2.1.1 A Federated Learning–Empowered MEC Model

The architecture of federated learning–empowered MEC systems is depicted in
Fig. 7.4. The end users in the system are the clients of federated learning, and the
edge servers are the aggregation server of federated learning. For end user ui with
dataset Di , the loss function for local training is defined as

Fi (w) = 1

|Di |
∑

j∈Di

f j (w, x j , y j ) (7.1)

where f j (w, x j , y j ) is the loss function on data sample (x j , y j )with parameter vector
w, and |Di | is the size of the data samples in Di . The loss function f j (w, x j , y j ) is
determined according to the specific learning algorithms, such as the mean squared
error and the mean absolute error. The global loss function in federated learning is
defined as
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Fig. 7.5 Processes of federated learning–empowered MEC

F(w) = 1

|D|
∑

j∈D
f j (h(w, x), y) = 1

|D|
∑

i

|Di | · Fi (w) (7.2)

where |D| is the size of the total training data |D| = ∑
i |Di |. The objective of

federated learning is to find the parameter vector w that minimizes the global loss
function F(w), that is,

Q(w, t) = argmin
i∈N ,t≤T

F(w) (7.3)

such that ∀ui ∈ U, i ∈ {1, 2, . . . , N } (7.4)

whereui ∈ U denotes the user participating in the federated learning training process.
The general architecture of the federated learning–empowered MEC system con-

sists of two planes: the end user plane and the edge server plane. As shown in Fig. 7.5,
local training is executed in the user plane, while global aggregation is executed in the
edge server plane. The federated learning–empowered MEC system involves three
main steps: local training, parameter updating, and global aggregation. The MEC
server plays the role of global server, and the end users, with mobile phones, smart
vehicles, and IoT devices, and so on, are clients of federated learning. The three steps
are repeated in the system to train the global machine learning model. Computation
tasks are executed by running the federated learning algorithms in the MEC system.

• Local training in the user plane: The aggregation server distributes the MLmodel
M to end users in the initialization phase. Each of the end users then trains the
shared model M based on their local datasets. Gradient descent approaches are
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widely used in the training process. The model parameters wi (t) of iteration t are
updated as

wi (t) = wi (t − 1) − η · ∇Fi (wi (t − 1)), (7.5)

where η is the learning rate, and∇Fi (wi (t − 1)) is the gradient of the loss function
with parameters wi (t − 1). The users then transmit the trained parameters w(t) to
the server for aggregation.

• Global aggregation in the edge plane: As denoted in Fig. 7.5, the MEC server
collects all the parameters

∑
i wi (t) and calculates the aggregated model. The

average aggregation is widely adopted to obtain the global model, as

w(t) = 1
∑N

i=1 |Di |
N∑

i=1

|Di | · wi (t) (7.6)

TheMEC server then transmits the aggregated globalmodel to the end users to start
a new training iteration. The learning process continues until the trained model
reaches a predefined accuracy threshold or the execution time runs out.

7.2.1.2 Performance-Improved Asynchronous Federated Learning in
MEC

Federated learning–empowered MEC systems can enlarge the scale of the training
data and protect the data privacy of end users. However, new challenges have also
arisen in the deployment of federated learning in MEC systems. First, the iterative
update process of federated learning increases the transmission burden in commu-
nication resource–constrained edge networks. Second, the heterogeneous commu-
nication and computing capabilities of end users hinder the fast convergence of the
learning process. Third, the risk of fake parameters from malicious participants also
exists. To address these issues, a primary approach is to reduce the execution delay
of federated learning. Thus, asynchronous federated learning is proposed.

In conventional federated learning, a synchronousmechanism ismaintained by the
clients and the global server to update the trained parameters and aggregate the global
model. All the users participate in the global aggregation in each round. The training
times of different end users varies greatly, because of their heterogeneous computing
capabilities and dynamic communication states. In such a case, the execution time
of each iteration is determined by the slowest clients, which incurs a high waiting
cost for others, due to the heterogeneous runtimes. Asynchronous federated learning
optimally selects a portion of the users to participate in global aggregation, while
others continue with local training. Different optimizing approaches can be used
as the node selection algorithm to decide on the participating nodes based on their
capabilities. An overview of the asynchronous federated learning–empowered MEC
scheme is shown in Fig. 7.6.

The asynchronous federated learning scheme comprises the following phases.
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Fig. 7.6 Asynchronous federated learning–empowered MEC

• Node selection: Participating nodes are selected from all the end users through
a node selection algorithm, according to their communication states and avail-
able computing resources. End users with sufficient resources are prone to being
selected as participating nodes.

• Local training and aggregation: The participating nodes train their local models
mi (t) according to their local data and obtain the parameters wi (t) for the trained
modelmi (t). User i also executes local aggregation by retrieving parameterswj (t)
from nearby end users through device-to-device communication.

• Global aggregation:TheMEC server carries out global aggregation based on local
model parameters it has collected fromparticipating end users, following Eq. (7.6).
The global model M(t) is then broadcast to the end users to start a new learning
iteration.

Deep reinforcement learning can be widely exploited as the node selection algo-
rithm, deployed at theMEC server. The deep reinforcement learning algorithm learns
the optimal node selection policy by using deep neural networks to approximate the
policy gradient. Other techniques, such as convex optimization and game theory, can
also be used in the node selection process.
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7.2.1.3 Security-Enhanced AI in MEC: Integrating Blockchain with
Federated Learning

In federated learning–empoweredMEC systems, the parameters transmitted between
end users and the MEC server are subject to serious security and privacy issues. The
risk of data leakage increases, since an attacker can infer information on the original
training data from these parameters. Moreover, malicious participants can upload
fake parameters or use poisoned data to train their local models, which can cause the
failure of the entire federated learning process. In addition, as the global aggregator,
MEC servers also raise the risk of a single point of failure or malicious attacks.
Building a trust mechanism among untrusted end users andMEC servers is therefore
essential.

Blockchain has achieved great success in providing secure collaboration mech-
anisms among untrusted users. We propose integrating blockchain with federated
learning to provide trust, security, and intelligence in MEC systems.

• Blockchain for federated learning: Blockchain provides a trusted collaboration
mechanism for all participants (users) of federated learning. Through the autho-
rization mechanism and identity management of the blockchain, especially a per-
missioned blockchain, users lackingmutual trust can be united to establish a secure
and trusted cooperation mechanism. In addition, the model parameters of federal
learning can be stored in the blockchain to ensure their safety and reliability.

• Federated learning for blockchain: The contradiction between the limited storage
capacity of blockchain nodes and the larger storage demands of blockchains has
always been a bottleneck in blockchain development. By processing the origi-
nal data through federated learning, blockchains can store only the computation
results, reducing storage cost and communication overhead. In addition, based
on federated learning, the authentication calculation and transmission schedul-
ing of blockchain transactions are optimized, which can considerably improve
blockchain performance.

Based on the above analysis, we propose integrating blockchain with federated
learning to build a trusted, secure, and intelligent MEC system. The integrated archi-
tecture is illustrated in Fig. 7.7. The architecture can be divided into the end user
layer and the edge service layer. Users mainly consist of smart devices, such as IoT
devices and mobile phones. The servers are represented by base stations equipped
with MEC servers with certain storage and computing capabilities.

The integrated scheme consists of twomainmodules: federated learning and a per-
missioned blockchain. The federated learning learns the model parameters through
local training on the user side, while the blockchain runs on theMEC server to collect
and store the parameters of the federated learning. The parameters are verified by
the consensus protocol. The detailed processes are as follows.

• Local training:Based on their local data, participating users train themodel param-
eters through a gradient descent algorithm to minimize the loss function.
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Fig. 7.7 The integration of blockchain and federated learning

• Parameter transmission: The trained local parameters are transmitted to the base
station in the edge service layer through wireless links. The parameters of each
user are collected and stored in blockchain nodes in the form of transactions.

• Block generation: Each blockchain node collects the transactions (model param-
eters) from the user layer and packages them into blocks using encryption and
signatures. The block generator is determined by the consensus mechanism. The
blockchain node that obtains the right to generate blocks broadcasts the block to the
entire blockchain network and adds the block to the blockchain after verification.

• Global aggregation: The aggregator, that is, the MEC server, in the edge service
layer aggregates model parameters according to the records in the blockchain and
updates them into the global model. Furthermore, the global model is distributed
to all participating users to start a new round of training.

The integration of blockchain and federated learning combines the security and
trust of blockchains with the distributed intelligence of federated learning, which
improves the security and data privacy of the MEC system.

7.2.2 Transfer Learning in MEC

7.2.2.1 Applying Transfer Learning in MEC

Transfer learning, as one of the machine learning methods, aims to transfer knowl-
edge from existing domains to a new domain by learning across domains with
non-independent and identically distributed data. Specifically, in transfer learning, a
model developed for a task can be used as the original model for a related task. The
basic idea of transfer learning is learning to learn, that is, to retain and reuse previ-
ously learned knowledge in the machine learning process. Different from traditional
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machine learning techniques, the source task and the target task are not the same,
but related. The definition of transfer learning is as follows [130].

Definition 7.1 Given a source domain DS , a learning task TS , a target domain DT ,
and a target learning task TT , transfer learning aims to help improve the learning of
the target predictive function fT (·) in DT using knowledge learned in DS and TS ,
where DS �= DT or TS �= TT .

To apply transfer learning to an MEC system, the following three main transfer
learning research issues need to be addressed.

• What to transfer: Some knowledge can be specific to individual domains or tasks,
while some knowledge can be common to both the source and target domains. It
is therefore essential to determine which part of the knowledge can be transferred
from the source domain to the target domain. The transferred knowledge helps to
improve the performance of target tasks in the target domain.

• How to transfer: After determining what knowledge to transfer, learning algo-
rithms or models need to be developed to transfer the knowledge from the source
domain or source tasks to the target domain or target tasks.

• When to transfer: There are various applications and services in an MEC system.
In some cases, the transfer of knowledge can improve system performance, while,
in other cases, the transfer can decrease the quality of services or applications.
Therefore, whether to transfer from the source domain to the target domain or not
needs to be carefully analyzed.

In MEC systems, stochastic task models, heterogeneous MEC servers, and
dynamic source data and user capabilities hinder the cooperation between the MEC
servers, as well as the deployment of jointMEC tasks across different servers. Tomit-
igate these challenges, transfer learning is believed to be a promising technique for
deploying an MEC system across heterogeneous servers. Transfer learning–enabled
MEC can be applied in the following scenarios.

• Multiple computation tasks: There can be multiple computation tasks and hetero-
geneous servers in MEC systems. Using transfer learning in the MEC systems
can preserve the knowledge learned by some tasks and reuse it in related tasks.
Servers inMEC systems can cooperate with each other by sharing and transferring
the knowledge they learned from the local network within their coverage. Thus
the utility of resources is improved and computation latency is reduced.

• Computation offloading: In computation offloading applications, optimal offload-
ing strategies can be determined by learning a policy model with AI algorithms.
By using transfer learning, the learned policy model can be used by other MEC
servers as the starting point model. The model can be retrained for new MEC sys-
tems for a small computation cost. Thus the efficiency of computation offloading
can be considerably improved, and energy consumptions can be further reduced.

• Content caching: In the content caching scenario, heterogeneous data types and
dynamic caching capabilities among different MEC servers are the main issues
in caching content across different MEC servers. The popularity of content in
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differentMEC systems can vary greatly due to the different types of users. Transfer
learning canbe exploited in heterogeneousMECsystems tomitigate the inaccuracy
of cachingmodels. The performance of the caching policymodels and computation
efficiency is thus improved in transfer learning–enabled MEC systems.

7.2.2.2 Federated Transfer Learning in MEC

Federated learning can connect isolated data and perform joint analyses on the data
in way that preserves privacy. However, the issue of model personalization remains
unresolved, since all users in federated learning share the same general model. In
some cases, the general model might be not applicable to particular users. Moreover,
the heterogeneous data distribution of users exacerbates the effective deployment
of federated learning. To mitigate these issues, the concept of federated transfer
learning emerges as a possible solution. The integration of federated learning and
transfer learning broadens the application scope of federal learning. Applications
with a small amounts of data or low-quality data can also obtain good machine
learning models with the assistance of federated transfer learning.

Federated transfer learning differs from conventional transfer learning in the fol-
lowing aspects.

• The training architectures are different.Federated transfer learning is performedon
distributed datasets from various users, and the original data are never transmitted
to other users. Conventional transfer learning, however, can transmit the original
data to a centralized server for training.

• The machine learning models are trained in different places. In federated transfer
learning, the machine learning models are trained by all distributed users with
their local computing resources and datasets. In conventional transfer learning,
however, the training of ML models is usually completed by centralized servers.

• The requirements for data security and privacy are different. Federated transfer
learning aims to protect the security and privacy of user data. In conventional
transfer learning, the data face severe risks of leakage.

Research on federated transfer learning is still in its early stage. Y. Liu et al. [131]
introduced a new framework, known as federated transfer learning, to improve the
performance of machine learning models under a data federation. In [132], H. Yang
et al. applied federated transfer learning to image steganalysis and proposed a frame-
work named FedSteg to train a secure personalized distributed model on distributed
user data. These limited works explored the integration of federated learning with
transfer learning invarious areas andprovided rough frameworks of federated transfer
learning. Federated transfer learning has huge potential in MEC in future networks.
MEC can be enabled by federated transfer learning in the following areas.

• Personalized services: For future MEC systems, the provision of personalized
services for different users is a crucial challenge. Enabled by federated transfer
learning, knowledge of, for example, user behaviors and user preferences can be
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transferred among different users, based on the trained machine learning models.
The quality of service in MEC systems can be considerably improved by the use
of federated transfer learning techniques.

• Super IoT: The limited data storage capabilities and resources of IoT devices are
major obstacles in deploying MEC systems in IoT networks. Federated transfer
learning can mitigate the requirement for large amounts of data to train machine
learning models. IoT devices can also train ML models with small amounts of
data. Moreover, latency in training can be further reduced. The performance of
IoT networks and applications can thus be improved.

• Green communications: With the increase in numbers of connected devices and
applications, the energy costs of MEC systems are becoming a major concern
that need to be addressed in future networks. Since machine learning models can
be trained with small amounts of data, federated transfer learning decreases the
computations for training and the communication overhead for data transmission.
The energy cost is reduced and the efficiency is improved, leading to greener
communications in future networks.

7.3 MEC in Other Applications

Along with the advancement of beyond 5G technology and the pervasive IoT, MEC
techniques have been applied in diverse scenarios to meet intensive computing, pro-
cessing, and analysis demands for disease prevention, industrial production, and
emergency response.

7.3.1 MEC in Pandemics

A pandemic is the spread of an infectious disease across large regions, and it
poses serious health risks to huge numbers of people. For instance, the recent
COVID-19 pandemic has infected more than 20 million people worldwide and has
severely affected the global economy. Early estimates demonstrated that most major
economies lost at least 2.4% of their gross domestic product during 2020.

Since pandemic outbreaks are always a surprise and people are largely unprepared
to address them, in the early stage, a virus has an extraordinary capacity to spread.
It is therefore imperative to establish a pandemic prediction system that can provide
valuable and comprehensive information for pre-judging the time, location, scale,
and other key characteristics of virus outbreaks.

The efficient operation and precise judgment of the pandemic prediction system
are based on comprehensive data collection and complex data analysis. The data are
captured by sensing devices that are widely placed in crowded areas, such as bus
stations, shopping malls, and schools, and are characterized by large sizes, diverse
types, and heterogeneous elements. Processing the captured data with feature extrac-
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Fig. 7.8 MEC in pandemics

tion and correlation analysis always requires large amounts of computing resources.
A traditional approach to meet this demand is to upload the data to remote cloud
servers for processing. However, a great deal of communication costs involve yields
in this transmission, especially in wireless remote access scenarios. Moreover, the
cloud-based processing approach can incur long time delays, which fails to cater
to the fast response requirements of applications such as personnel monitoring at a
station entrance.

MEC is an appealing paradigm to address this problem. It helps pandemic predic-
tion systems process sensing data in proximity to virusmonitoring areas and provides
important epidemiological reports about virus spread trends in a short time. MEC
servers are equipped on cellular network base stations, Wi-Fi access points, and
other nodes that facilitate data transmission and have a stable energy supply. With
the continuous enhancement of AI technology, which is capable of revealing hidden
issues and correlations from big data, the incorporation of AI and MEC has emerged
as a promising approach. Thus, machine learning modules should be deployed to
MEC servers to track diseases, predict their growth, and propose coping strategies.
For instance, an MEC-empowered deep learning model is suitable for disease clas-
sification, while MEC-aided multi-agent learning can be used to predict infection
trends in large areas. Moreover, since pandemic prediction and prevention require
joint analyses and actions between different departments in multiple regions, a multi-
level collaborativeMEC service systemmust be created that shares virus information
amongMEC servers to better understand and address the pandemic crisis. Figure7.8
shows a typical framework of MEC techniques applied to pandemic prediction.

In applying MEC in pandemics, open questions still exist. The first involves the
privacy protection of theMEC service. In pandemic prediction, the monitoring target
is human activities and their physical characteristics, through which malicious users
could obtain individuals’ private information, such as personal daily activity trajecto-



102 7 The Future of Mobile Edge Computing

ries and health status. Recent research has indicated that nontraditional data sources,
including social media, Internet search histories, and smartphone data, which are
closely related to privacy, are helpful in forecasting pandemic. Consequently, MEC-
empowered pandemic management with strict privacy protection is imperative. Fur-
thermore, for the flexible and dynamic detection of pandemics in multiple locations,
the pandemic monitoring devices should be lightweight and portable. If the MEC
service is integrated into a battery-powered mobile pandemic detection device, the
energy efficiency of the data processing will become a key issue for consideration.

7.3.2 MEC in the Industrial IoT (IIoT)

Enabled by IoT technology, industry has witnessed substantial changes in opera-
tional efficiency, product quality, and management mechanisms in recent years, and
it is continuously evolving toward the IIoT. From the perspective of manufactur-
ers, the proliferation of the IIoT will provide interconnections between large-scale
distributed industrial equipment, enable a comprehensive awareness of production
environments, and help realize full industrial automation.

Along with the evolution of the IIoT, large amounts of data regarding factory
environment status detection, robot device control, and product quality monitoring
are being generated andprocessed. Sincemodern industrial production is an assembly
line operation, any instruction error or behavior lag in the production process will
seriously affect the overall manufacturing efficiency. Consequently, the demand for
data processing services of high reliability and low latency has increased.

MEC technology,which can facilitate data processing closer to industrial facilities,
thereby enabling production managers and equipment controllers to speed up their
decision making, has been widely recognized as a promising approach to cater to
the demands mentioned. Figure7.9 shows typical scenarios of MEC application in
industrial automation control, logistics transportation management, product quality
assurance, and energy scheduling.

To boost production efficiency, remain profitable, and replace expensive human
labor with ever-cheaper machines, various manufacturing robots are being widely
used in industrial factories. During the operation of the robots, MEC servers work as
information processors and control systems that analyze the robot monitoring data
from sensors and actuators, while generating control instructions for robotic arm
behavior and coping with problems in automated production lines.

Smart logistics have become a key attribute of modern industry. They incorporate
autonomous transport vehicles, sensor-driven cargo tracking tools, and online auto-
mated sales platforms throughout the whole supply and sale chain. With the aid of
MEC technology, unmanned vehicles can achieve more precise and real-time driving
control, the transportation status of cargo can be tracked throughout the process, and
sales strategies can be optimized in time.

Product quality is the core element of industrial production, and there are
many quality inspection methods. With the development of AI, machine learning
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Fig. 7.9 MEC in the IIoT

approaches have been introduced to identify the characteristics of products’ dimen-
sions, performance, and stability. The learning process always requires intense data
processing and complex model construction. MEC servers that provide sufficient
computing capabilities at the site of quality inspection facilities are crucial elements
to cater to this requirement.

Industrial manufacturing relies heavily on energy consumption. Among the diver-
sified energy types, electrical energy has been proven to have the most important
effects on factory production capacities and costs. With the rise of smart grids, the
matching of electricity supply and demand has become flexible, but has also cre-
ated calculation demands, such as for grid state analysis and user demand trend
prediction. MEC is an appealing approach to address this additional demand. Fur-
thermore, besides traditional energy types that harm the environment, renewable
energy sources, such as solar, wind, and tidal energy, are beginning to be widely
used in industrial production. The time-varying and unstable supply characteristics
of renewable energy also requireMEC’s analytical monitoring and adaptive schedul-
ing. Although MEC technology provides many benefits to the IIoT, some challenges
of industrial MEC remain unresolved. For instance, the MEC-empowered IIoT is
vulnerable to malicious attacks. Since wireless has been pervasively used in IIoT
device-to-device communication, task offloading data can be easily eavesdropped
and forged, resulting in the leakage of commercial secrets or production interrup-
tions. In addition, industrial logistic vehicles move throughout large geographical
areas and can therefore access heterogeneous MEC servers. The coordination and
integration of MEC services is also an unexplored issue.
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Fig. 7.10 MEC in disaster management

7.3.3 MEC in Disaster Management

Sudden disasters cause serious and widespread human, economic, or environmental
losses. To address this issue, disaster management has been proposed for taking
some countermeasures and scheduling relief supplies to protect human lives and
infrastructures.

To ensure the effective operation of a disaster management system, a large amount
of information needs to be processed, which is mainly reflected in two aspects. The
first involves the comprehensive analysis of collected environmental data, including
meteorological, geological, and hydrological data, to accurately predict possible dis-
asters. On the other hand, after the occurrence of a disaster, progress monitoring and
estimations of the status of the disaster relief and supply of materials are required to
facilitate the scheduling of rescuers and resources. To meet these information pro-
cessing demands, servers with powerful computing capabilities should be equipped
in the disaster areas. Due to possible damage to communication network facilities
and lines caused by the disaster, core cloud servers and remote task offloading are
not suitable for providing computing services. MEC’s proximity computing service
can effectively make up for these shortcomings. However, a single MEC server can
also be damaged in a severe disaster; therefore, a group of distributed MEC servers
empowered with robustness and survivability is a feasible solution.

Figure7.10 illustrates the framework of an MEC-empowered disaster manage-
ment system, where each MEC server pair is connected through several redun-
dant backup communication lines. These links can be wired connections or wire-
less connections through cellular networks, Wi-Fi, or even satellite networks. The
dual backup capability of the servers and communication links greatly improves the
robustness and survivability of the entire MEC system. To cope with a potentially
unstable power supply in the disaster area, MEC servers can leverage renewable
energy and use energy batteries as storage devices to adapt to the time-varying char-
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acteristics of wind and solar power. In addition, MEC servers are evolving toward
miniaturization and lightweight configurations to meet the portability requirements
of a disaster relief operation carried out at multiple locations.

Despite the advantages that edge computing has provided disaster management,
key issues remain unexplored in MEC service deployment. A typical problem
involves the energy efficiency of MEC servers. Due to the lack of energy supply
in disaster areas and the constrained battery power of portable servers, providing
powerful computing capabilities at a low energy cost is a critical challenge. More-
over, the effective integration of diversified disaster environment detection networks
and heterogeneous rescue systemswithMECservices urgently requires further inves-
tigation.
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