
Chapter 2
Mobile Edge Computing

Abstract Mobile edge computing is a promising paradigm that brings computing
resources to mobile users at the network edge, allowing computing-intensive and
delay-sensitive applications to be quickly processed by edge servers to satisfy the
requirements of mobile users. In this chapter, we first introduce a hierarchical archi-
tecture of mobile edge computing that consists of a cloud plane, an edge plane,
and a user plane. We then introduce three typical computation offloading decisions.
Finally, we review state-of-the-art works on computation offloading and present the
use case of joint computation offloading.

2.1 A Hierarchical Architecture of Mobile Edge
Computing (MEC)

To better understand the internal logic of MEC, we first present a hierarchical archi-
tecture that vertically divides the edge computing system into three layers: the user
layer, the edge layer, and the cloud layer, as shown in Fig. 2.1. The user layer is distin-
guished by the wireless communication mode between mobile devices and wireless
infrastructures. The edge and cloud layers mainly refer to the computing resources
of the edge and cloud servers, respectively.

Devices in the user layer include sensors, smartphones, vehicles, smartmeters, and
radio-frequency identification devices. These devices access edge servers via wire-
less communication and then offload computation-intensive tasks to the lightweight,
distributed edge servers to process. According to wireless network topology and
communication modes, the communication between mobile devices and a wireless
infrastructure can be split into the following three modes.

• Heterogeneous network: Next generation wireless networks will run applications
that require large demand for high data rates. One solution to help reduce the
data rate requirement is the densification of the network by deploying small cells.
Such densification results in higher spectral efficiency and can reduce the power
consumption of a mobile device due to its communication with small nearby
cell base stations. This solution significantly improves network coverage. The
concurrent operation of macro base stations (MBSs) and micro, pico, femto, and

© The Author(s) 2022
Y. Zhang, Mobile Edge Computing, Simula SpringerBriefs on Computing 9,
https://doi.org/10.1007/978-3-030-83944-4_2

9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83944-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-83944-4_2

10 2 Mobile Edge Computing

Fig. 2.1 Hierarchical MEC architecture

unmanned aerial vehicle–aided base stations is termed a heterogeneous network.
In heterogeneous networks, all base stations are equipped with computational
resources and artificial intelligence functions. Resource-limited mobile devices
can offload their tasks to these heterogeneous base stations, which can then utilize
a fine-grained computational resource allocation policy to process the offloaded
tasks.

• Vehicular network: Vehicular networks are inseparable from a smart city environ-
ment, owing to several applications that improve the quality of life, safety, and
security. A vehicular network is formed among moving vehicles, roadside units,
and pedestrians, which can be deployed in rural, urban, and highway environments.
Vehicle-to-everything communication allows vehicles to communicate with other
vehicles and their surroundings via wireless links. Vehicle-to-everything commu-
nication has three main scenarios: vehicle to vehicle, vehicle to infrastructure,
and vehicle to pedestrian [12]. Commonly used technologies are dedicated short-
range communications, IEEE 802.11p, the IEEE 1609 family of standards, and
Long Term Evolution (LTE). With advancements in communication technologies,
a number of promising applications are emerging for vehicular networks. These
vary from safety applications, such as blind spotwarning and traffic light violations
to entertainment, such as streaming media, or convenience, such as parking space
identification. In vehicular networks, ubiquitous edge resources can be deployed
on nearby infrastructures to offer vehicles a high quality of service. Compared to
common mobile nodes, vehicles can move at quite high speeds, which causes the
topology of a vehicular network to frequently change. Detailed policy design must
carefully consider such dynamic network topologies.

• Mobile-to-mobile (M2M)/device-to-device (D2D) networks: M2M is an enabling
technology for the Internet of Things,which involves autonomous connectivity and

2.1 A Hierarchical Architecture of Mobile Edge Computing (MEC) 11

communication among devices from embedded sensors and actuators to powerful
computationally rich devices without human intervention. D2D allows devices to
communicate with each other through a direct wireless link without traversing
the base station or core network. With the technological advancement of smart
devices, more computing and caching resources are distributed among the end
users. Computational tasks can thus be offloaded not only to edge servers, but also
to devices in D2D and M2M networks.

The edge layer is located in themiddle of the hierarchical architecture and consists
ofmultiple distributed edge servers to provide distributed intelligentwireless comput-
ing for users. Edge servers can be deployed in the network infrastructure, such as base
stations, roadside units, wireless access points, and gateways, or they can be mobile
phones, vehicles, tablets, and other devices with computing and storage capabilities.
Generally, edge servers are widely distributed in hotspots such as cafes, shopping
centers, bus terminals, streets, and parks. Given the proximity of edge servers to end
users, computing-intensive and delay-sensitive tasks can be offloaded and accom-
plished with low latency and high efficiency. There are three types of resources in the
edge layer: communication resources, caching resources, and computing resources.
Communication resources refer to bandwidth, spectrum, and transmission power.
Computing resources mainly refer to CPU cycles. Caching resources are related to
thememory capacity on edge servers. Since edge servers are ubiquitously distributed,
their computing and caching resources capacities are usually limited. The full use
of edge resources requires the joint optimization of communication, caching, and
computing resources.

The central cloud layer consists of multiple servers with strong processing,
caching, and computing capabilities. With a global view, this layer can leverage
advanced techniques such as data mining and big data, for a network-level orches-
tration shift from reactive to proactive network operation, by predicting events or
pre-allocating resources.With their high computing capability and sufficient caching
resources, cloud servers can process delay-tolerant applications and store larger or
less popular content. Further, the central cloud layer can effectively manage and
control multiple edge servers and provide them with secure connections.

2.2 Computation Model

Computation offloading is an approach to offload computation-intensive and delay-
sensitive tasks to resource-rich edge servers and/or cloud servers to process. This
approach can help prolong the battery life of mobile devices and reduce task pro-
cessing latency. The key problems in computation offloading are in deciding whether
to offload, the amount of the computation task that needs offloading, andwhich server
to offload to. Basically, computation offloading can result in the following three types
of decisions [13], as shown in Fig. 2.2:

12 2 Mobile Edge Computing

Fig. 2.2 Computation offloading decision

• Local execution: The entire computation task is completed locally. If the compu-
tational resources of the edge servers are unavailable or the wireless channel is of
poor quality, which can result in high transmission latency, local execution can be
preferred.

• Full offloading: The entire computation task is offloaded and processed by an edge
server.

• Partial offloading: Part of the computation task is processed locally while the rest
is offloaded to an edge server.

The computation offloading decision is very difficult, since it requires considering
multiple factors, such as application requirements, the quality of the communication
link, and the computing resource capacities of edge servers.

2.2.1 Computation Model of Local Execution

As the noted above, the CPU is the primary engine for computation. The CPU’s
performance is controlled by CPU cycles fm . The state-of-the-art mobile CPU archi-
tecture adopts an advanced dynamic frequency and voltage scaling technique, which
allows for stepping up or down CPU cycles, increasing and reducing energy con-
sumption, respectively. In practice, the value of fm is bounded by a maximum value,
fmax , which reflects the limitation of the mobile’s computation capability. A compu-
tation task can be described as D � (d, c, T), where d denotes the data size of the
computation task, c is the required number of CPU cycles for computing one bit of
the computation task, and T denotes the maximum latency allowed to accomplish
the task. The local execution time for a computing task D can now be expressed as

T L = dc

fm
(2.1)

which indicates that more CPU cycles are required to reduce the execution latency.

2.2 Computation Model 13

Since devices are energy constrained, the energy consumption of local execution
is a critical performance metric for computing efficiency. According to [14], the
energy consumption of each CPU cycle is given by ς f 2m , where ς is the effective
switched capacitance, depending on the chip architecture. The energy consumption
for executing task D with fm CPU cycles can be derived as

EL = ςdc f 2m (2.2)

From (2.1) and (2.2), if T L is greater than the maximum latency or if the device’s
battery capacity is less than EL , the device should offload the task to edge servers to
process. Otherwise, local execution can support the computation task.

2.2.2 Computation Model of Full Offloading

In this section, we present two computation models of the full offloading for a single-
user MEC system and a multi-user MEC system, respectively.

The single-user MEC system is the simplest case and consists of a single device
and a single edge server. Denote Fe as the computational resource capacity of the
edge server. The device offloads the entire computation task to the edge server to
process. The task computation time is thus given by

t F,computing = dc

Fe
(2.3)

Since the process of offloading involveswireless transmission, the total task execution
time is the sum of the task computation time and the task transmission time, which
can be expressed as

T F,s = dc

Fe
+ d

rs
(2.4)

where r s is thewireless transmission data rate between the device and the edge server.
The energy consumption for completing the offloaded computation task also includes
two parts: the energy consumption for computation and the energy consumption for
wireless transmission. The total energy consumption can be expressed as

EF,s = ςdcF2
e + p

d

rs
(2.5)

where p is the transmission power of the device.
In the multi-user MEC system, several devices can be associated with the same

edge server and offload their tasks to the edge server simultaneously. In this case,
each device is assigned only to a part of the edge server’s computational resources.
Denote the computation task of device i as Di � (di , ci , Ti), where di denotes the

14 2 Mobile Edge Computing

data size of the computation task on device i , ci is the required number of CPU
cycles for computing one bit of the computation task, and Ti denotes the maximum
latency allowed to accomplish the task. Let f ie be the computational resources that
the edge server allocates to device i . Since the process of offloading involves wireless
transmission, the total task execution time of device i can be expressed as

T F,m
i = dici

f ie
+ di

rmi
(2.6)

where rmi is the wireless transmission data rate between device i and the edge server.
The corresponding energy consumption of completing the offloaded computation

task of device i can be expressed as

EF,m
i = ςdici (f

i
e)

2 + pi
di
rmi

(2.7)

where pi is the transmission power of device i .
Different from the single-userMECsystem, devices in themulti-userMECsystem

share the same computational resources and wireless channel. Therefore, computa-
tional resource allocation, channel assignment, bandwidth allocation, and power con-
trol should be jointly optimized. Since the total computational resources of the edge
server are limited, there is a computational resource constraint (i.e.,

∑
i f

i
e ≤ Fe). A

more complex model considering a multi-user multi-MEC server was proposed in
[14, 15]. With the dense deployment of MEC servers, a joint user association and
computation offloading scheme was designed in [14], and a joint communication
resource allocation and computation offloading scheme was designed in [15].

2.2.3 A Computation Model for Partial Offloading

Partial offloading is a very complex process that can be affected by different factors,
such as the offloadability of an application [16], the dependency of the offloadable
parts [17], and user preferences and channel connection quality [32]. To simplify
the description, we assume each computation task can be offloaded and arbitrarily
divided into two parts. One part is executed on the device and the other is offloaded
to an edge server for edge execution.

Let λ (0 ≤ λ ≤ 1) be the offloading ratio, which represents the ratio of the
offloaded task to the total task. That is, an amount λd is offloaded to the edge server
to be computed and the rest, (1 − λ) d, is computed locally. The task computation
time upon partial offloading can be expressed as

t P,computing = (1 − λ)dc

fm
+ λdc

Fe
(2.8)

2.2 Computation Model 15

Since one part of the computation task (i.e., λd) involves wireless transmission, the
total time for completing this task can be expressed as

T P = (1 − λ)dc

fm
+ λdc

Fe
+ λd

r
(2.9)

The energy consumption required for completing this task consists of three parts:

EP = ς(1 − λ)dc f 2m + ςλdcF2
e + p

λd

r
(2.10)

where the first term indicates the local energy consumption for processing the amount
(1 − λ) d, the second term indicates the energy consumption for processing the
amount λd on the edge server, and the third term is the energy consumption of the
wireless transmission. In partial offloading, the key problem is to decide the offload-
ing ratio, considering system constraints. For example, if the energy or computational
resources of the device are almost used up, offloading the task to the edge server is
desirable (i.e., the offloading ratio should be close to one). If the quality of the wire-
less channel is poor or the available computational resources of the edge server are
limited, local execution could be a better choice. Note that the above models can be
easily extended to the multi-user MEC system.

2.3 Offloading Policy

The key problem in edge computing is making the offloading decision. According
to the previous description, the results of the offloading decision are either local
execution, full offloading, or partial offloading. Combining local execution and full
offloading, the problem can be modeled as a zero–one binary offloading problem.
Partial offloading can be modeled as a continuous offloading decision making prob-
lem. First, we introduce the research on binary offloading in the next section.

2.3.1 Binary Offloading

Binary offloadingmainly involves small-scale computation tasks that have high com-
putational resource requirements. Such tasks will be offloaded in entirety to the edge
server. Computing offloading can effectively reduce the task completion delay and
save the energy consumption of devices. When the device does not choose offload-
ing (i.e., local execution), the task completion delay involves only the local task
computation time. When the device chooses offloading, the task completion delay
involves three parts: (1) the wireless transmission time of the computation task from
the device to the edge server, (2) the task computation time spent on the edge server,

16 2 Mobile Edge Computing

and (3) the wireless transmission time of the computation result from the edge server
to the device. Similarly, when the device does not offload the task, the total energy
consumption required to complete the task includes only local task computation
energy consumption. If the device offloads any of the computation task, the total
energy consumption consists of two parts: the energy consumption of the wireless
transmission from the device to the edge server and the energy consumption of the
computation on the edge server.

2.3.1.1 Minimization of Task Execution Delay

The authors in [18] proposed a one-dimensional search algorithm to minimize exe-
cution delay. The proposed algorithm can find an optimal offloading decision policy
based on the buffer state, available processing power, and channel information. The
offloading decision determines whether to process the application locally or at the
MEC server. Another idea aimed at minimizing the execution delay was introduced
in [20]. Compared to [18], these authors considered users applying dynamic voltage
and frequency scaling and proposed a low-complexity Lyapunov optimization-based
dynamic computation offloading algorithm. This algorithm allows users to make an
offloading decision in each time slot and simultaneously allocates CPU cycles and
transmission power. The proposed method can reduce execution times by up to 64%
by offloading the computation task to the edge server. Different from the two works
focusing on the design of computation offloading algorithms, the authors in [19] pro-
posed an MEC-assisted offloading architecture that allows for deploying intelligent
scheduling logic, namely, a mobile edge scheduler, at the MEC without requiring
large computational resources at the eNodeB hardware. The introduced mobile edge
scheduler runs on the eNodeB. A two-stage scheduling process was proposed to
minimize the delay of general traffic flows in the LTE downlink via the MEC server
deployed at the eNodeB.

2.3.1.2 Minimization of Energy Consumption

The computation offloading decision to minimize the energy consumption of devices
was proposed in [21]. These authors formulated the optimization problem as a con-
strained Markov decision process. To solve the optimization problem, two types of
resource allocation strategies accounting for both computational and radio resources
were introduced. The first strategy is based on online learning, where the network
adapts dynamicallywith respect to the application running on the device. The second,
precalculated offline strategy is based on prior knowledge of the application proper-
ties and statistical behavior of the radio environment. Numerical experiments showed
that the precalculated offline strategy can outperform the online strategy by up to
50% for low and medium arrival rates (loads). Since the offline strategy proposed in
[21] showed its merits, the authors in [22] proposed two additional offline dynamic
programming approaches to minimize the average energy consumption of devices.

2.3 Offloading Policy 17

One of the dynamic programming approaches to find the optimal radio scheduling
offloading policy is deterministic, while the other is randomized. Numerical exper-
iments showed both offline policies can reduce energy consumption compared to
offloading-only and static processing strategies. The authors in [22] further extended
the work in [23] from single user to multi-user by jointly optimizing resource allo-
cation and computation offloading to guarantee fairness between users, low energy
consumption, and average queuing/delay constraints. Another multi-user offloading
decision strategywas proposed in [24] tominimize system energy consumption. This
paper determined three multi-user types based on the time and energy cost of the task
computing process. The first type of user can compute tasks on the MEC server. The
second type of user computes the task on local equipment. The third type of user can
decide to either implement tasks locally or offload tasks to theMEC server. Based on
the user classification, a joint computation offloading and radio resource allocation
algorithm was proposed. The proposed algorithm can decrease energy consumption
by up to 15% compared to computation without offloading.

2.3.1.3 Trade-Off Between Energy Consumption and Execution Delay

A computation offloading decision for a multi-user multi-task scenario was pro-
posed in [25] to make the trade-off between energy consumption and execution
delay. These authors considered jointly the offloading decisions for all the tasks of
each user and the sharing of computational and communication resources among all
the users as they compete to offload tasks through a wireless link with limited capac-
ity. The computation offloading problem is formulated as a non-convex quadratically
constrained quadratic program. To solve this problem, an efficient three-step algo-
rithm was designed that involves semidefinite relaxation, alternating optimization,
and sequential tuning. The numerical results showed the proposed algorithm out-
performed purely local processing, purely cloud processing, and hybrid local–cloud
processing without an edge server. Another algorithm for the computation offloading
decision to trade off energy consumption and execution delay was proposed in [26].
The main difference between the works [25, 26] is that the task in [25] can be also
offloaded to a remote centralized cloud if the computational resources of the MEC
are insufficient. In [26], the authors proposed a computation offloading decision to
minimize both the total task execution latency and the total energy consumption of
mobile devices. Two cases of mobile devices were considered: devices with a fixed
CPU frequency and those with an elastic CPU frequency. In the fixed CPU sce-
nario, a linear programming relaxation–based algorithm was proposed to determine
the optimal task allocation decision. In the elastic CPU scenario, the authors first
considered an exhaustive search–based algorithm and then utilized a semidefinite
relaxation algorithm to find the near-optimal solution.

18 2 Mobile Edge Computing

2.3.2 Partial Offloading

The literature cited above focused on binary offloading strategies. In a binary offload-
ing problem, the computing task is considered as a whole. However, in practical
applications, computing tasks are often divided into multiple parts [27]. According
to the divisible nature of computing tasks, devices can offload part of a task, rather
than its entirety, to the edge server. There are thus two types of tasks: (1) tasks that
can be divided into multiple discrete segments that can all be offloaded to the MEC
server for execution and (2) tasks that can be split into two consecutive parts, non-
offloadable and offloadable, and only the offloadable part can be offloaded. Next, we
introduce works focused on partial offloading.

2.3.2.1 Minimization of Task Execution Delay

The authors in [28] investigated a latency minimization resource allocation problem
for a multi-user offloading system with partial offloading. A partial compression
offloadingwas proposed that has three steps. First, each device compresses part of the
raw data locally and then transmits the compressed data to the edge server. Second,
the device transmits the remaining part of the raw data to the edge server, which
compresses the data. Finally, the edge server combines the two parts of compressed
data in the cloud center. A weighted sum latency minimization partial compression
offloading problem was formulated and an optimal resource allocation algorithm
based on the subgradient was designed. More general work on partial offloading
was covered in [29]. The authors jointly considered a partial offloading and resource
allocation scheme to minimize the total latency for a multi-user offloading system
based on orthogonal frequency division multiple access. The proposed scheme first
determines the optimal offloading fraction to ensure that the edge computing delay
is less than the local execution delay. Then, the proposed scheme determines how
to allocate the communication and computational resources. Additionally, users can
make full use of multi-channel transmissions to further reduce the transmission delay
for tasks with a large data size. The simulation results show that the proposed scheme
achieves 17% and 25% better performance than random and complete offloading
schemes, respectively.

2.3.2.2 Minimization of Energy Consumption

In [27], the authors investigated partial computation offloading to minimize the
energy consumption of devices by jointly optimizing the CPU cycle frequency,
the transmission power, and the offloading ratio. They designed an energy-optimal
partial computation offloading algorithm that transformed the non-convex energy
consumption minimization problem into a convex one based on the variable substi-
tution technique and obtained a globally optimal solution. The authors also analyzed

2.3 Offloading Policy 19

the conditions under which local execution is optimal. Analyzing the optimality of
total offloading, the authors concluded that total offloading cannot be optimal under
dynamic voltage scaling of the device. The authors in [30] proposed a joint schedul-
ing and computation offloading algorithm for multi-component applications using
an integer programming approach. The optimal offloading decision involves which
components need to be offloaded, as well as their scheduling order. The proposed
algorithm provides a greater degree of freedom in the solution by moving away
from a compiler predetermined scheduling order for the components toward a more
wireless-aware scheduling order. For some component dependency graph structures,
the proposed algorithm can shorten execution times by the parallel processing of
appropriate components on the devices and in the cloud. To minimize the expected
energy consumption of the mobile device, an energy-efficient scheduling policy for
collaborative task execution between the mobile device and a cloud clone was pro-
posed in [31]. The authors formulated the energy-efficient task scheduling problem
as a constrained stochastic shortest path problem on a directed acyclic graph. They
also considered three alternative stochastic wireless channel models: the block fad-
ing channel, the independent and identically distributed stochastic channel, and the
Markovian stochastic channel. To solve the formulated problem, the authors lever-
aged a one-climb policy and designed a heuristic algorithm to determine the task
execution decision.

2.3.2.3 Trade-Off Between Energy Consumption and Execution Delay

Partial offloading decision considering a trade-off between energy consumption and
execution delay was described in [32]. The offloading decision considered four
parameters: (1) the total number of bits to be processed, (2) the CPU cycles of
the device and of the MEC server, (3) the channel state between the device and the
serving femtocell access points, and (4) the device’s energy consumption. The joint
communication and computational resource allocation problem was formulated as a
convex optimization problem. The simulation results indicated that partial offload-
ing could reduce the energy consumption of devices, compared to the case of full
offloading, when all the computation tasks are forced to be carried out on either the
device or at the femtocell access point. The study in [33] provided a more in-depth
theoretical analysis on the trade-off between energy consumption and the latency of
the offloaded applications preliminarily handled in [32]. To carry out partial offload-
ing, the authors considered data partition-oriented applications and focused on three
parameters of an application: (1) the size of the data, (2) the completion deadline,
and (3) the output data size. Then, a joint optimization of the radio and computational
resource problem was formulated, and a simple one-dimensional convex numerical
optimization technique was utilized to solve it. The authors further demonstrated
that the probability of computation offloading is higher when given good channel
quality. The authors in [34] considered the trade-off between power consumption
and execution delay for a multi-user scenario. The authors formulated a power con-
sumption minimization problem with an application buffer stability constraint. An

20 2 Mobile Edge Computing

online algorithm based on Lyapunov optimization was proposed that decides the
optimal CPU frequency of the device for local execution and allocates the trans-
mission power and bandwidth when offloading the application to an edge server.
The numerical results demonstrated that computation offloading can reduce power
consumption up to roughly 90% and reduce execution delays by approximately by
98%.

2.4 Challenges and Future Directions

A wide variety of research challenges and opportunities exists for future research
on computation offloading. However, the MEC research is still in its infancy, and
many critical factors have been overlooked for simplicity. In this section, we point
out several open challenges and shed light on possible future research directions.

• Multi-server scheduling: The collaboration of multiple MEC servers allows for
their resources to be jointly managed in serving a large number of mobile devices
simultaneously. Server cooperation not only can improve resource utilization but
also can provide mobile users with more resources to enhance user experience.
However, the increase in network size hinders practical MEC server scheduling.
Toomanyoffloading userswill cause severe inter-user communication interference
and the system will need to make large numbers of offloading decisions. More
comprehensive research is required for multi-server scheduling.

• Multi-resource optimization: The architecture of mobile edge networks involves
various resources: computing, caching, and communication resources. The effi-
cient integration of these resources to achieve optimal performance for all users
and applications is quite challenging. Efficient resource management requires the
design of distributed low-complexity resource optimization algorithms, consider-
ing radio and computational resource constraints and computation overhead.

• User mobility: User mobility is a key challenge in mobile edge networks. Since
the movement and trajectory of users provide location and personal preference
information for edge servers, the contact times between users and MEC servers is
dynamic, which will impact the offloading strategy. Moreover, the frequent mobil-
ity of users causes frequent handovers among edge servers, which will increase
computation latency and thus deteriorate user experience. Therefore, mobility
management techniques from both horizontal and vertical perspectives should be
implemented to allow users seamless access to edge servers.

• Security: Security is one of the main concerns of technology advisers in securing
MECdeployments. Thedeployment of edge cloud servers is creatingnovel security
challenges due to the exploitation of mobile device information. The growing
rate of the evolution of security solutions cannot keep up with the pace of new
security challenges. Many existing security protocols assume full connectivity,
which is not realistic in mobile edge networks, since many links are intermittent
by default. On the other hand, in MEC, user data are offloaded to an MEC server

2.4 Challenges and Future Directions 21

that gives access control to other mobile users. This introduces challenges, such
as data integrity and authorization. For example, offloaded data can be modified
or accessed by malicious users. Moreover, data owners and data servers possess
dissimilar identities and business interests that make the scenario more vulnerable.
Therefore, a comprehensive scientistic research study is required to avoid any
security issues that can damage MEC systems.

This chapter first introduced the hierarchical mobile edge computing architecture
with a cloud plane, an edge plane, and a user plane. Then, three types of computation
models were discussed in detail for the typical computation offloading problem in
MEC. In terms of the offloading decision, current research on computation offloading
was surveyed, as were the binary offloading and partial offloading problems. Finally,
several open challenges and future directions were discussed.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	2 Mobile Edge Computing
	2.1 A Hierarchical Architecture of Mobile Edge Computing (MEC)
	2.2 Computation Model
	2.2.1 Computation Model of Local Execution
	2.2.2 Computation Model of Full Offloading
	2.2.3 A Computation Model for Partial Offloading

	2.3 Offloading Policy
	2.3.1 Binary Offloading
	2.3.2 Partial Offloading

	2.4 Challenges and Future Directions

