Skip to main content

Application of Advanced Oxidation Processes (AOPs) for the Treatment of Petrochemical Industry Wastewater

  • Chapter
  • First Online:
Advanced Industrial Wastewater Treatment and Reclamation of Water

Abstract

Petrochemicals are derived directly or indirectly from petroleum. During the production of petrochemicals, various refractory and toxic pollutants are generated, which are harmful to the aquatic system. These pollutants are genotoxic, carcinogenic, and teratogenic. Although these pollutants are harmful, only a limited number of studies have been performed on their removal or degradation. Conventional wastewater treatment techniques are not efficient in removing these pollutants from wastewater. Therefore, the scientific community is now putting up efforts to make the Advanced Oxidation Processes (AOPs) more efficient. The main aim is to produce very reactive species (especially hydroxyl radicals, HO˙) in water by the AOPs. This leads to the degradation or transformation of the contaminants or pollutants, resulting in complete mineralization. The most studied AOPs for the degradation of petrochemical wastewater pollutants are photocatalytic oxidation (PCO), ozonation, catalytic oxidation, catalytic ozonation, and electrochemical advanced oxidation processes. This chapter specifically discusses the various AOPs used to remove specific pollutants and chemical oxygen demand (COD) from petrochemical wastewater treatment to meet discharge standards.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AOP:

Advanced Oxidation Processes

API:

American Petroleum Institute

ASP:

Activated sludge processes

BOD:

Biological oxygen demand

BPT:

Best practicable control technology

BTEX:

Benzene, toluene, ethylbenzene, and xylene

CCL:

Candidate contamination list

COD:

Chemical oxygen demand

DAF:

Dissolved air flotation

DAP:

Diammonium phosphate

DCE:

1,2-Dichloroethane

DCM:

Dichloromethane

DNA:

Deoxyribonucleic acid

DOM:

Dissolved organic matter

EAOPs:

Electrochemical advanced oxidation processes

EF:

Electro-Fenton

EPS:

Extracellular polymeric substances

GAC:

Granular activated carbon

LB-EPS:

Lightly bound EPS

MBR:

Membrane bio-reactor

MEB:

Methyl ethylbenzene

MTBE:

Methyl tert-butyl ether

PAC:

Powered activated carbon

PC:

Peroxi-coagulation

PCO:

Photocatalytic oxidation

PEF:

Photoelectro Fenton

PTA:

Purified terephthalic acid

RBC:

Rotating biological contactor

RO:

Reverse Osmosis

SBR:

Sequencing batch reactor

SPEF:

Solar photoelectro-Fenton

TB-EPS:

Tightly bound EPS

tBME:

T-butyl methyl ether

TDS:

Total dissolved solids

TOC:

Total organic carbon

TPHI:

Total petroleum hydrocarbon index

TPI:

Tilted plate interceptor

TSS:

Total suspended solids

UF:

Ultra Filtration

US:

Ultrasound

US EPA:

U.S. Environmental Protection Agency

UV:

Ultraviolet

VOCs:

Volatile organic compounds 

References

  • Abdullah H, Gultom NS, Kuo DH (2019) Synthesis and characterization of La-doped Zn (O, S) photocatalyst for green chemical detoxification of 4-nitrophenol. J Hazard Mater 363:109–118

    PubMed  CAS  Google Scholar 

  • Ahmadi M, Haghighifard NJ, Soltani RD, Tobeishi M, Jorfi S (2019) Treatment of saline petrochemical wastewater containing recalcitrant organics using Electro-Fenton process: persulfate and ultrasonic intensification. Desalin Water Treat 169:241–250

    CAS  Google Scholar 

  • Ahmadi M, Kakavandi B, Jaafarzadeh N, Babaei AA (2017) Catalytic ozonation of high saline petrochemical wastewater using PAC@FeIIFe2IIIO4: optimization, mechanisms and biodegradability studies. Sep Purif Technol 177:293–303

    CAS  Google Scholar 

  • Alva-Argáez A, Kokossis AC, Smith R (2007) The design of water-using systems in petroleum refining using a water-pinch decomposition. Chem Eng J 128:33–46

    Google Scholar 

  • Annexure, Brief process description of PTA-ETP (2016). http://www.environmentclearance.nic.in/writereaddata/online/EC/05012018IYUX5675Annexure.pdf. Accessed on 16 January 2021

  • Bahri M, Mahdavi A, Mirzaei A, Mansouri A, Haghighat F (2018) Integrated oxidation process and biological treatment for highly concentrated petrochemical effluents: a review. Chem Eng Process 125:183–196

    CAS  Google Scholar 

  • Bai X, Yang L, Hagfeldt A, Johansson E, Jin P (2019) D35-TiO2 nano-crystalline film as a high performance visible-light photocatalyst towards the degradation of bis-phenol A. Chem Eng J 355:999–1010

    CAS  Google Scholar 

  • Balgude S, Sethi Y, Kale B, Amalnerkar D, Adhyapak P (2019) Sn3O4 microballs as highly efficient photocatalyst for hydrogen generation and degradation of phenol under solar light irradiation. Mater Chem Phys 221:493–500

    CAS  Google Scholar 

  • Bolton JR, Cater SR (1994) Homogenous photodegradation of pollutants in contaminated water: an introduction. In: Heltz GR, Zepp RG, Crosby DG (eds) Aquatic and surface photochemistry. Lewis Publishers, Florida, pp 467–490

    Google Scholar 

  • Bustillo-Lecompte C, Kakar D, Mehrvar M (2018) Photochemical treatment of benzene, toluene, ethylbenzene, and xylenes (BTEX) in aqueous solutions using advanced oxidation processes towards a cleaner production in the petroleum refining and petrochemical industries. J Clean Prod 186:609–617

    CAS  Google Scholar 

  • Carvajal A, Akmirza I, Navia D, Pérez R, Muñoz R, Lebrero R (2018) Anoxic denitrification of BTEX: biodegradation kinetics and pollutant interactions. J Environ Manag 214:125–136

    CAS  Google Scholar 

  • Cesarino I, Cesarino V, Moraes FC, Ferreira TC, Lanza MR, Mascaro LH, Machado SA (2013) Electrochemical degradation of benzene in natural water using silver nanoparticle-decorated carbon nanotubes. Mat Chem Phy 141:304–309

    Google Scholar 

  • Chavan A, Mukherji S (2008) Treatment of hydrocarbon-rich wastewater using oil degrading bacteria and phototrophic microorganisms in rotating biological contactor: effect of N: P ratio. J Hazard Mater 154:63–72

    PubMed  CAS  Google Scholar 

  • Chen C, Yu J, Yoza B, Li Q, Wang G (2015) A novel “wastes-treat-wastes” technology: role and potential of spent fluid catalytic cracking catalyst assisted ozonation of petrochemical wastewater. J Environ Manag 152:58–65

    CAS  Google Scholar 

  • Chen G, Wang Z, Lin F, Zhang Z, Yu H, Yan B, Wang Z (2020) Comparative investigation on catalytic ozonation of VOCs in different types over supported MnOx catalysts. J Hazard Mater 391:122218

    Google Scholar 

  • Chen Y, Li H, Liu W, Tu Y, Zhang Y, Han W, Wang L (2014) Electrochemical degradation of nitrobenzene by anodic oxidation on the constructed TiO2-NTs/SnO2-Sb/PbO2 electrode. Chemosphere 113:48–55

    PubMed  ADS  CAS  Google Scholar 

  • Cheng SS, Ho CY, Wu JH (1997) Pilot study of UASB process treating PTA manufacturing wastewater. Water Sci Technol 36:73–82

    CAS  Google Scholar 

  • Contaminant Candidate List (CCL) and Regulatory Determination, https://www.epa.gov/ccl/contaminant-candidate-list-4-ccl-4-0. Accessed on 11 March 2021

  • Crittenden J, Kujawski D (2020) Oil refining and petrochemical wastewater treatment: creating a better mousetrap. https://www.watertechonline.com/wastewater/article/14176280/oil-refining-and-petrochemical-wastewater-treatment. Accessed on 15 January 2021

  • Dietrich M, Franke M, Stelter M, Braeutigam P (2017) Degradation of endocrinedisruptor bisphenol A by ultrasound-assisted electrochemical oxidation in water. Ultrason Sonochem 39:741–749

    PubMed  CAS  Google Scholar 

  • Electronic Code of Federal Regulations (2021) Title 40: Protection of Environment, PART 419—petroleum refining point source category. https://www.ecfr.gov/cgi-bin/text-idx?SID=6b51273d47e8dc451e0aac10f60cdfee&mc=true&node=pt40.31.419&rgn=div5#sp40.31.419.c. Accessed on 25 January 2021

  • El-Naas MH, Alhaija MA, Al-Zuhair S (2014) Evaluation of a three-step process for the treatment of petroleum refinery wastewater. J Environ Chem Eng 2:56–62

    CAS  Google Scholar 

  • Environmental guidelines for petrochemicals manufacturing, multilateral investment guarantee agency (MIGA) (2004), pp 461–467. https://www.miga.org/documents/Petrochemicals.pdf. Accessed 15 March 2021

  • Environmental, Heath, and Safety Guidelines Petroleum Refining, World Bank Group (2016), pp 1–35, November 17. https://www.ifc.org/wps/wcm/connect/bde2da1d-3a09-400b-be24-3f6a60353ddc/2016-EHS+Guidelines+for+Petroleum+Refining+FINAL.pdf?MOD=AJPERES&CVID=lxPS7Bu. Accessed 23 February 2021

  • Eslami A, Hashemi M, Ghanbari F (2018) Degradation of 4-chlorophenol using catalyzed peroxymonosulfate with nano-MnO2/UV irradiation: toxicity assessment and evaluation for industrial wastewater treatment. J Clean Prod 195:1389–1397

    CAS  Google Scholar 

  • European Commission, Joint Research Center, Best Available Techniques (BAT) Reference Document for the Refining of Mineral Oil and gas, Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control), Joint Research Center, Institute for Prospective Technological Studies Sustainable Production and Consumption Unit European IPPC Bureau (2013). https://ec.europa.eu/jrc/en/publication/eur-scientific-and-technical-research-reports/best-available-techniques-bat-reference-document-refining-mineral-oil-and-gas-industrial. Accessed 17 February 2021

  • European Commission, Joint Research Center, Best Available Techniques (BAT) Reference Document for the Refining of Mineral Oil and Gas, Industrial Emissions, Directive 2010/75/EU (Integrated Pollution Prevention and Control), Pascal Barthe, Michel Chaugny, Serge Roudier, Luis Delgado Sancho, Report EUR 27140 EN (2015) http://eippcb.jrc.ec.europa.eu/reference/BREF/REF_BREF_2015.pdf. Accessed 6 January 2021

  • Fu L, Wu C, Zhou Y, Zuo J, Song G, Tan Y (2019) Ozonation reactivity characteristics of dissolved organic matter in secondary petrochemical wastewater by single ozone, ozone/H2O2, and ozone/catalyst. Chemosphere 233:34–43

    PubMed  ADS  CAS  Google Scholar 

  • Giannakis S, Lin KY, Ghanbari F (2020) A review of the recent advances on the treatment of industrial wastewaters by sulfate radical-based advanced oxidation processes (SR-AOPs). ChemEng J 406:127083.

    Google Scholar 

  • Gümüs D, Akbal F (2016) Comparison of Fenton and electro-Fenton processes for oxidation of phenol. Procss Saf Environ 103:252–258

    Google Scholar 

  • Hajizadeh Y, Teiri H, Nazmara S, Parseh I (2018) Environmental and biological monitoring of exposures to VOCs in a petrochemical complex in Iran. Environ Sci Pollut Res 25(7):6656–6667

    CAS  Google Scholar 

  • Hayati F, Isari AA, Fattahi M, Anvaripour B, Jorfi S (2018) Photocatalytic decontamination of phenol and petrochemical wastewater through ZnO/TiO2 decorated on reduced graphene oxide nanocomposite: influential operating factors, mechanism, and electrical energy consumption. RSC Adv 8:40035–40053

    ADS  CAS  Google Scholar 

  • Hentati O, Lachhab R, Ayadi M, Ksibi M (2013) Toxicity assessment for petroleum-contaminated soil using terrestrial invertebrates and plant bioassays. Environ Monit Assess 185:2989–2998

    PubMed  CAS  Google Scholar 

  • Herrmann JM, Guillard C, Disdier J, Lehaut C, Malato S, Blanco J (2002) New industrial titaniaphotocatalysts for the solar detoxification of water containing various pollutants. Appl Catal B Environ 35:281–294

    CAS  Google Scholar 

  • Hindustan Dorr Oliver Limited, EPC: Water & Wastewater Management: Water & Wastewater Management Projects (2021). http://www.hdo.in/epc/waterWastewaterProjects.html#1. Accessed on 04 February 2021

  • Hou Z, Feng J, Lin T, Zhang H, Zhou X, Chen Y (2018) The performance of manganese-based catalysts with Ce0.65Zr0.35O2 as support for catalytic oxidation of toluene. Appl Surf Sci 434:82–90

    ADS  CAS  Google Scholar 

  • Huang M, Penning TM (2014) Processing contaminants: polycyclic aromatic hydrocarbons (PAHs). In: Motarjemi Y (ed) Encyclopaedia of food safety, vol 2. Academic Press, pp 416–423

    Google Scholar 

  • Huang Y, Luo M, Xu Z, Zhang D, Li L (2019) Catalytic ozonation of organic contaminants in petrochemical wastewater with iron-nickel foam as catalyst. Sep Purif Technol 211:269–278

    CAS  Google Scholar 

  • IL & FS Ecosmart Limited Hyderabad, Technical EIA Guidance Manual for Petrochemical Complexes, Prepared for the Ministry of Environment and Forests, Government of India, 2010 September. http://environmentclearance.nic.in/writereaddata/Form1A/HomeLinks/TGM_Petrochemical%20Complexes_160910_NK.pdf. Accessed on 5 January 2021

  • IPIECA, Petroleum refining water/wastewater use and management, IPIECA Operations Best Practice Series, London, United Kingdom (2010). https://www.ipieca.org/resources/good-practice/petroleum-refining-water-wastewater-use-and-management/. Accessed on 02 February 2021

  • Ishak S, Malakahmad A, Isa MH (2012) Refinery wastewater biological treatment: a short review. J Scient Indust Res 71:251–256

    CAS  Google Scholar 

  • Ivana Regina Couto de Brito (2009) Ecology of nitrification in oil refinery wastewater treatment Systems. PhD Thesis, School of Civil Engineering and Geosciences, University of Newcastle upon Tyne, Newcastle upon Tyne, UK, NE1 7RU. http://theses.ncl.ac.uk/jspui/handle/10443/1161. Accessed on 27 January 2021

  • Izadyar S, Fatemi S (2013) Fabrication of X zeolite based modified nano TiO2 photocatalytic paper for removal of VOC pollutants under visible light. Ind Eng Chem Res 52:10961–10968

    CAS  Google Scholar 

  • Jafarinejad S (2017a) Petroleum waste treatment and pollution control, 1st edn. Elsevier Inc., Butterworth-Heinemann, USA

    Google Scholar 

  • Jafarinejad S (2017b) Recent developments in the application of sequencing batch reactor (SBR) technology for the petroleum industry wastewater treatment. Chem Int 3(3):342–350

    Google Scholar 

  • Jafarinejad S, Jiang SC (2019) Current technologies and future directions for treating petroleum refineries and petrochemical plants (PRPP) wastewaters. J Environ Chem Eng 7(5):103326

    Google Scholar 

  • Jain M, Majumder A, Ghosal PS, Gupta AK (2020) A review on treatment of petroleum refinery and petrochemical plant wastewater: a special emphasis on constructed wetlands. J Environ Manag 272:111057

    Google Scholar 

  • Jemli M, Zaghden H, Rezgi F, Kchaou S, Aloui F, Sayadi S (2017) Biotreatment of petrochemical wastewater: a case study from northern Tunisia. Water Environ Res 89:228–237

    PubMed  CAS  Google Scholar 

  • Jorfi S, Pourfadakari S, Ahmadi M (2017) Electrokinetic treatment of high saline petrochemical wastewater: evaluation and scale-up. J Environ Manag 204:221–229

    CAS  Google Scholar 

  • Jothinathan L, Cai QQ, Ong SL, Hu JY (2021) Organics removal in high strength petrochemical wastewater with combined microbubble-catalytic ozonation process. Chemosphere 263:127980

    Google Scholar 

  • Kakavandi B, Ahmadi M (2019) Efficient treatment of saline recalcitrant petrochemical wastewater using heterogeneous UV-assisted sono-Fenton process. Ultrason Sonochem 56:25–36

    PubMed  CAS  Google Scholar 

  • Kalemos A, Mavridis A (2008) Electronic structure and bonding of ozone. J Chem Phys 129:0543121–0543128

    Google Scholar 

  • Karthik M, Dafale N, Pathe P, Nandy T (2008) Biodegradability enhancement of purified terephthalic acid wastewater by coagulation: flocculation process as pretreatment. J Hazard Mater 154:721–730

    PubMed  CAS  Google Scholar 

  • Khaksar A, Nazif S, Taebi A, Shahghasemi E (2017) Treatment of phenol in petrochemical wastewater considering turbidity factor by backlight cascade photocatalytic reactor. J Photochem Photobiol A 348:161–167

    CAS  Google Scholar 

  • Lachheb H, Puzenat E, Houas A, Ksibi M, Elaloui E, Guillard C, Herrmann JM (2002) Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Appl Catal B Environ 39:75–90

    CAS  Google Scholar 

  • Li H, Ji J, Cheng C, Liang K (2018) Preparation of phenol-formaldehyde resin-coupled TiO2 and study of photocatalytic activity during phenol degradation under sunlight. J Phys Chem Solids 122:25–30

    ADS  CAS  Google Scholar 

  • Li J, Xu X, Liu X, Qin W, Wang M, Pan L (2017) Metal-organic frame works derived cake-like anatase rutile mixed phase TiO2 for highly efficient photo-catalysis. J Alloy Comp 690:640–646

    CAS  Google Scholar 

  • Liang DW, Zhang T, Fang HH, He J (2008) Phthalates biodegradation in the environment. Appl Microbiol Biotechnol 80:183-198

    Google Scholar 

  • Liu X, Chen L, Zhu T, Ning R (2019) Catalytic oxidation of chlorobenzene over noble metals (Pd, Pt, Ru, Rh) and the distributions of polychlorinated by-products. J Hazard Mater 363:90–98

    PubMed  CAS  Google Scholar 

  • Mantzavinos D (2007) Basic unit operations in wastewater treatment. In: Oreopoulou V, Russ W (eds) Utilization of by-products and treatment of waste in the food industry. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-35766-9_3. Accessed on 01 February 2021

  • Meng S, Bi Y, Yan T, Zhang Y, Wu T, Shao Y, Wei D, Du B (2018) Room-temperature fabrication of bismuth oxybromide/oxyiodidephotocatalyst and efficient degradation of phenolic pollutants under visible light. J Hazard Mater 358:20–32

    PubMed  CAS  Google Scholar 

  • Mills A, Soo-Keun Lee SK (2005) Semiconductor photocatalysis. In: Parsons S (ed) Advanced oxidation processes for water and wastewater treatment, IWA Publishing, Alliance House, 12 Caxton Street, London, pp 137–166

    Google Scholar 

  • Moattar M, Lotfi M, Jorfi S (2019) Evaluation of photo-assisted electro-Fenton process for the treatment of a saline petrochemical wastewater. Desalin Water Treat 149:138–149

    Google Scholar 

  • Mohamadi L, Bazrafshan E, Rahdar A, Labuto G, Kamali AR (2020) Nanostructured MgO-enhanced catalytic ozonation of petrochemical wastewater. Bol Soc Esp Ceram Vidrio. https://doi.org/10.1016/j.bsecv.2020.06.002

    Article  Google Scholar 

  • Mohan BS, Ravi K, Anjaneyulu RB, Sree GS, Basavaiah K (2019) Fe2O3/RGO nanocomposite photocatalyst: effective degradation of 4-Nitrophenol. Physica B Condens Matter 553:190–194

    ADS  CAS  Google Scholar 

  • Moreira FC, Boaventura RA, Brillas E, Vilar VJ (2017) Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters. Appl Catal B 202:217–261

    CAS  Google Scholar 

  • Mustapha HI, Lens PNL (2018) Constructed wetlands to treat petroleum wastewater. In: Elisabet Aranda E (ed) Prasad R. approaches in bioremediation, Springer, pp 199–237

    Google Scholar 

  • Nacheva PM, Jha M (eds) (2011) Water management in the petroleum refining industry, water conservation. InTech, ISBN: 978-953-307-960-8 http://www.intechopen.com/books/water-conservation/water-management-in-the-petroleumrefining-industry. Accessed on 4 January 2021

  • Nagaraju P, Puttaiah SH, Wantala K, Shahmoradi B (2020) Preparation of modified ZnO nanoparticles for photocatalytic degradation of chlorobenzene. Appl Water Sci 10(6):1–15

    Google Scholar 

  • Olivieri AC, Escandar GM (2014) Analytical figures of merit. Practical Three-Way Calibration, 93–107.

    Google Scholar 

  • Orszulik ST (2008) Environmental technology in the oil industry. Springer

    Google Scholar 

  • Peng WC, Chen Y, Li XY (2016) MoS2/reduced graphene oxide hybrid with CdS nanoparticles as a visible light-driven photocatalyst for the reduction of 4-nitrophenol. J Hazard Mater 309:173–179

    PubMed  CAS  Google Scholar 

  • Pera-Titus M, Garcı́a-Molina V, Baños MA, Giménez J, Esplugas S (2004) Degradation of chlorophenols by means of advanced oxidation processes: a general review. ApplCatal B Environ 47:219–256

    Google Scholar 

  • Petroleum refining water/wastewater use and management, IPIECA Operations Best Practice Series (2010). https://www.ipieca.org/resources/good-practice/petroleum-refining-water-wastewater-use-and-management/. Accessed on 01 February 2021

  • Pogribny IP (2019) Environmental exposures and epigenetic perturbations. In: Boffetta P, Hainaut P (eds) Encyclopedia of cancer, 3rd edn. Academic Press, pp 574–584

    Google Scholar 

  • Pophali GR, Khan R, Dhodapkar RS, Nandy T, Devotta S (2007) Anaerobic–aerobic treatment of purified terephthalic acid (PTA) effluent; a techno-economic alternative to two-stage aerobic process. J Environ Manag 85:1024–1033

    CAS  Google Scholar 

  • Rasouli KH, Sarrafzadeh MH, Tavakoli O (2010) An investigation on the nitrogen content of a petroleum refinery wastewater and its removal by biological treatment. Iran J Environ Health Sci Eng 7(5):391–394

    Google Scholar 

  • Rezaei E, Soltan J, Chen N (2013a) Catalytic oxidation of toluene by ozone over alumina supported manganese oxides: effect of catalyst loading. Appl Catal B Environ 136:239–247

    Google Scholar 

  • Rezaei E, Soltan J, Chen N, Lin J (2013b) Effect of noble metals on activity of MnOx/γ-alumina catalyst in catalytic ozonation of toluene. Chem Eng J 214:219–228

    Google Scholar 

  • Roslev P, Lentz T, Hesselsoe M (2015) Microbial toxicity of methyl tert-butyl ether (MTBE) determined with fluorescent and luminescent bioassays. Chemosphere 120:284–291

    PubMed  ADS  CAS  Google Scholar 

  • Sable S, Shah K, Chiang P, Lo S (2018) Catalytic oxidative degradation of phenolusing iron oxide promoted sulfonated-ZrO2 by advanced oxidation processes (AOPs). J Taiwan Inst Chem Eng 91:434–440

    CAS  Google Scholar 

  • Santos CE, Fonseca A, Kumar E, Bhatnagar A, Vilar VJ, Botelho CM, Boaventura RA (2015) Performance evaluation of the main units of a refinery wastewater treatment plant–A case study. J Environ Chem Eng 3(3):2095–2103

    CAS  Google Scholar 

  • Shahrezaei F, Mansouri Y, Zinatizadeh AA, Akhbari A (2012) Process modeling and kinetic evaluation of petroleum refinery wastewater treatment in a photocatalytic reactor using TiO2 nanoparticles. Powder Technol 221:203–212

    CAS  Google Scholar 

  • Shokri A, Mahanpoor K, Soodbar D (2016) Evaluation of a modified TiO2 (GO–B–TiO2) photo catalyst for degradation of 4-nitrophenol in petrochemical wastewater by response surface methodology based on the central composite design. J Environ Chem Eng 4:585–598

    CAS  Google Scholar 

  • Speight GJ (2011) Pharmaceuticals. In: Handbook of industrial hydrocarbon processes. Gulf Professional Publishing, pp 467–497

    Google Scholar 

  • Sponza DT, Oztekin R (2010) Removals of PAHs and acute toxicity via sonication in a petrochemical industry wastewater. Chem Eng J 162:142–150

    CAS  Google Scholar 

  • Stepnowski P, Siedlecka EM, Behrend P, Jastorff B (2002) Enhanced photo-degradation of contaminants in petroleum refinery wastewater. Water Res 36:2167–2172

    PubMed  CAS  Google Scholar 

  • Tafreshi N, Sharifnia S, Dehaghi SM (2019) Photocatalytic treatment of a multicomponent petrochemical wastewater by floatable ZnO/Oak charcoal composite: optimization of operating parameters. J Environ Chem Eng 7(5):103397

    Google Scholar 

  • Tismanar I, Obreja AC, Buiu O, Duta A (2021) VIS-active TiO2–graphene oxide composite thin films for photocatalytic applications. Appl Surf Sci 538:147833

    Google Scholar 

  • United States Environmental Protection Agency (U.S. EPA) (1995) Profile of the petroleum refining industry, EPA Office of Compliance Sector Notebook Project, EPA/310-R-95-013, September Office of Compliance, Office of Enforcement and Compliance Assurance, U.S. Environmental Protection Agency, Washington, DC. https://archive.epa.gov/compliance/resources/publications/assistance/sectors/web/pdf/petrefsn.pdf. Accessed on 21 January 2021

  • Vargas R, Núñez O (2010) Photocatalytic degradation of oil industry hydrocarbons models at laboratory and at pilot-plant scale. Sol Energy 84:345–351

    ADS  CAS  Google Scholar 

  • Verma S, Prasad B, Mishra IM (2011) Thermochemical treatment (thermolysis) of petrochemical wastewater: COD removal mechanism and floc formation. Ind Eng Chem Res 50:5352–5359

    CAS  Google Scholar 

  • Vosoughi M, Fatehifar E, Derafshi S, Rostamizadeh M (2017) High efficient treatment of the petrochemical phenolic effluent using spent catalyst: experimental and optimization. J Environ Chem Eng 5:2024–2031

    CAS  Google Scholar 

  • Wang L, Zhao Y, Liu X, Huang T, Wang Y, Gao H, Ma J (2015) Cancer risk of petrochemical workers exposed to airborne PAHs in industrial Lanzhou City, China. Environ Sci Pollut Res 22:19793–19803

    CAS  Google Scholar 

  • Wang HW, Li XY, Hao ZP, Sun YJ, Wang YN, Li WH, Tsang Y (2017a) Transformation of dissolved organic matter in concentrated leachate from nanofiltration during ozone-based oxidation processes (O3, O3/H2O2 and O3/UV). J Environ Manag 191:244–251

    Google Scholar 

  • Wang S, Ghimire N, Xin G, Janka E, Bakke R (2017b) Efficient high strength petrochemical wastewater treatment in a hybrid vertical anaerobic biofilm (HyVAB) reactor: a pilot study. Water Pract Technol 12:501–513

    Google Scholar 

  • Wei C, Zhang F, Hu Y, Feng C, Wu H (2017) Ozonation in water treatment: the generation, basic properties of ozone and its practical application. Rev Chem Eng 33:49–89

    CAS  Google Scholar 

  • Wittcoff AH, Reuben GB, Plotkin SJ (2013) Industrial organic chemicals, 3rd edn. Wiley

    Google Scholar 

  • Wong JM (2012) Water reuse for petroleum oil, product processing industries. https://www.watertechonline.com/home/article/14171740/water-reuse-for-petroleum-oil-product-processing-industries. Accessed on 05 February 2021

  • Wu C, Gao Z, Zhou Y, Liu M, Song J, Yu Y (2015) Treatment of secondary effluent from a petrochemical wastewater treatment plant by ozonation-biological aerated filter. J Chem Tech Biotechnol 90:543–549

    CAS  Google Scholar 

  • Xiu M, Pan L, Jin Q (2014) Bioaccumulation and oxidative damage in juvenile scallop Chlamysfarreri exposed to benzo [a] pyrene, benzo [b] fluoranthene and chrysene. Ecotoxicol Environ Saf 107:103–110

    PubMed  CAS  Google Scholar 

  • Yang X, Wang D (2018) Photocatalysis: from fundamental principles to materials and applications. ACS Appl Energy Mater 1:6657–6693

    CAS  Google Scholar 

  • Yousefi N, Pourfadakari S, Esmaeili S, Babaei AA (2019) Mineralization of high saline petrochemical wastewater using Sonoelectro-activated persulfate: degradation mechanisms and reaction kinetics. Microchem J 147:1075–1082

    CAS  Google Scholar 

  • Yu XZ, Gu JD (2006) Uptake, metabolism, and toxicity of methyl tert-butyl ether (MTBE) in weeping willows. J Hazard Mater 137:1417–1423

    PubMed  CAS  Google Scholar 

  • Zhang C, Wang C, Gil S, Boreave A, Retailleau L, Guo Y, Valverde JL, Giroir-Fendler A (2017) Catalytic oxidation of 1,2-dichloropropane over supported LaMnOx oxides catalysts. Appl Catal B Environ 201:552–560

    CAS  Google Scholar 

  • Zhang H, He Y, Lai L, Yao G, Lai B (2020a) Catalytic ozonation of Bisphenol A in aqueous solution by Fe3O4–MnO2 magnetic composites: performance, transformation pathways and mechanism. Sep Purif Technol 245:116449

    Google Scholar 

  • Zhang J, Zhuang T, Liu S, Zhang GC, Huo K (2020b) Catalytic ozonation of phenol enhanced by mesoporous MnO2 prepared through nanocasting method with SBA-15 as template. J Environ Chem Eng 8:103967

    Google Scholar 

  • Zhang S, Wu C, Zhou Y, Wang Y, He X (2018a) Effect of wastewater particles on catalytic ozonation in the advanced treatment of petrochemical secondary effluent. Chem Eng J 345:280–289

    Google Scholar 

  • Zhang X, Yea J, Yuan J, Yang L, He D, Cai T, Xiao B, Liu Z, Zhao K (2018b) Excellent low-temperature catalytic performance of nanosheet Co-Mn oxides for total benzene oxidation. Appl Catal A 566:104–112

    Google Scholar 

  • Zhao L, Ma J, Sun Z, Liu H (2009) Mechanism of heterogeneous catalytic ozonation of nitrobenzene in aqueous solution with modified ceramic honeycomb. Appl Catal B Environ 89:326–334

    CAS  Google Scholar 

  • Zhong J, Sun X, Wang C (2003) Treatment of oily wastewater produced from refinery processes using flocculation and ceramic membrane filtration. Sep Purif Technol 32:93–98

    CAS  Google Scholar 

  • Zhu B, Li X, Sun P, Liu J, Ma X, Zhu X, Zhu A (2017) A novel process of ozonecatalytic oxidation for low concentration formaldehyde removal. Chin J Catal 38:1759–1769

    CAS  Google Scholar 

  • Zhu Y, Jin K, Li H, Qian H, Wang H, Zhao L (2018) A novel anode with anticorrosive coating for efficient degradation of toluene. Chem Eng J 334:206–215

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Ministry of Education, Science and Sport Republic of Slovenia (Grant No. C3330-19-952015), and the “Slovenian Research Agency”, Chemistry Sustainable Development (P1-0134) Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shilpi Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, S., Kumar, P., Srivastava, V.C., Štangar, U.L. (2022). Application of Advanced Oxidation Processes (AOPs) for the Treatment of Petrochemical Industry Wastewater. In: Roy, S., Garg, A., Garg, S., Tran, T.A. (eds) Advanced Industrial Wastewater Treatment and Reclamation of Water. Environmental Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-83811-9_6

Download citation

Publish with us

Policies and ethics