
Chapter 4
Imprecise Discrete-Time Markov Chains

Gert de Cooman

Abstract I present a short and easy introduction to a number of basic definitions
and important results from the theory of imprecise Markov chains in discrete time,
with a finite state space. The approach is intuitive and graphical.

4.1 Introduction

Although imprecision and robustness in discrete-time Markov chains were already
studied in the 1990s [6–8], more significant progress [2, 3, 5, 11] could bemade after
the graphical structure of imprecise probability trees underlying themwas uncovered
in 2008 [4]. Research has now moved firmly into the continuous-time domain, for
which [1, 9] are good starting points.

In this paper, I give a concise and elementary overview of a number of basic
ideas and results in discrete-time imprecise Markov chains, with an emphasis on
their graphical representation. We begin with the basics of precise and imprecise
probability models in Sects. 4.2 and 4.3. When such models are used in a dynami-
cal context, precise and imprecise probability trees arise naturally; they and the use
of the fundamental Law of Iterated Expectations for making inferences about them
constitute the subjects of Sects. 4.4 and 4.5. Imprecise Markov chains correspond
to special imprecise probability trees, and they and their basic inferences are dis-
cussed in Sect. 4.6, followed by a number of examples in Sect. 4.7. These examples
hint at stationary distributions and ergodicity. These notions are briefly discussed
in Sect. 4.8, which concludes the paper. Throughout, I have included a number of
simple exercises to illustrate the arguments in the main text.
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4.2 Precise Probability Models

Assume we are uncertain about the value that a variable X assumes in some finite
set of possible values X . This is usually modelled by a probability mass function m
on X , satisfying (∀x ∈ X )m(x) ≥ 0 and

∑
x∈X m(x) = 1.

With m we can associate an expectation operator Em as follows

Em( f ) :=
∑

x∈X
m(x) f (x) where f : X → R.

If A ⊆ X is an event, then its probability is given by Pm(A) = ∑
x∈A m(x) =

Em(IA), where IA : X → R is the indicator of A and assumes the value 1 on A
and 0 elsewhere. This tells us that there are two equivalent mathematical languages
for dealing with uncertainty: the language of probabilities and the language of expec-
tations, and that we can go freely from one to the other.

All possible (precise) probability models are gathered in the simplex �X of all
mass functions onX :�X := {

m ∈ R
X : (∀x ∈ X )m(x) ≥ 0 and

∑
x∈X m(x) = 1

}
.

Any probability model for uncertainty about X is a point in that simplex, which indi-
cated that mass functions have a geometrical interpretation. This is illustrated below
for the case X = {a, b, c} and the uniform mass function mu.

Expectation also has a geometrical interpretation: specifying a value E( f ) for the
expectation of a map f : X → R, namely,

∑
x∈X m(x) f (x) = E( f ), imposes a

linear constraint on the possible values for m in �X . It corresponds to intersecting
the simplex �X with a hyperplane, whose direction depends on f . This is also
illustrated in the picture above; in this particular case two assessments turn out to
completely determine a unique mass function.

4.3 Imprecise Probability Models

We now turn to a generalisation of precise probability models, which we will call
imprecise. To allow for more realistic and flexible assessments, we can envisage
imposing linear inequality—rather than equality—constraints on the m in �X :

E( f ) ≤
∑

x∈X
m(x) f (x) or

∑

x∈X
m(x) f (x) ≤ E( f ).
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This corresponds to intersecting �X with affine semi-spaces:

Any such number of assessments leads to a credal set M, which is our first type of
imprecise probability model.

Definition 4.1 A credal set M is a convex closed subset of �X .

Below, we show some more examples of such credal sets in the special case X =
{a, b, c}. The credal set on the left corresponds to the assessment: ‘b is at least as
likely as c’; the one in the middle is a convex mixture of the uniform mass function
with the entire simplex; and the one on the right represents a statement in classical
propositional logic: ‘X = a or X = c’. This illustrates that the language of credal
sets encompasses both precise probabilities and classical propositional logic.

Lower and upper expectations are our second type of imprecise probabilitymodel.
To see how they come about, consider the credal set in the figure below on the right.

We can ask what we know about the probability of c, or the expectation of I{c},
given this credal set: it is only known to belong to the closed interval [1/4, 4/7]. This
can be generalised from events to arbitrary elements of the set L(X ) = R

X of all
real-valued maps f on X : As m ranges over the credal setM, Em( f ) will similarly
range over a closed interval that is completely determined by its lower and upper
bounds.

This leads to the definition of the following two real functionals on L(X ):

EM( f ) = min {Em( f ) : m ∈ M} lower expectation
EM( f ) = max {Em( f ) : m ∈ M} upper expectation for all f : X → R.

Observe that these lower and upper expectations are mathematically equivalent mod-
els, because
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EM( f ) = −EM(− f ) for all f ∈ L(X ).

We will in what follows focus on upper expectations.

Exercise 4.1 What is the upper expectation EM when M = �X ?

This shows thatwe can go from the language of probabilities—and the use ofM—
to the language of expectations—and the use of EM. To see that we can also go the
other way, we need the following definition:

Definition 4.2 Wecall a real functional E onL(X ) anupper expectation if it satisfies
the following properties: for all f and g in L(X ) and all real λ ≥ 0:

1. E( f ) ≤ max f [boundedness];
2. E( f + g) ≤ E( f ) + E(g) [sub-additivity];
3. E(λ f ) = λE( f ) [non-negative homogeneity].

Upper expectations are also called coherent upper previsions [10, 12]. They constitute
a model that is mathematically equivalent to credal sets, in very much the same way
as expectations are mathematically equivalent to probability mass functions:

Theorem 4.1 A real functional E is an upper expectation if and only if it is the
upper envelope of some credal set M.

Proof UseM = {
m ∈ �X : (∀ f ∈ L(X ))(Em( f ) ≤ E( f ))

}
. �

Exercise 4.2 Consider any linear prevision Em and any ε ∈ [0, 1]. Verify that the
so-called linear-vacuous mixture:

is an upper expectation.
Solution: Em andmax are upper expectations by Theorem 4.1, because they are upper
envelopes of the respective credal sets {m} and �X—see Exercise 4.1. Now verify
that being an upper expectation is preserved by taking convex mixtures. The corre-
sponding credal set (1 − ε){m} + ε�X := {(1 − ε)m + εq : q ∈ �X } is indicated
in blue in the figure above. ♦
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Exercise 4.3 All upper expectations on a binary space X = {0, 1} are such linear-
vacuous mixtures, and the corresponding credal set can be depicted as

0 1

p p

Let p := m(1) and q := 1 − p = m(0). What is the relation between [p, p] and
p, ε?
Solution: p = E(I{1}) = (1 − ε)p = p − εp and p = E(I{1}) = (1 − ε)p + ε =
p + εq. Hence, p − p = ε. ♦

4.4 Discrete-Time Uncertain Processes

We now apply these ideas in a more dynamic context: the study of processes. We
consider an uncertain process, which is a collection of uncertain variables X1, X2,…,
Xn ,… assuming values in some finite set of statesX . This can be represented graphi-
cally by a standard event treewith nodes (also called situations) s = (x1, x2, . . . , xn)
for xk ∈ X and n ≥ 0. This is depicted below on the left for the special case that
X = {0, 1}, where we have limited ourselves to three variables X1, X2, and X3; but
the idea should be clear. Observe that we use the symbol � for the initial situation,
or root node, of the event tree.

1

(1, 1)
(1, 1, 1)

(1, 1, 0)

(1, 0)
(1, 0, 1)

(1, 0, 0)

0

(0, 1)
(0, 1, 1)

(0, 1, 0)

(0, 0)
(0, 0, 1)

(0, 0, 0)

X 1

X 2

X 3

1

(1, 1)
(1, 1, 1)

(1, 1, 0)

(1, 0)
(1, 0, 1)

(1, 0, 0)

0

(0, 1)
(0, 1, 1)

(0, 1, 0)

(0, 0)
(0, 0, 1)

(0, 0, 0)

m�

m1

m0

m(1,1)

m(0,0)

m(0,1)

m(1,0)

The event tree becomes a probability tree as soon as we attach to each node
s = (x1, x2, . . . , xn) a local probability mass function ms on X with associated
expectation operator Ems , expressing the uncertainty about the next variable Xn+1

after observing the earlier variables X1 = x1, …, Xn = xn . This is depicted above
on the right for the special case that X = {0, 1}.

We now consider a very general inference problem in such a probability tree.
Consider any function g : X n → R of the first n variables: g = g(X1, X2, . . . , Xn).
We want to calculate its expectation E(g|s) in the situation s = (x1, . . . , xk), that is,
after having observed the first k variables. Interestingly, this can be done efficiently
using the following theorem,which is a reformulation of the Lawof Total Probability:
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Theorem 4.2 (Law of Iterated Expectations) If we know E(g|s, x) for all x ∈ X ,
then we can calculate E(g|s) by backwards recursion using the local model ms:

E(g|s) = Ems︸︷︷︸
local

(E(g|s, ·)) =
∑

x∈X
ms(x)E(g|s, x).

This shows that expectations can be calculated recursively using a very basic step,
illustrated below for the case X = {0, 1}:

s
(s, 0)

(s, 1)
msE(g|s) = ms(1)E(g|s, 1) + ms(0)E(g|s, 0)

E(g|s, 1)

E(g|s, 0)

Hence, all expectations E(g|x1, . . . , xk) in the tree can be calculated from the local
models ms as follows:

1. start in the final cut X n and let E(g|x1, x2, . . . , xn) = g(x1, x2, . . . , xn);
2. do backwards recursion using the Law of Iterated Expectations:

E(g|x1, . . . , xk) = Em(x1 ,...,xk )

︸ ︷︷ ︸
local

(E(g|x1, . . . , xk, ·))

3. go on until you get to the root node �, where we can identify E(g|�) = E(g).

Exercise 4.4 Consider flipping a coin twice independently, with probability p for
heads—outcome 1—and q = 1 − p for tails—outcome 0. The corresponding prob-
ability tree for this experiment is given below on the left, with, in red, in the nodes,
the corresponding number of heads. What is the expected number of heads?

1

2p

1qp

0

1p

0q

q

1

2p

1qp

0

1p

0q

q
p = p · 1 + q · 0

1 + p = 2p + q = p · 2 + q · 1

2p = p + (
p · 1 + q · 0)

Solution: Above on the right, we apply the Law of Iterated Expectations recursively,
from leaves to root; the solution is the expectation 2p attached to the root. ♦
Exercise 4.5 Extend the ideas in the solution toExercise 4.4 to calculate the expected
number of heads when the coin is flipped n times independently.
Solution:We apply the Law of Iterated Expectations recursively, from leaves to root.
Below on the left, we consider starting from the leaves of the tree at depth n; applying
the Law reduces to adding p to the number of heads in each of their parent nodes at
depth n − 1. On the right, we apply the Law to these nodes at depth n − 1, which
reduces to adding 2p to the number of heads in each of their parent nodes at depth
n − 2.
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k

k + 1p

kq

n − 1 n

k + p = k + (
p · 1 + q · 0)

at time n − 1 in a situation with k heads

k

k + p + 1
p

k + pq

n − 2 n − 1

k + 2p = k + p + (
p · 1 + q · 0)

at time n − 2 in a situation with k heads

Going on in this way, we see that the solution is the expectation np attached to the
root at depth 0. ♦
Exercise 4.6 We now flip the same coin time and time again, independently, until
we reach heads for the first time. Calculate the expected number of coin flips.
Solution: Below is the (unbounded) probability tree associated with this experiment.

0
(0, 0)

· · ·q

(0, 0, 1)p
q

(0, 1)p
q

1p

depth 1

α

α + 1

Call the unknown expectation α. We apply the Law of Iterated Expectations to
the situations at depth 1. In the situation 1, the expected number of heads is 1, the
actual number of heads there. In the situation 0, we see a copy of the original tree
extending to the right, but since we have already flipped the coin once here, the
expected number of heads in this situation is α + 1. In the parent node, the expected
number of heads α is therefore also given by p · 1 + q · (α + 1) = 1 + qα, whence
α = 1/p. ♦

4.5 Imprecise Probability Trees

Until now, we have assumed that we have sufficient information in order to specify,
in each node s, a local probability mass function ms on the set X of possible values
for the next state.

s
(s, 0)

(s, 1)
ms −→ s

(s, 0)

(s, 1)
Ms

We now let go of this major restrictive assumption by allowing for more general
uncertaintymodels.Wewill consider credal sets as ourmore general local uncertainty
models: closed convex subsets Ms of �X . See the figure below for a special case
when X = {0, 1}.
Definition 4.3 An imprecise probability tree is an event tree where in each node s
the local uncertainty model is a credal set Ms , or equivalently, its associated upper
expectation Es , with Es( f ) := max {Em( f ) : m ∈ Ms} for all f ∈ L(X ).
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An imprecise probability tree can be interpreted as an infinity of compatible precise
probability trees: choose in each node s a probability mass function ms from the
setMs .

1

(1, 1)
(1, 1, 1)

(1, 1, 0)

(1, 0)
(1, 0, 1)

(1, 0, 0)

0

(0, 1)
(0, 1, 1)

(0, 1, 0)

(0, 0)
(0, 0, 1)

(0, 0, 0)

M�

M1

M0

M(1,1)

M(0,0)

M(0,1)

M(1,0)

For each real map g = g(X1, . . . , Xn), each node s = (x1, . . . , xk), and each such
compatible precise probability tree, we can calculate the expectation E(g|x1, . . . , xk)
using the backwards recursion method described before. By varying over each com-
patible probability tree, we get a closed real interval, completely characterised by
lower andupper expectations E(g|x1, . . . xk) and E(g|x1, . . . , xk): [E(g|x1, . . . , xk),
E(g|x1, . . . , xk)]. The complexity of calculating these bounds in this way is clearly
exponential in the number of time steps n. But, there is a more efficient method to
calculate them:

Theorem 4.3 (Law of Iterated Upper Expectations [4, 5]) If we know E(g|s, x) for
all x ∈ X , then we can calculate E(g|s) by backwards recursion using the local
model Es:

E(g|s) = Es︸︷︷︸
local

(E(g|s, ·)) = max
ms∈Ms

∑

x∈X
ms(x) E(g|s, x).

This shows that expectations can be calculated recursively using a very basic step,
illustrated below for the case X = {0, 1}:

s
(s, 0)

(s, 1)
MsE(g|s) = Es(E(g|s, ·))

E(g|s, 1)

E(g|s, 0)

The method for, and the complexity of, calculating the E(g|s), as a function of n, is
therefore essentially the same as in the precise case!

Exercise 4.7 Extend the ideas in the solution to Exercise 4.5 to calculate the upper
expected number of heads when the coin is flipped n times independently, but where
nowwe have an imprecise probabilitymodel for a coin flip, with a probability interval
[p, p] for heads, and a corresponding interval [q, q] = [1 − p, 1 − p] for tails.
Solution:We apply the Law of Iterated Upper Expectations recursively, from leaves
to root. Below on the left, we consider starting from the leaves of the tree at depth n;



4 Imprecise Discrete-Time Markov Chains 59

applying the Law reduces to adding p to the number of heads in each of their parent
nodes at depth n − 1.

k

k + 1
[p, p]

k[q, q]

n − 1 n

k + p = k + E(I{1})

at time n − 1 in a situation with k heads

k

k + p + 1
[p, p]

k + p[q, q]

n − 2 n − 1

k + 2p = k + p + E(I{1})

at time n − 2 in a situation with k heads

On the right, we apply the Law to these nodes at depth n − 1, which reduces to
adding 2p to the number of heads in each of their parent nodes at depth n − 2. Going
on in this way, we see that the solution is the expectation n p attached to the root at
depth 0. A similar result holds for the lower expectation. ♦
Exercise 4.8 We now flip the same coin with the imprecise probability model time
and time again, independently, until we reach heads for the first time. Calculate the
upper expected number of coin flips.
Solution: Below is the (unbounded) probability tree associated with this experiment.

Call the unknown upper expectation α. We apply the Law of Iterated Upper Expecta-
tions to the situations at depth 1. In the situation 1, the upper expected number of heads
is 1, the actual number of heads there. In the situation 0, we see a copy of the original
tree extending to the right, but since we have already flipped the coin once here, the
upper expected number of heads in this situation is α + 1. In the parent node, the
upper expected number of heads α is therefore also given by 1 + E(α I{0}) = 1 + αq ,
whence α = 1/p. A similar result holds for the lower expectation. ♦
The attentive reader will have observed that in all these simple exercises, we can
also obtain the ‘imprecise’ result from the ’precise’ one by optimising over the
single parameter p. We have to warn against too much optimism: in more involved
examples, this will no longer be the case.

4.6 Imprecise Markov Chains

We now look at a special instance of a probability tree, corresponding to a stationary
(precise) Markov chain. This happens when the precise local models m(x1,...,xn) only
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depend on the last observed state xn—this is theMarkov Condition—and also do not
depend explicitly on the time step n:

m(x1,...,xn) = q(·|xn)

for some family of transition mass functions q(·|x), x ∈ X .

Definition 4.4 The uncertain process is a stationary precise Markov chain when all
Ms are singletons {ms} and M(x1,...,xn) = {q(·|xn)}, for some family of transition
mass functions q(·|x), x ∈ X .

For each x ∈ X , the transition mass function q(·|x) corresponds to an expectation
operator, given by E( f |x) = ∑

z∈X q(z|x) f (z) for all f ∈ L(X ).

Definition 4.5 Consider the linear transformation T ofL(X ), called transition oper-
ator: T : L(X ) → L(X ) : f �→ T f , where T f is the real map defined by:

T f (x) := E( f |x) =
∑

z∈X
q(z|x) f (z) for all x ∈ X .

In the parlance of linear algebra, or functional analysis, T is the dual of the linear
transformation with Markov matrix M with elements Mxy := q(y|x).

Up to now, we have mainly been concerned with conditional expectations of the
type E(·|s).Wewill now look at particular unconditional expectations, where s = �.
For any n ≥ 0, we define the expectation for the (single) state Xn at time n by

En( f ) = E( f (Xn)) = E( f (Xn)|�) for all f : X → R

and we denote the corresponding mass function bymn . Applying the Law of Iterated
Expectations in Theorem 4.2 now yields, with also E1 = Em� and m1 = m�:

En( f ) = E1(T
n−1 f ), and dually, mn = Mn−1m1,

so the complexity of calculating En( f ) is linear in the number of time steps n.

Exercise 4.9 Consider the stochastic process where we first flip a fair coin. From
then on, on heads, we select a biased coin with probability p for heads for the next
coin flip, and on tails, a biased coin with probability q = 1 − p for heads, and keep
on flipping one of the two biased coins, selected on the basis of the outcome of the
previous coin flip. This produces a Markov chain. Find T f , T2 f , and E1( f ), E2( f )
and E3( f ) for f ∈ L({0, 1}).
Solution: Clearly, E1( f ) = 1/2 f (1) + 1/2 f (0), T f (0) = E( f |0) = q f (1) + p f (0)
and T f (1) = E( f |0) = p f (1) + q f (0), whence

E2( f ) = E1(T f ) = p + q

2
f (1) + p + q

2
f (0) = 1

2
f (1) + 1

2
f (0).
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Similarly,

T2 f (0) = qT f (1) + pT f (0) = q[p f (1) + q f (0)] + p[q f (1) + p f (0)]
= (p2 + q2) f (0) + 2pq f (1)

T2 f (1) = (p2 + q2) f (1) + 2pq f (0),

whence

E3( f ) = E1(T
2 f ) = p2 + q2 + 2pq

2
f (1) + 2pq + p2 + q2

2
f (0) = 1

2
f (1) + 1

2
f (0),

and so on.We see that at the level of expectations of single state variables, the process
cannot be distinguished from flipping a fair coin. ♦

The generalisation from precise to imprecise Markov chains goes as follows:

Definition 4.6 The uncertain process is a stationary imprecise Markov chain when
the Markov Condition is satisfied with stationarity: M(x1,...,xn) = Q(·|xn) for some
family of transition credal sets Q(·|x), x ∈ X .

1

(1, 1)
(1, 1, 1)

(1, 1, 0)

(1, 0)
(1, 0, 1)

(1, 0, 0)

0

(0, 1)
(0, 1, 1)

(0, 1, 0)

(0, 0)
(0, 0, 1)

(0, 0, 0)

m�

q(·|1)

q(·|0)

q(·|1)

q(·|0)

q(·|1)

q(·|0)

−→

1

(1, 1)
(1, 1, 1)

(1, 1, 0)

(1, 0)
(1, 0, 1)

(1, 0, 0)

0

(0, 1)
(0, 1, 1)

(0, 1, 0)

(0, 0)
(0, 0, 1)

(0, 0, 0)

M�

Q(·|1)

Q(·|0)

Q(·|1)

Q(·|0)

Q(·|1)

Q(·|0)

An imprecise Markov chain can be seen as an infinity of (precise) probability trees:
choose a precise mass function from Ms in each situation s. It should be clear that
not all of these satisfy the Markov property or stationarity. This implies that solving
the optimisation problem in order to find the tight upper bounds E(g|s), as discussed
in Sect. 4.5, is not (necessary always) simply an optimisation over a parametrised
collection of stationary (or even non-stationary) Markov chains, although it can turn
out be so simple in a number of special cases.

For each x ∈ X , the local transition modelQ(·|x) corresponds to an upper expec-
tation operator E(·|x), with E( f |x) = max

{
Ep( f ) : p ∈ Q(·|x)} for all f ∈ L(X ).

This leads to the following definition, which generalises the definition of transition
operators for precise Markov chains:

Definition 4.7 Consider the non-linear transformation T of L(X ), called the upper
transition operator: T : L(X ) → L(X ) : f �→ T f where the real map T f is defined
by T f (x) := E( f |x) = max

{
Ep( f ) : p ∈ Q(·|x)} for all x ∈ X .
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For any n ≥ 0, we define the upper expectation for the (single) state Xn at time n by

En( f ) = E( f (Xn)) = E( f (Xn)|�) for all f : X → R.

Then the Law of Iterated Upper Expectations of Theorem 4.3 yields, with also E1 =
EM� :

En( f ) = E1(T
n−1 f ) for all n ≥ 1 and all f ∈ L(X ),

so the complexity of calculating En( f ) is still linear in the number of time steps n.

4.7 Examples

Consider a two-element state space X = {1, 0}, with upper expectation E1 =
EM� for the first variable, and for each (x1, . . . , xn) ∈ {1, 0}n , with 0 < ε ≤
1, M(x1,...,xn) = Mxn = (1 − ε){q(·|xn)} + ε�{1,0}, or equivalently, for the upper
transition operator T = (1 − ε)T + ε max. In other words, each transition credal
setQ(·|x) is a linear-vacuous mixture (see Exercise 4.2, also for the notations used)
centred on the transition mass function q(·|x), where the mixture coefficient ε is the
same in each state x .

It is amatter of simple and direct verification that for n ≥ 1 and f ∈ L(X ): Tn f =
(1 − ε)nTn f + ε

∑n−1
k=0(1 − ε)k max Tk f , and therefore, using the Law of Iterated

Expectations, En+1( f )=E1(Tn f ) = (1 − ε)n E1(Tn f ) + ε
∑n−1

k=0(1 − ε)k max Tk f .
If we now let n → ∞, it is not too hard to see that the limit exists and is independent
of the initial upper expectation E1:

lim
n→∞ En( f ) = ε

∞∑

k=0

(1 − ε)k max Tk f for all f ∈ L(X ).

We consider two special cases:

1. Contaminated randomwalk:whenT f (1)=T f (0) = 1/2[ f (1) + f (0)], the under-
lying precise Markov chain is actually like flipping a fair coin. We then find that
E∞( f ) = (1 − ε)1/2[ f (1) + f (0)] + ε max f for all f ∈ L(X ).

2. Contaminated cycle: when T f (1) = f (0) and T f (0) = f (1), the underlying
precise Markov chain is actually like deterministic cycle between the states 0
and 1. We then find that E∞( f ) = max f for all f ∈ L(X ).

The probability intervals for 1 corresponding to these two limit models are given by

0 11/2

ε

and
0 1

ε = 1



4 Imprecise Discrete-Time Markov Chains 63

As another example, we considerX = {a, b, c} and the transitionmodels depicted
below, which are imprecise models not very far from a simple cycle:

Below, we depict the time evolution of the En (as credal sets) for three cases (red,
yellow and blue). We see that, here too, regardless of the initial distribution E1, the
distribution En seems to converge to the same distribution.

4.8 A Non-linear Perron–Frobenius Theorem,
and Ergodicity

The convergence behaviour in the previous examples can also be observed in general
imprecise Markov chains under fairly weak conditions. The following theorems can
be derived from the more general discussions and results in [3, 5].

Theorem 4.4 Consider a stationary imprecise Markov chain with finite state set X
and upper transition operator T. Suppose that T is regular, meaning that there is
some n > 0 such that min Tn I{x} > 0 for all x ∈ X . Then for every initial upper
expectation E1, the upper expectation En = E1 ◦ Tn−1 for the state at time n con-
verges point-wise to the same stationary upper expectation E∞: limn→∞ En(h) =
limn→∞ E1(Tn−1h) := E∞(h) for all h in L(X ). The limit upper expectation E∞ is
the only T-invariant upper expectation on L(X ), meaning that E∞ = E∞ ◦ T.

In that case we also have an interesting ergodicity result. For a detailed description
of the notion of ‘almost surely’, we refer to [3], but it roughly means ‘with upper
probability one’.
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Theorem 4.5 Consider a stationary imprecise Markov chain with finite state set X
and upper transition operator T. Suppose that T is regular with stationary upper
expectation E∞. Then, almost surely, for all h in L(X ):

E∞(h) ≤ lim inf
n→∞

1

n

n∑

k=1

h(Xk) ≤ lim sup
n→∞

1

n

n∑

k=1

h(Xk) ≤ E∞(h).

4.9 Conclusion

The discussion in this paper lays bare a few interesting but quite basic aspects of
inference in imprecise probability trees and Markov chains in discrete time. A more
general and deeper treatment of these matters can be found in [3–5]. For recent work
on impreciseMarkov chains in continuous time, I refer the interested reader to [1, 9].
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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