Skip to main content

Digital Business Models in the Healthcare Industry

  • Chapter
  • First Online:
Handbook of Artificial Intelligence in Healthcare

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 212))

Abstract

Nowadays, digital technologies become more and more indispensable on a personal and business level. New innovations accelerate processes and disrupt the markets even in the healthcare sector. A wide range of studies have demonstrated the effectiveness of digital technologies for numerous application areas like diagnostics or treatment, but there is no research about the general potential that experts from the healthcare sector see in the implementation of digital business models. In addition to technological developments and low research depth in this area, pandemics like Covid-19 demonstrate the importance of the healthcare industry. Through this motivation a research project on the topic “Potential benefits of digital business models in the healthcare industry” was developed to answer this concern. The authors could identify key performance indicators (KPIs), individualization, efficiency and communication channels as central potentials. These determinants were evaluated by means of structural equation modelling, whereby KPIs and communication channels show a significant influence on the potential of digital business models and their processes in healthcare. In order to address the rapid developments in the field of Artificial Intelligence (AI), an outlook on its potential benefits and challenges in healthcare is given finally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Bäcker, G. Naegele, R. Bispinck, Sozialpolitik Und Soziale Lage in Deutschland (Springer Fachmedien Wiesbaden, Wiesbaden, 2020)

    Book  Google Scholar 

  2. Bundesministerium für Gesundheit (ed.), Das deutsche Gesundheitssystem. Leistungsstark. Sicher. Bewährt (2020)

    Google Scholar 

  3. G. Yang, Z. Pang, M. Jamal Deen, Dong, M., Zhang, Y.-T., Lovell, N., Rahmani, A.M., Homecare robotic systems for healthcare 4.0: visions and enabling technologies. IEEE J Biomed Health Inf. 24, 9, 2535–2549 (2020). https://doi.org/10.1109/JBHI.2020.2990529

  4. Bundesministerium für Gesundheit (ed.) Daten des Gesundheitswesens. 2020 November 2020 (2020)

    Google Scholar 

  5. S. Gschoßmann, A. Raab, Content-Marketing als Strategie der Zukunft im Krankenhaus, in Digitale Transformation von Dienstleistungen im Gesundheitswesen II, ed by Pfannstiel, M., Da-Cruz, P., Mehlich, H. (Springer Gabler, Wiesbaden), pp. 107–127 https://doi.org/10.1007/978-3-658-12393-2_8

  6. DAK-Gesundheit (Andreas Storm) (ed.), Gesundheitsreport 2020. Beiträge zur Gesundheitsökonomie und Versorgungsforschung (33) (2020)

    Google Scholar 

  7. B. Meskó, G. Hetényi, Z. Győrffy, Will artificial intelligence solve the human resource crisis in healthcare? BMC Health Serv. Res. 18, 545 (2018). https://doi.org/10.1186/s12913-018-3359-4

    Article  Google Scholar 

  8. R. Flake, S. Kochskämper, P. Risius, S. Seyda, Fachkräfteengpass in der Altenpflege. Vierteljahresschrift zur empirischen Wirtschaftsforschung 45, 20–39 (2018)

    Google Scholar 

  9. U. Sury, Digitalisierung im Gesundheitswesen. Informatik Spektrum 43, 442–443 (2020). https://doi.org/10.1007/s00287-020-01317-9

    Article  Google Scholar 

  10. K. Yousaf, Z. Mehmood, I.A. Awan, T. Saba, R. Alharbey, T. Qadah, M.A. Alrige, A comprehensive study of mobile-health based assistive technology for the healthcare of dementia and Alzheimer’s disease (AD). Health Care Manag. Sci. 23(2), 287–309 (2020). https://doi.org/10.1007/s10729-019-09486-0

    Article  Google Scholar 

  11. S. Agnihothri, L. Cui, M. Delasay, B. Rajan, The value of mHealth for managing chronic conditions. Health Care Manag. Sci. 23(2), 185–202 (2020). https://doi.org/10.1007/s10729-018-9458-2

    Article  Google Scholar 

  12. S. Kraus, F. Schiavone, A. Pluzhnikova, A.C. Invernizzi, Digital transformation in healthcare: Analyzing the current state-of-research. J. Bus. Res. 123, 557–567 (2021). https://doi.org/10.1016/j.jbusres.2020.10.030

    Article  Google Scholar 

  13. C.J. Bermejo-Caja, D. Koatz, C. Orrego, L. Perestelo-Pérez, A.I. González-González, M. Ballester, V. Pacheco-Huergo, Y. Del Rey-Granado, M. Muñoz-Balsa, A.B. Ramírez-Puerta, Y. Canellas-Criado, F.J. Pérez-Rivas, A. Toledo-Chávarri, M. Martínez-Marcos, Acceptability and feasibility of a virtual community of practice to primary care professionals regarding patient empowerment: a qualitative pilot study. BMC Health Serv. Res. 19, 403 (2019). https://doi.org/10.1186/s12913-019-4185-z

    Article  Google Scholar 

  14. E. Karahanna, A. Chen, Q.B. Liu, C. Serrano, Capitalizing on health information technology to enable advantage in U.S. Hospitals. MISQ 43(1), 113–140 (2019). https://doi.org/10.25300/MISQ/2019/12743

  15. C. Williams, Y. Asi, A. Raffenaud, M. Bagwell, I. Zeini, The effect of information technology on hospital performance. Health Care Manag. Sci. 19(4), 338–346 (2016). https://doi.org/10.1007/s10729-015-9329-z

    Article  Google Scholar 

  16. O’ Connor, Y., O’ Reilly, P.: Examining the infusion of mobile technology by healthcare practitioners in a hospital setting. Inf. Syst. Front. 20, 6, 1297–1317 (2018). https://doi.org/10.1007/s10796-016-9728-9

  17. World Health Organization (WHO), Everybody business : strengthening health systems to improve health outcomes: WHO’s framework for action (2007)

    Google Scholar 

  18. HBM Healthcare Investments: Der Gesundheitsmarkt – Ein attraktives Anlageuniversum. https://www.hbmhealthcare.com/de/sektor#:~:text=Das%20globale%20Umsatzvolumen%20der%20Gesundheitsindustrie,Diagnostik%20mit%20%C3%BCber%20400%20Milliarden. (2020). Accessed 14 March 2021

  19. Bundesministerium für Wirtschaft und Energie (BMWi) (ed.), Gesundheitswirtschaft. Fakten & Zahlen. Ergebnisse der Gesundheitswirtschaftlichen Gesamtrechnung (2019)

    Google Scholar 

  20. Bundesministerium für Gesundheit: Gesundheitswirtschaft. Bedeutung der Gesundheitswirtschaft. https://www.bundesgesundheitsministerium.de/themen/gesundheitswesen/gesundheitswirtschaft/bedeutung-der-gesundheitswirtschaft.html (2019). Accessed 14 March 2021

  21. M. Simon, Das Gesundheitssystem in Deutschland. Eine Einführung in Struktur und Funktionsweise, 5th edn. Hogrefe, Bern (2016)

    Google Scholar 

  22. PricewaterhouseCoopers GmbH (PwC): Healthcare Barometer 2021 (2021)

    Google Scholar 

  23. M. Rachinger, R. Rauter, C. Müller, W. Vorraber, E. Schirgi, Digitalization and its influence on business model innovation. JMTM (2019). https://doi.org/10.1108/JMTM-01-2018-0020

    Article  Google Scholar 

  24. Gartner: Gartner Glossary. Digitalization. https://www.gartner.com/en/information-technology/glossary/digitalization. Accessed 14 March 2021

  25. Bundesministerium für Wirtschaft und Energie (ed.): Industrie 4.0 und Digitale Wirtschaft. Impulse für Wachstum, Beschäftigung und Innovation (2015)

    Google Scholar 

  26. D.R.A. Schallmo, Jetzt Digital Transformieren (Springer Fachmedien Wiesbaden, Wiesbaden, 2019)

    Book  Google Scholar 

  27. F. Baum, L. Newman, K. Biedrzycki, Vicious cycles: digital technologies and determinants of health in Australia. Health Promot. Int. 29(2), 349–360 (2014). https://doi.org/10.1093/heapro/das062

    Article  Google Scholar 

  28. S.P. Bhavnani, J. Narula, P.P. Sengupta, Mobile technology and the digitization of healthcare. Eur. Heart J. 37(18), 1428–1438 (2016). https://doi.org/10.1093/eurheartj/ehv770

    Article  Google Scholar 

  29. Nebeker, C., Torous, J., Bartlett Ellis, R.J.: Building the case for actionable ethics in digital health research supported by artificial intelligence. BMC Med. 17(1), 137 (2019). https://doi.org/10.1186/s12916-019-1377-7

  30. S. Hermes, T. Riasanow, E.K. Clemons, M. Böhm, H. Krcmar, The digital transformation of the healthcare industry: exploring the rise of emerging platform ecosystems and their influence on the role of patients. Bus Res. 13(3), 1033–1069 (2020). https://doi.org/10.1007/s40685-020-00125-x

    Article  Google Scholar 

  31. H. Kelley, M. Chiasson, A. Downey, D. Pacaud, The clinical impact of eHealth on the self-management of diabetes: a double adoption perspective. JAIS 12(3), 208–234 (2011). https://doi.org/10.17705/1jais.00263

  32. S.R. Tamim, M.M. Grant, Exploring how health professionals create eHealth and mHealth education interventions. Educ. Tech. Res. Dev. 64(6), 1053–1081 (2016). https://doi.org/10.1007/s11423-016-9447-4

    Article  Google Scholar 

  33. E. Lettieri, L.P. Fumagalli, G. Radaelli, P. Bertele, J. Vogt, R. Hammerschmidt, J.L. Lara, A. Carriazo, C. Masella, Empowering patients through eHealth: a case report of a pan-European project. BMC Health Serv. Res. 15, 309 (2015).https://doi.org/10.1186/s12913-015-0983-0

  34. S. Burkhart, F. Hanser, Einfluss globaler megatrends auf das digitale betriebliche gesundheitsmanagement, in D. Matusiewicz, L. Kaiser (eds.) Digitales Betriebliches Gesundheitsmanagement. FOM-Edition (FOM Hochschule für Oekonomie & Management). Springer Gabler, Wiesbaden (2018). https://doi.org/10.1007/978-3-658-14550-7_2

  35. G.N. Athanasiou, D.K. Lymberopoulos, Deployment of pHealth services upon always best connected next generation network, in Artificial Intelligence Applications and Innovations. AIAI 2012. IFIP Advances in Information and Communication Technology, ed by L. Iliadis, I. Maglogiannis, H. Papadopoulos, K. Karatzas, S. Sioutas, vol. 382 (Springer, Berlin, Heidelberg, 2012), pp. 86–94. https://doi.org/10.1007/978-3-642-33412-2_9

  36. B.M. Caulfield, S.C. Donnelly, What is connected health and why will it change your practice? QJM: Monthly J. Ass. Phys. 106(8), 703–707 (2013). https://doi.org/10.1093/qjmed/hct114

    Article  Google Scholar 

  37. Gabler Wirtschaftslexikon: Big Data. https://wirtschaftslexikon.gabler.de/definition/big-data-54101/version-277155 (2018). Accessed 14 March 2021

  38. W. Raghupathi, V. Raghupathi, Big data analytics in healthcare: promise and potential. Health Inf. Sci. Syst. 2, 3 (2014). https://doi.org/10.1186/2047-2501-2-3

    Article  Google Scholar 

  39. S.J. Trenfield, A. Awad, C.M. Madla, G.B. Hatton, J. Firth, A. Goyanes, S. Gaisford, A.W. Basit, Shaping the future: recent advances of 3D printing in drug delivery and healthcare. Expert. Opin. Drug. Deliv. 16(10), 1081–1094 (2019). https://doi.org/10.1080/17425247.2019.1660318

    Article  Google Scholar 

  40. M. Gombolay, X.J. Yang, B. Hayes, N. Seo, Z. Liu, S. Wadhwania, T. Yu, N. Shah, T. Golen, J. Shah, Robotic assistance in the coordination of patient care. Int. J. Rob. Res. 37(10), 1300–1316 (2018). https://doi.org/10.1177/0278364918778344

    Article  Google Scholar 

  41. U.K. Mukherjee, K.K. Sinha, Robot-assisted surgical care delivery at a hospital: policies for maximizing clinical outcome benefits and minimizing costs. J. Ops. Manage. 66(1–2), 227–256 (2020). https://doi.org/10.1002/joom.1058

    Article  Google Scholar 

  42. A. Bohr, K. Memarzadeh, The rise of artificial intelligence in healthcare applications, in Artificial Intelligence in Healthcare (Elsevier, 2020). pp. 25–60 https://doi.org/10.1016/B978-0-12-818438-7.00002-2

  43. M. Obschonka, D.B. Audretsch, Artificial intelligence and big data in entrepreneurship: a new era has begun. Small Bus. Econ. 55, 529–539 (2020). https://doi.org/10.1007/s11187-019-00202-4

    Article  Google Scholar 

  44. J. Lee, T. Suh, D. Roy, M. Baucus, Emerging technology and business model innovation: the case of artificial intelligence. JOItmC 5(3), 44 (2019). https://doi.org/10.3390/joitmc5030044

  45. I. Bardhan, H. Chen, Karahanna elena: connecting systems, data, and people: a multidisciplinary research roadmap for chronic disease management. MIS. Q. 44, 185–200 (2020)

    Google Scholar 

  46. R.-C. Härting, C. Reichstein, M. Schad, Potentials of digital business models—empirical investigation of data driven impacts in industry. Proc. Comput. Sci. 126, 1495–1506 (2018). https://doi.org/10.1016/j.procs.2018.08.121

    Article  Google Scholar 

  47. R. Härting, C. Reichstein, P. Laemmle, A. Sprengel, Potentials of digital business models in the retail industry—empirical results from European experts. Proc. Comput. Sci. 159, 1053–1062 (2019). https://doi.org/10.1016/j.procs.2019.09.274

    Article  Google Scholar 

  48. C.M. Ringle, S. Wende, J.-M. Becker, SmartPLS 3. SmartPLS, Bönningstedt (2015)

    Google Scholar 

  49. K.K.-K. Wong, Partial least squares structural equation modeling (PLS-SEM) techniques using SmartPLS. Market. Bull. 24 (2013)

    Google Scholar 

  50. Gabler Wirtschaftslexikon: Key Performance Indicator (KPI). https://wirtschaftslexikon.gabler.de/definition/key-performance-indicator-kpi-52670/version-275788 (2018). Accessed 14 March 2021

  51. E.A. Elhadjamor, S.A. Ghannouchi, Analyze in depth health care business process and key performance indicators using process mining. Proc. Comput. Sci. 164, 610–617 (2019). https://doi.org/10.1016/j.procs.2019.12.227

    Article  Google Scholar 

  52. Y.-H. Kuo, O. Rado, B. Lupia, J.M.Y. Leung, C.A. Graham, Improving the efficiency of a hospital emergency department: a simulation study with indirectly imputed service-time distributions. Flex. Serv. Manuf. J. 28, 120–147 (2016). https://doi.org/10.1007/s10696-014-9198-7

    Article  Google Scholar 

  53. V. Vemulapalli, J. Qu, J.M. Garren, L.O. Rodrigues, M.A. Kiebish, R. Sarangarajan, N.R. Narain, V.R. Akmaev, Non-obvious correlations to disease management unraveled by Bayesian artificial intelligence analyses of CMS data. Artif. Intell. Med. 74, 1–8 (2016). https://doi.org/10.1016/j.artmed.2016.11.001

    Article  Google Scholar 

  54. D. Bertsimas, A. Orfanoudaki, R.B. Weiner, Personalized treatment for coronary artery disease patients: a machine learning approach. Health Care Manag. Sci. 23(4), 482–506 (2020). https://doi.org/10.1007/s10729-020-09522-4

    Article  Google Scholar 

  55. S. Denicolai, P. Previtali, Precision Medicine: Implications for value chains and business models in life sciences. Technol. Forecast Soc. Chang. 151, 119767 (2020). https://doi.org/10.1016/j.techfore.2019.119767

    Article  Google Scholar 

  56. M. Mende, The innovation imperative in healthcare: an interview and commentary. AMS Rev. 9, 121–131 (2019). https://doi.org/10.1007/s13162-019-00140-0

    Article  Google Scholar 

  57. SVR Gesundheit: Ebenen von Effizienz- und Effektivitätspotenzialen. https://www.svr-gesundheit.de/index.php?id=413. Accessed 14 March 2021

  58. Bundesministerium der Finanzen (ed.): Umsatzsteuerbefreiung nach § 4 Nr. 14 Buchst. a UStG; Umsatzsteuerliche Behandlung der Leistungen von Heilpraktikern und Gesundheitsfachberufen (2012)

    Google Scholar 

  59. V. Krämer, R.-C. Härting, Digitale Geschäftsmodelle in der Gesundheitsbranche. in Potenziale digitaler Geschäftsmodelle und deren -prozesse: Ein Branchenvergleich, ed.by R.-C. Härting (2019), pp. 76–132

    Google Scholar 

  60. J. Trambacz, Lehrbegriffe und Grundlagen der Gesundheitsökonomie (2016). https://doi.org/10.1007/978-3-658-10571-6

    Article  Google Scholar 

  61. B. Riedl, W. Peter, Prävention—Früherkennung. in Basiswissen Allgemeinmedizin (Springer, Berlin, Heidelberg, 2020), pp. 435–442. https://doi.org/10.1007/978-3-662-60324-6_10

  62. EPatient RSD: Nutzung von Internetanwendungen oder Apps für Gesundheitsthemen in Deutschland im Jahr 2015. https://de.statista.com/statistik/daten/studie/462483/umfrage/nutzung-von-internetanwendungen-oder-apps-fuer-gesundheitsanwendungen/ (2015). Accessed 14 March 2021

  63. BIS Research: Umsatz des globalen mobilen Gesundheit-App-Marktes im Jahr 2017 und 2025. https://de.statista.com/statistik/daten/studie/1184929/umfrage/umsatz-des-mobilen-gesundheit-apps-marktes-weltweit/#professional (2018). Accessed 14 March 2021

  64. Airnow: Ranking der beliebtesten Gesundheits- und Fitness-Apps im Google Play Store nach der Anzahl der Downloads in Deutschland im November 2020 (https://de.statista.com/statistik/daten/studie/688733/umfrage/beliebteste-gesundheits-und-fitness-apps-im-google-play-store-nach-downloads-in-deutschland/). Accessed 14 March 2021

  65. T. Jahnel, B. Schüz, Partizipative Entwicklung von Digital-Public-Health-Anwendungen: Spannungsfeld zwischen Nutzer*innenperspektive und Evidenzbasierung (Participatory development of digital public health: tension between user perspectives and evidence). Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 63(2), 153–159 (2020). https://doi.org/10.1007/s00103-019-03082-x

    Article  Google Scholar 

  66. S. Azzi, S. Gagnon, A. Ramirez, G. Richards, Healthcare applications of artificial intelligence and analytics: a review and proposed framework. Appl. Sci. 10, 18, 6553 (2020). https://doi.org/10.3390/app10186553

  67. F. Fischer, V. Aust, A. Krämer, eHealth: hintergrund und Begriffsbestimmung., in eHealth in Deutschland, ed. by F. Fischer, A. Krämer (Springer Vieweg, Berlin, Heidelberg, 2016), pp. 3–23. https://doi.org/10.1007/978-3-662-49504-9_1

  68. Bundesministerium der Justiz und für Verbraucherschutz / Bundesamt für Justiz: Sozialgesetzbuch (SGB) Fünftes Buch (V) - Gesetzliche Krankenversicherung - (Artikel 1 des Gesetzes v. 20. Dezember 1988, BGBl. I S. 2477) § 27 Krankenbehandlung (2021)

    Google Scholar 

  69. A.K. Srivastava, S. Kumar, M. Zareapoor, Self-organized design of virtual reality simulator for identification and optimization of healthcare software components. J. Ambient Intell. Human Comput. (2018). https://doi.org/10.1007/s12652-018-1100-0

    Article  Google Scholar 

  70. A.A. Kononowicz, N. Zary, S. Edelbring, J. Corral, I. Hege, Virtual patients–what are we talking about? A framework to classify the meanings of the term in healthcare education. BMC Med. Educ. 15, 11 (2015). https://doi.org/10.1186/s12909-015-0296-3

    Article  Google Scholar 

  71. R. Tsopra, M. Courtine, K. Sedki, D. Eap, M. Cabal, S. Cohen, O. Bouchaud, F. Mechaï, J.-B. Lamy, AntibioGame®: a serious game for teaching medical students about antibiotic use. Int. J. Med. Inf. 136, 104074 (2020). https://doi.org/10.1016/j.ijmedinf.2020.104074

    Article  Google Scholar 

  72. T. Huber, M. Paschold, C. Hansen, T. Wunderling, H. Lang, W. Kneist, New dimensions in surgical training: immersive virtual reality laparoscopic simulation exhilarates surgical staff. Surg. Endosc. 31, 4472–4477 (2017). https://doi.org/10.1007/s00464-017-5500-6

    Article  Google Scholar 

  73. M. Müschenich, L. Wamprecht, Gesundheit 4.0—Wie gehts uns denn morgen? (Health 4.0 - how are we doing tomorrow?). Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz 61(3), 334–339 (2018). https://doi.org/10.1007/s00103-018-2702-6

  74. K. Miller, G. Mansingh, OptiPres: a distributed mobile agent decision support system for optimal patient drug prescription. Inf. Syst. Front. 19(1), 129–148 (2017). https://doi.org/10.1007/s10796-015-9595-9

    Article  Google Scholar 

  75. B.M. Alwon, G. Solomon, F. Hussain, D.J. Wright, A detailed analysis of online pharmacy characteristics to inform safe usage by patients. Int. J. Clin. Pharm. 37(1), 148–158 (2015). https://doi.org/10.1007/s11096-014-0056-1

    Article  Google Scholar 

  76. Bundesministerium für Gesundheit: Apotheken. https://www.bundesgesundheitsministerium.de/themen/krankenversicherung/online-ratgeber-krankenversicherung/arznei-heil-und-hilfsmittel/apotheken.html#c1211 (2020). Accessed 14 March 2021

  77. G. Marzano, V. Lubkina, A review of telerehabilitation solutions for balance disorders. Proc. Comput. Sci. 104, 250–257 (2017). https://doi.org/10.1016/j.procs.2017.01.132

    Article  Google Scholar 

  78. T. Johansson, C. Wild, Telerehabilitation in stroke care–a systematic review. J. Telemed. Telecare 17(1), 1–6 (2011). https://doi.org/10.1258/jtt.2010.100105

    Article  Google Scholar 

  79. C. Guo, H. Ashrafian, S. Ghafur, G. Fontana, C. Gardner, M. Prime, Challenges for the evaluation of digital health solutions-a call for innovative evidence generation approaches. NPJ Dig. Med. 3, 110 (2020). https://doi.org/10.1038/s41746-020-00314-2

    Article  Google Scholar 

  80. J. Jörg, Digitalisierung in der Medizin. Wie Gesundheits-Apps, Telemedizin, künstliche Intelligenz und Robotik das Gesundheitswesen revolutionieren. Springer, Berlin (2018)

    Google Scholar 

  81. J. Siglmüller, Rechtsfragen der Fernbehandlung (Springer Berlin Heidelberg, Berlin, Heidelberg, 2020). https://doi.org/10.1007/978-3-662-61808-0

  82. Bundesärztekammer: Hinweise und Erläuterungen zu § 7 Abs. 4 MBO-Ä – Behandlung im persönlichen Kontakt und Fernbehandlung. Stand: 10.12.2020. Deutsches Ärzteblatt (2020)

    Google Scholar 

  83. Presse- und Informationsamt der Bundesregierung: Telefonische Krankschreibung wieder möglich. https://www.bundesregierung.de/breg-de/themen/coronavirus/telefonische-krankschreibung-1800026 (2020). Accessed 12 January 2021

  84. M. Kremers, Teleradiologie und Telemedizin. MKG-Chirurg 13(4), 248–259 (2020). https://doi.org/10.1007/s12285-020-00270-6

    Article  Google Scholar 

  85. A.-C.L. Leonardsen, C. Hardeland, A.K. Helgesen, V.A. Grøndahl, Patient experiences with technology enabled care across healthcare settings- a systematic review. BMC Health Serv. Res. 20(1), 779 (2020). https://doi.org/10.1186/s12913-020-05633-4

  86. B. Stanberry, Legal and ethical aspects of telemedicine. J. Telemed. Telecare 12(4), 166–175 (2006). https://doi.org/10.1258/135763306777488825

    Article  Google Scholar 

  87. F. Koerber, R.C. Dienst, J. John, W. Rogowski, Einführung. in Business Planning im Gesundheitswesen, W. Rogowski (Springer Gabler, Wiesbaden, 2016), pp. 1–24. https://doi.org/10.1007/978-3-658-08186-7_1

  88. European Commission: Commission Recommendation of 6 May 2003 concerning the definition of micro, small and medium-sized enterprises. L 124/36 (2003)

    Google Scholar 

  89. R.-C. Härting, R. Schmidt, M. Möhring, Business intelligence & big data: eine strategische Waffe für KMU?, in Big Data – Daten strategisch nutzen!, Tagungsband, ed. R. Härting, vol. 7. (Transfertag, Aalen 2014, BOD Norderstedt), pp. 11–25 (2014)

    Google Scholar 

  90. C. Homburg, H. Baumgartner, Beurteilung von Kausalmodellen. Bestandsaufnahme und Anwendungsempfehlungen. Marketing : ZFP—J. Res. Mmanage. 17, 162–176 (1995)

    Google Scholar 

  91. A. Himme, Gütekriterien der Messung: Reliabilität, Validität und Generalisierbarkeit, in Methodik der empirischen Forschung ed by S. Albers, D. Klapper, U. Konradt, A. Walter, J. Wolf (Gabler Verlag, Wiesbaden, 2009), pp. 485–500. https://doi.org/10.1007/978-3-322-96406-9_31

  92. R. Weiber, D. Mühlhaus, Güteprüfung reflektiver Messmodelle, in Strukturgleichungsmodellierung. Springer-Lehrbuch, ed by R. Weiber, D. Mühlhaus (Springer Berlin Heidelberg, Berlin, Heidelberg, 2014), pp. 127–172

    Google Scholar 

  93. J.F. Hair, G.T.M. Hult, C.M. Ringle, M. Sarstedt, N.F. Richter, S. Hauff, Partial Least Squares Strukturgleichungsmodellierung (Eine anwendungsorientierte Einführung. Verlag Franz Vahlen, München, 2017)

    Book  Google Scholar 

  94. W.W. Chin, The partial least squares approach to structural equation modeling, in Modern Methods for Business Research, pp. 295–336

    Google Scholar 

  95. S. Akter, K. Michael, M.R. Uddin, G. McCarthy, M. Rahman, Transforming business using digital innovations: the application of AI, blockchain, cloud and data analytics. Ann Oper Res (2020). https://doi.org/10.1007/s10479-020-03620-w

    Article  Google Scholar 

  96. P. Esmaeilzadeh, Use of AI-based tools for healthcare purposes: a survey study from consumers’ perspectives. BMC Med. Inf. Dec. Mak. 20(1), 170 (2020). https://doi.org/10.1186/s12911-020-01191-1

  97. F. Jiang, Y. Jiang, H. Zhi, Y. Dong, H. Li, S. Ma, Y. Wang, Q. Dong, H. Shen, Y. Wang, Artificial intelligence in healthcare: past, present and future. Stroke Vascular Neurol. 2(4), 230–243 (2017). https://doi.org/10.1136/svn-2017-000101

    Article  Google Scholar 

  98. A.A. Gunn, The diagnosis of acute abdominal pain with computer analysis. J. R. Coll. Surg. Edinb. 21, 170–172 (1976)

    Google Scholar 

  99. K.-C. Yuan, L-.W. Tsai, K.-H. Lee, Y.-W. Cheng, S.-C. Hsu, Y.-S. Lo, R.-J. Chen, The development an artificial intelligence algorithm for early sepsis diagnosis in the intensive care unit. Int. J. Med. Inf. 141, 104176 (2020). https://doi.org/10.1016/j.ijmedinf.2020.104176

  100. L. Strohm, C. Hehakaya, E.R. Ranschaert, W.P.C. Boon, E.H.M. Moors, Implementation of artificial intelligence (AI) applications in radiology: hindering and facilitating factors. Eur. Radiol. 30(10), 5525–5532 (2020). https://doi.org/10.1007/s00330-020-06946-y

    Article  Google Scholar 

  101. T.H. Davenport, R. Ronanki, Artificial intelligence artificial intelligence for the real world. Don't start with moon shots. Harvard Bus. Rev. January-February 2018, 1–10 (2018)

    Google Scholar 

  102. J. Amann, A. Blasimme, E. Vayena, D. Frey, V.I. Madai, Explainability for artificial intelligence in healthcare: a multidisciplinary perspective. BMC Med. Inf. Dec. Making 20(1), 310 (2020). https://doi.org/10.1186/s12911-020-01332-6

  103. A.B. Kocaballi, K. Ijaz, L. Laranjo, J.C. Quiroz, D. Rezazadegan, H.L. Tong, S. Willcock, S. Berkovsky, E. Coiera, Envisioning an artificial intelligence documentation assistant for future primary care consultations: A co-design study with general practitioners. J. Am. Med. Inf. Assoc.: JAMIA 27(11), 1695–1704 (2020). https://doi.org/10.1093/jamia/ocaa131

    Article  Google Scholar 

  104. P.M. Doraiswamy, C. Blease, K. Bodner, Artificial intelligence and the future of psychiatry: Insights from a global physician survey. Artif. Intell. Med. 102, 101753 (2020). https://doi.org/10.1016/j.artmed.2019.101753

    Article  Google Scholar 

  105. A. Akay, H. Hess, Deep Learning: Current and Emerging Applications in Medicine and Technology. IEEE J. Biomed. Health Inform. 23(3), 906–920 (2019). https://doi.org/10.1109/JBHI.2019.2894713

    Article  Google Scholar 

  106. Z. Dlamini, F.Z. Francies, R. Hull, R. Marima, Artificial intelligence (AI) and big data in cancer and precision oncology. Comput. Struct. Biotechnol. J. 18, 2300–2311 (2020). https://doi.org/10.1016/j.csbj.2020.08.019

    Article  Google Scholar 

  107. MarketsandMarkets: Artificial Intelligence in Healthcare Market with Covid-19 Impact Analysis by Offering (Hardware, Software, Services), Technology (Machine Learning, NLP, Context-Aware Computing, Computer Vision), End-Use Application, End User and Region - Global Forecast to 2026 (https://www.marketsandmarkets.com/Market-Reports/artificial-intelligence-healthcare-market-54679303.html). Accessed 14 March 2021

  108. D. Thesmar, D. Sraer, L. Pinheiro, N. Dadson, R. Veliche, P. Greenberg, Combining the power of artificial intelligence with the richness of healthcare claims data: opportunities and challenges. Pharmacoeconomics 37(6), 745–752 (2019). https://doi.org/10.1007/s40273-019-00777-6

    Article  Google Scholar 

  109. M.-C. Laï, M. Brian, M.-F. Mamzer, Perceptions of artificial intelligence in healthcare: findings from a qualitative survey study among actors in France. J. Transl. Med. 18(1), 14 (2020). https://doi.org/10.1186/s12967-019-02204-y

  110. E. Meinert, A. Alturkistani, D. Brindley, P. Knight, G. Wells, N. de Pennington, Weighing benefits and risks in aspects of security, privacy and adoption of technology in a value-based healthcare system. BMC Med. Inf. Dec. Mak. 18(1), 100 (2018). https://doi.org/10.1186/s12911-018-0700-0

  111. S. Thiebes, S. Lins, A. Sunyaev, Trustworthy artificial intelligence. Electron Markets (2020). https://doi.org/10.1007/s12525-020-00441-4

    Article  Google Scholar 

Download references

Acknowledgements

This work is based on several research projects of Aalen University. We would like to thank Viola Krämer and María Leticia Aguilar Vázquez for their great support especially.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Härting .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hoppe, N., Häfner, F., Härting, R. (2022). Digital Business Models in the Healthcare Industry. In: Lim, CP., Chen, YW., Vaidya, A., Mahorkar, C., Jain, L.C. (eds) Handbook of Artificial Intelligence in Healthcare. Intelligent Systems Reference Library, vol 212. Springer, Cham. https://doi.org/10.1007/978-3-030-83620-7_14

Download citation

Publish with us

Policies and ethics