Skip to main content

Robotics in Healthcare

  • Chapter
  • First Online:
Handbook of Artificial Intelligence in Healthcare

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 212))

Abstract

A robot is a programmed actuated mechanism with a degree of autonomy. Medical robots came a long way since first prototypes based on industrial robots in the 1960s-70 s to become modern complex systems that assist surgeons, patients, and nurses. Over time, robots proved their usefulness and evolved for the ability to operate in confined spaces inside human bodies, help people recover the functions of injured limbs, or provide support to physically and cognitively impaired persons. This chapter provides an overview along with the challenges of current robotics in healthcare.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. “ISO 8373:2012(en), Robots and robotic devices—Vocabulary (2020). https://www.iso.org/obp/ui/#iso:std:iso:8373:ed-2:v1:en Accessed 29 Aug 2020

  2. Cleaning Robot Market Size, Share | Industry Report, 2019–2025. https://www.grandviewresearch.com/industry-analysis/cleaning-robot-market Accessed 07 Feb 2021

  3. Search and Rescue Robots Market—Growth, Trends, and Forecasts (2020−2025). https://www.researchandmarkets.com/reports/5177587/search-and-rescue-robots-market-growth-trends Accessed 07 Feb 2021

  4. Underwater Robotics Market Size | Industry Report, 2018–2025. https://www.grandviewresearch.com/industry-analysis/underwater-robotics-market Accessed 07 Feb 2021

  5. Y. Gao, S. Chien, Review on space robotics: Toward top-level science through space exploration. Sci. Robot. 2(7), eaan5074 (2017). https://doi.org/10.1126/scirobotics.aan5074

  6. Space Robotics Market Share & Analysis Report 2020–2027. https://www.grandviewresearch.com/industry-analysis/space-robotics-market Accessed 07 Feb 2021

  7. Household Robots Market | Industry Analysis and Market Forecast to 2024 | MarketsandMarkets (2021). https://www.marketsandmarkets.com/Market-Reports/household-robot-market-253781130.html Accessed 07 Feb 2021

  8. S. Ivanov, U. Gretzel, K. Berezina, M. Sigala, C. Webster, Progress on robotics in hospitality and tourism: a review of the literature. J. Hosp. Tour. Technol. JHTT-08–2018–0087 (2019). https://doi.org/10.1108/JHTT-08-2018-0087

  9. Entertainment Robots Market by Type, Size, Growth and Forecast–2023 | MRFR (2021). https://www.marketresearchfuture.com/reports/entertainment-robots-market-2925 Accessed 07 Feb 2021

  10. S. Anwar, N.A. Bascou, M. Menekse, A. Kardgar, A systematic review of studies on educational robotics. J. Pre-College Eng. Educ. Res. 9(2), 2019. https://doi.org/10.7771/2157-9288.1223

  11. Educational Robot Market by Type, Component, Education Level | COVID-19 Impact Analysis | MarketsandMarketsTM(2021). https://www.marketsandmarkets.com/Market-Reports/educational-robot-market-28174634.html Accessed 07 Feb 2021

  12. Industrial Robotics Market | Growth, Trends, and Forecasts (2020–2025). https://www.mordorintelligence.com/industry-reports/industrial-robotics-market Accessed 07 Feb 2021

  13. Medical Robotic System Market‒Growth, Trends, COVID-19 Impact, and Forecasts (2021–2026). https://www.researchandmarkets.com/reports/4591245/medical-robotic-system-market-growth-trends Accessed 07 Feb 2021

  14. J. Troccaz, G. Dagnino, G.-Z. Yang, Frontiers of medical robotics: from concept to systems to clinical translation. Annu. Rev. Biomed. Eng. 21(1), 193–218 (2019). https://doi.org/10.1146/annurev-bioeng-060418-052502

    Article  Google Scholar 

  15. Military Robots Market Size, Statistics–Global Forecast 2027 (2021). https://www.gminsights.com/industry-analysis/military-robots-market Accessed 07 Feb 2021

  16. C. Frumento, E. Messier, V. Montero, History and future of rehabilitation robotics 2010. Accessed 12 Feb 2021. [Online] Available http://digitalcommons.wpi.edu/atrc-projects/42

  17. Á.R. Takács, D. Nagy, I.J. Rudas, T. Haidegger, Origins of surgical robotics: from space to the operating room. Acta Polytech. Hungarica 13(1), 13–30 (2016). https://doi.org/10.12700/aph.13.1.2016.1.3

    Article  Google Scholar 

  18. Y.S. Kwoh, J. Hou, E.A. Jonckheere, S. Hayati, A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans. Biomed. Eng. 35(2), 153–160 (1988). https://doi.org/10.1109/10.1354

    Article  Google Scholar 

  19. S. Sheng, T. Zhao, X. Wang, Comparison of robot-assisted surgery, laparoscopic-assisted surgery, and open surgery for the treatment of colorectal cancer A network meta-analysis (2018). https://doi.org/10.1097/MD.0000000000011817

  20. P.C. van der Sluis et al., Robot-assisted minimally invasive thoracolaparoscopic esophagectomy versus open transthoracic esophagectomy for resectable esophageal cancer. Ann. Surg. 269(4), 621–630 (2019). https://doi.org/10.1097/SLA.0000000000003031

    Article  Google Scholar 

  21. M.J.G. Blyth, I. Anthony, P. Rowe, M.S. Banger, A. MacLean, B. Jones, Robotic arm-assisted versus conventional unicompartmental knee arthroplasty. Bone Joint Res. 6(11), 631–639 (2017). https://doi.org/10.1302/2046-3758.611.BJR-2017-0060.R1

    Article  Google Scholar 

  22. Surgical Robots Market by Product & Service (Instruments and Accessories, Systems, Service), Application (Urological Surgery, Gynecological Surgery, Orthopedic Surgery), End User (Hospitals, Ambulatory Surgery Centers)—Global Forecasts to 2025. https://www.researchandmarkets.com/reports/5005621/surgical-robots-market-by-product-and-service#pos-0 Accessed 29 Aug 2020

  23. Surgical Robots Market Size, Share | Global Industry Report, 2019–2025. https://www.grandviewresearch.com/industry-analysis/surgical-robot-market Accessed 29 Aug 2020

  24. K. Corker, J.H. Lyman, S. Sheredos, A preliminary evaluation of remote medical manipulators. Bull. Prosthet. Res. 10(32), 107–134 (1979)

    Google Scholar 

  25. M.P. Dijkers, P.C. deBear, R.F. Erlandson, K. Kristy, D.M. Geer, A. Nichols, Patient and staff acceptance of robotic technology in occupational therapy: a pilot study. J Rehabil Res Dev 28(2), 33–44 (1991)

    Google Scholar 

  26. H.F.M. Van der Loos, D.J. Reinkensmeyer, E. Guglielmelli, Rehabilitation and health care robotics. in Springer Handbook of Robotics (Cham, Springer International Publishing, 2016), pp. 1685–1728

    Google Scholar 

  27. T. Shibata, K. Wada, T. Saito, K. Tanie, Human interactive robot for psychological enrichment and therapy. Proc. AISB 5, 98–109 (2005)

    Google Scholar 

  28. BBC—A History of the World—Object : Bionic Hand (2020). http://www.bbc.co.uk/ahistoryoftheworld/objects/rnjCtSFqRxekdECEgBSwRw Accessed 29 Aug 2020

  29. Rehabilitation Robots Market | Growth, Trends, and Forecast (2020−2025). https://mordorintelligence.com/industry-reports/rehabilitation-robots-market Accessed 29 Aug 2020

  30. Global Rehabilitation Robotics Market Share, Growth and Opportunities (2020). https://www.gmiresearch.com/report/global-rehabilitation-robotics-market/ Accessed 29 Aug 2020

  31. Disability (2020). https://www.who.int/health-topics/disability#tab=tab_1 Accessed 29 Aug 2020

  32. I.J.Y. Wee, L. Kuo, J.C. Ngu, A systematic review of the true benefit of robotic surgery: ergonomics. Int. J. Med. Robot. Comput. Assist. Surg. 16(4) (2020). https://doi.org/10.1002/rcs.2113

  33. M.A. Liss, E.M. McDougall, Robotic surgical simulation. Cancer J. 19(2), 124–129 (2013). https://doi.org/10.1097/PPO.0b013e3182885d79

    Article  Google Scholar 

  34. R.H. Taylor, A. Menciassi, G. Fichtinger, P. Fiorini, P. Dario, Medical robotics and computer-integrated surgery. in Springer Handbook of Robotics (Springer, 2016). pp. 1657–1684

    Google Scholar 

  35. W. Sukovich, S. Brink-Danan, M. Hardenbrook, Miniature robotic guidance for pedicle screw placement in posterior spinal fusion: early clinical experience with the SpineAssist®. Int. J. Med. Robot. Comput. Assist. Surg. 2(2), 114–122 (2006). https://doi.org/10.1002/rcs.86

    Article  Google Scholar 

  36. Technology—THINK Surgical®, Inc (2020). https://thinksurgical.com/professionals/technology/ Accessed 29 Aug 2020

  37. M. Ghodoussi, S.E. Butner, Y. Wang, Robotic surgery-the transatlantic case. in Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292) vol. 2 (2002). pp. 1882–1888

    Google Scholar 

  38. C. Freschi, V. Ferrari, F. Melfi, M. Ferrari, F. Mosca, A. Cuschieri, Technical review of the da Vinci surgical telemanipulator. Int. J. Med. Robot. Comput. Assist. Surg. 9(4), 396–406 (2013). https://doi.org/10.1002/rcs.1468

    Article  Google Scholar 

  39. P. Marayong, M. Li, A.M. Okamura, G.D. Hager, Spatial motion constraints: theory and demonstrations for robot guidance using virtual fixtures. in 2003 IEEE International Conference on Robotics and Automation (Cat. No. 03CH37422),vol. 2. (2003). pp. 1954–1959

    Google Scholar 

  40. Intuitive | da Vinci | Robotic Surgical Systems (2020). https://www.intuitive.com/en-us/products-and-services/da-vinci Accessed 29 Aug 2020

  41. L. Morelli, S. Guadagni, G. Di Franco, M. Palmeri, G. Di Candio, F. Mosca, Da Vinci single site© surgical platform in clinical practice: a systematic review. Int. J. Med. Robot. Comput. Assist. Surg. 12(4), 724–734 (2016). https://doi.org/10.1002/rcs.1713

    Article  Google Scholar 

  42. B. Hagag, R. Abovitz, H. Kang, B. Schmitz, M. Conditt, RIO: robotic-arm interactive orthopedic system MAKOplasty: user interactive haptic orthopedic robotics. in Surgical Robotics (Boston, MA, Springer US, 2011). pp. 219–246

    Google Scholar 

  43. T. Haidegger, B. Benyö, L. Kovács, Z. Benyö, Force sensing and force control for surgical robots. in IFAC Proceedings Volumes (IFAC-PapersOnline). vol. 7(PART 1) (2009). pp. 401–406.https://doi.org/10.3182/20090812-3-DK-2006.0035

  44. Mako | Stryker (2020). https://www.stryker.com/us/en/portfolios/orthopaedics/joint-replacement/mako-robotic-arm-assisted-surgery.html Accessed 29 Aug 2020

  45. J. H. Palep, Robotic assisted minimally invasive surgery. J. Minimal Access Surg 5(1), 1–7 (2009) Wolters Kluwer- Medknow Publications. https://doi.org/10.4103/0972-9941.51313

  46. J. Burgner-Kahrs, D.C. Rucker, H. Choset, Continuum robots for medical applications: a survey. IEEE Trans. Robot. 31(6), 1261–1280 (2015). https://doi.org/10.1109/TRO.2015.2489500

    Article  Google Scholar 

  47. H.M. Le, T.N. Do, S.J. Phee, A survey on actuators-driven surgical robots. Sensors Actuators A Phys. 247, 323–354 (2016). https://doi.org/10.1016/j.sna.2016.06.010

    Article  Google Scholar 

  48. M. Runciman, A. Darzi, G.P. Mylonas, Soft robotics in minimally invasive surgery. Soft Robot. 6(4), 423–443 (2019). https://doi.org/10.1089/soro.2018.0136

    Article  Google Scholar 

  49. Mazor X Stealth Edition Spine Robotics | Medtronic (2020). https://www.medtronic.com/us-en/healthcare-professionals/therapies-procedures/spinal-orthopaedic/spine-robotics.html Accessed 30 Aug 2020

  50. Monarch Platform—Endoscopy Transformed—Auris Health (2019). https://www.aurishealth.com/monarch-platform Accessed 09 Jan 2019

  51. S.S. Mapara, V.B. Patravale, Medical capsule robots: a renaissance for diagnostics, drug delivery and surgical treatment. J. Control. Release 261(Elsevier B.V) 337–351 (2017). https://doi.org/10.1016/j.jconrel.2017.07.005

  52. S. Ornes, Medical microrobots have potential in surgery, therapy, imaging, and diagnostics. Proc. Natl. Acad. Sci. USA. 114(47), 12356–12358 (2017). https://doi.org/10.1073/pnas.1716034114

    Article  MathSciNet  Google Scholar 

  53. N. Simaan, R.M. Yasin, L. Wang, Medical technologies and challenges of robot-assisted minimally invasive intervention and diagnostics. Annu. Rev. Control. Robot. Auton. Syst. 1(1), 465–490 (2018). https://doi.org/10.1146/annurev-control-060117-104956

    Article  Google Scholar 

  54. B.J. Nelson, I.K. Kaliakatsos, J.J. Abbott, Microrobots for minimally invasive medicine. Annual Rev. Biomed. Eng. 12(1), 55–85 (2010). https://doi.org/10.1146/annurev-bioeng-010510-103409

  55. CyberKnife S7 Launch | Accuray (2020). https://www.accuray.com/cyberknifes7/ Accessed 30 Aug 2020

  56. Novalis−Brainlab (2020). https://www.brainlab.com/ru/resheniya-dlya-radiohirurgii/novalis/ Accessed 30 Aug 2020

  57. Leksell Gamma Knife® IconTM | Radiation Icon | Icon Treatment (2020). https://www.elekta.com/radiosurgery/leksell-gamma-knife-icon/ Accessed 30 Aug 2020

  58. Exacure−precision for life (2021). https://www.exacure.com/ Accessed 12 Feb 2021

  59. È. Coste-Manière, D. Olender, W. Kilby, R.A. Schulz, Robotic whole body stereotactic radiosurgery: clinical advantages of the Cyberknife® integrated system. Int. J. Med. Robot. Comput. Assist. Surg. 1(2), 28–39 (2005). https://doi.org/10.1002/rcs.39

    Article  Google Scholar 

  60. B.S. Teh et al., Versatility of the Novalis system to deliver image-guided stereotactic body radiation therapy (SBRT) for various anatomical sites. Technol. Cancer Res. Treat. 6(4), 347–354 (2007). https://doi.org/10.1177/153303460700600412

    Article  Google Scholar 

  61. OMNIBotics® » Corin Group (2020). https://www.coringroup.com/uk/solutions/omnibotics/ Accessed 30 Aug 2020

  62. NAVIO Surgical System‒Technology behind the machine | Smith & Nephew (2020). https://www.smith-nephew.com/professional/microsites/navio/navio-technology/product-overview/ Accessed 30 Aug 2020

  63. Rosa Knee System (2020). https://www.zimmerbiomet.com/medical-professionals/knee/product/rosa-knee-system.html Accessed 30 Aug 2020

  64. ExcelsiusGPS® Robotic Navigation Platform | Globus Medical (2020). https://www.globusmedical.com/musculoskeletal-solutions/excelsiusgps/ Accessed 30 Aug 2020

  65. TiRobot Introduction―TINAVI | Intelligent Medical Solutions (2020). https://www.tinavi.com/index.php?m=content&c=index&a=lists&catid=9 Accessed 30 Aug 2020

  66. Neuromate® stereotactic robot (2020). https://www.renishaw.ru/ru/neuromate-robotic-system-for-stereotactic-neurosurgery--10712 Accessed 30 Aug 2020

  67. ROSA ONE® Brain (2020). https://www.zimmerbiomet.com/medical-professionals/cmf/rosa-brain.html Accessed 30 Aug 2020

  68. Interventional Systems | Micromate (2021). https://www.interventional-systems.com/micromate/ Accessed 12 Feb 2021

  69. Medical—BEC GmbH—robotic solutions (2020). https://www.b-e-c.de/us/medical Accessed 30 Aug 2020

  70. PERFINT HEALTHCARE (2020). http://www.perfinthealthcare.com/robioEX_Overview.php Accessed 30 Aug 2020

  71. Robotic Prostate Biopsy with MRI-Ultrasound Fusion | iSR’obot Mona Lisa (2020). https://biobotsurgical.com/monalisa/ Accessed 30 Aug 2020

  72. What’s New | Senhance Surgical System (2020). https://www.senhance.com/us/home Accessed 30 Aug 2020

  73. Versius Surgical Robotic System―CMR Surgical (2020). https://cmrsurgical.com/versius Accessed 30 Aug 2020

  74. Rob Surgical | Bitrack system for minimally invasive surgery (2020). https://www.robsurgical.com/bitrack/ Accessed 30 Aug 2020

  75. Revo (2020). http://revosurgical.com/#/main.html Accessed 30 Aug 2020

  76. Surgica Robotica−Medical Technology Solutions (2020). https://www.surgicarobotica.com/ Accessed 30 Aug 2020

  77. SPORT Surgical System | Titan Medical Inc (2020). https://titanmedicalinc.com/technology/ Accessed 30 Aug 2020

  78. Corindus Corpath GRX for Cath Lab Safety (2020). https://www.corindus.com/corpath-grx/benefits Accessed 30 Aug 2020

  79. Catheter Robotics--Other Resources (2020). http://catheterrobotics.com/product-main.htm Accessed 30 Aug 2020

  80. Intuitive | Robotic-Assisted Bronchoscopy | Ion Platform (2020). https://www.intuitive.com/en-us/products-and-services/ion Accessed 30 Aug 2020

  81. Flex® Robotic System: Expanding the reach of surgery® | Medrobotics (2020). https://medrobotics.com/gateway/flex-system-int/ Accessed 30 Aug 2020

  82. Stereotaxis Products (2020). http://www.stereotaxis.com/products/ Accessed 30 Aug 2020

  83. Robotic Hair Restoration Machine (2020). ARTAS iXTM―Venus Concept USA. https://www.venusconcept.com/en-us/artas-ix.htm Accessed 30 Aug 2020

  84. PillCamTM SB 3 System | Medtronic (2020). https://www.medtronic.com/covidien/en-us/products/capsule-endoscopy/pillcam-sb-3-system.html#pillcam-sb-3-capsule Accessed 30 Aug 2020

  85. Disability and health (2020). https://www.who.int/news-room/fact-sheets/detail/disability-and-health Accessed 30 Aug 2020

  86. D.U. Jette, R.L. Warren, C. Wirtalla, The relation between therapy intensity and outcomes of rehabilitation in skilled nursing facilities. Arch. Phys. Med. Rehabil. 86(3), 373–379 (2005). https://doi.org/10.1016/j.apmr.2004.10.018

    Article  Google Scholar 

  87. H.I. Krebs et al., Robotic measurement of arm movements after stroke establishes biomarkers of motor recovery. Stroke 45(1), 200–204 (2014). https://doi.org/10.1161/STROKEAHA.113.002296

    Article  Google Scholar 

  88. A. Peretti, F. Amenta, S.K. Tayebati, G. Nittari, S.S. Mahdi, “Telerehabilitation: review of the state-of-the-art and areas of application. JMIR Rehabil. Assist. Tecnol. 4(2), e7 (2017).https://doi.org/10.2196/rehab.7511

  89. Armeo®Power—Hocoma (2021). https://www.hocoma.com/solutions/armeo-power/ Accessed 13 Feb 2021

  90. Lokomat®—Hocoma (2021). https://www.hocoma.com/solutions/lokomat/ Accessed 08 Feb 2021

  91. P. Polygerinos, Z. Wang, K.C. Galloway, R.J. Wood, C.J. Walsh, Soft robotic glove for combined assistance and at-home rehabilitation. Robot. Auton. Syst. 73, 135–143 (2015). https://doi.org/10.1016/j.robot.2014.08.014

    Article  Google Scholar 

  92. S. Hesse, C. Werner, M. Pohl, S. Rueckriem, J. Mehrholz, M.L. Lingnau, Computerized arm training improves the motor control of the severely affected arm after stroke: a single-blinded randomized trial in two centers. Stroke 36(9), 1960–1966 (2005). https://doi.org/10.1161/01.STR.0000177865.37334.ce

    Article  Google Scholar 

  93. OMEGO Plus―Tyromotion (2020). https://tyromotion.com/en/products/omegoplus/ Accessed 30 Aug 2020

  94. Erigo®―Hocoma (2020). https://www.hocoma.com/solutions/erigo/ Accessed 30 Aug 2020

  95. S.J. Housman, K.M. Scott, D.J. Reinkensmeyer, A randomized controlled trial of gravity-supported, computer-enhanced arm exercise for individuals with severe hemiparesis. Neurorehabil. Neural Repair 23(5), 505–514 (2009). https://doi.org/10.1177/1545968308331148

    Article  Google Scholar 

  96. InMotion ARM/HANDTM :: Bionik Laboratories Corp. (BNKL) (2020). https://www.bioniklabs.com/products/inmotion-arm-hand Accessed 30 Aug 2020

  97. ReoGoTM―Motorika―Motorika (2020). http://motorika.com/reogo/ Accessed 30 Aug 2020

  98. Bi-Manu-Track―Reha Stim Medtec (2020). https://reha-stim.com/bi-manu-track/ Accessed 30 Aug 2020

  99. AMADEO―Tyromotion (2020). https://tyromotion.com/en/products/amadeo/ Accessed 30 Aug 2020

  100. LEXO―Tyromotion (2020). https://tyromotion.com/en/products/lexo/ Accessed 30 Aug 2020

  101. THERA-Trainer: THERA-Trainer lyra (2020). https://www.thera-trainer.de/en/thera-trainer-products/gait/thera-trainer-lyra/ Accessed 30 Aug 2020

  102. System 4 ProTM―Dynamometers―Physical Medicine | Biodex (2020). https://www.biodex.com/physical-medicine/products/dynamometers/system-4-pro Accessed 30 Aug 2020

  103. R. Colombo, V. Sanguineti, in Rehabilitation robotics: Technology and Application (Academic Press, 2018)

    Google Scholar 

  104. L.E. Miller, A.K. Zimmermann, W.G. Herbert, Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury: systematic review with meta-analysis. in Medical Devices: Evidence and Research, March 22, vol. 9. (Dove Medical Press Ltd, 2016), pp. 455–466. https://doi.org/10.2147/MDER.S103102

  105. D.R. Louie, J.J. Eng, Powered robotic exoskeletons in post-stroke rehabilitation of gait: A scoping review. J. NeuroEng. Rehab. 13(1), 1–10 (2016), BioMed Central Ltd. https://doi.org/10.1186/s12984-016-0162-5

  106. EksoUE–Ekso Bionics (2020). https://eksobionics.com/eksoue/ Accessed 30 Aug 2020

  107. HAND OF HOPE | EXOESQUELETO DE MANO | ICTUS (2020). https://en.gogoa.eu/hand-of-hope Accessed 30 Aug 2020

  108. ALEx—Wearable RoboticsWearable Robotics (2020). http://www.wearable-robotics.com/kinetek/products/alex/ Accessed 30 Aug 2020

  109. Optimal-GTM Pro—World’s most advanced robotic gait rehabilitation platform—Motorika—Motorika (2020). http://motorika.com/optimal-g-pro/ Accessed 30 Aug 2020

  110. Robot Assisted Gait Training Rehabilitation System—WALKBOT (2020). http://walkbot.co.kr/ Accessed 30 Aug 2020

  111. EksoNR—Ekso Bionics (2020). https://eksobionics.com/eksonr/ Accessed 30 Aug 2020

  112. GOGOA | EXOESQUELETOS | FABRICANTES (2020). https://en.gogoa.eu/ Accessed 30 Aug 2020

  113. RoboGait—Bama Teknoloji (2021). http://www.bamateknoloji.com/product-category/robotic-rehabilitation-3-en/robogait-en/?lang=en Accessed 13 Feb 2021

  114. HOME—Wandercraft (2020). https://www.wandercraft.eu/ Accessed 30 Aug 2020

  115. ExoAtlet | ExoAtlet (2020). https://exoatlet.ru/ Accessed 30 Aug 2020

  116. Indego | Powering People Forward (2020). http://www.indego.com/indego/us/en/home Accessed 30 Aug 2020

  117. Rex Bionics―Reimagining Rehabilitation (2020). https://www.rexbionics.com/ Accessed 30 Aug 2020

  118. ABLE Human Motion | Walk again with ABLE exoskeleton (2020). https://www.ablehumanmotion.com/ Accessed 30 Aug 2020

  119. Atlas Pediatric Exo―Patients―Marsi Bionics (2020). https://www.marsibionics.com/en/atlas-pediatric-exo-pacientes/ Accessed 30 Aug 2020

  120. Andago®―Hocoma (2020). https://www.hocoma.com/solutions/andago/ Accessed 30 Aug 2020

  121. DIEGO―Tyromotion (2020). https://tyromotion.com/en/products/diego/ Accessed 30 Aug 2020

  122. Hero Arm―an affordable, advanced and intuitive bionic arm (2020). https://openbionics.com/hero-arm/ Accessed 30 Aug 2020

  123. H.F.M. Van der Loos et al., ProVAR assistive robot system architecture. in Proceedings IEEE International Conference Roboticts Automation, vol. 1. (1999), pp. 741–746. https://doi.org/10.1109/robot.1999.770063

  124. R. Gelin, B. Lesigne, M. Busnel, J.P. Michel, The first moves of the AFMASTER workstation. Adv. Robot. 14(7), 639–649 (2000). https://doi.org/10.1163/156855301742067

    Article  Google Scholar 

  125. M.J. Johnson, E. Guglielmelli, G.A. Lauro, C. Laschi, M.C. Carrozza, P. Dario, 6 GIVING-A-HAND system: the development of a task-specific robot appliance. in Advances in Rehabilitation Robotics, (Springer Berlin, Heidelberg, 2006), pp. 127–141

    Google Scholar 

  126. Z. Bien et al., Integration of a rehabilitation robotic system (KARES II) with human-friendly man-machine interaction units. Auton. Robots 16(2), 165–191 (2004). https://doi.org/10.1023/B:AURO.0000016864.12513.77

    Article  Google Scholar 

  127. Neater Eater Robotic―Neater Solutions (2020). https://neater.co.uk/neater-eater-robotic/ Accessed 30 Aug 2020

  128. Assistive Innovations―iEAT Robot | Assistive feeding and eating robot for people (2020). https://www.assistive-innovations.com/eatingdevices/ieat-robot Accessed 30 Aug 2020

  129. Assistive technology for Eating device | Assistive technology | Kinova (2020). https://www.kinovarobotics.com/en/products/assistive-technologies/eating-devices Accessed 30 Aug 2020

  130. Assistive Innovations―iARM (2020). https://assistive-innovations.com/robotic-arms/iarm Accessed 30 Aug 2020

  131. Jaco | Robotic arm | Kinova (2020). https://www.kinovarobotics.com/en/products/assistive-technologies/kinova-jaco-assistive-robotic-arm Accessed 30 Aug 2020

  132. P. Dario, E. Guglielmelli, C. Laschi, G. Teti, MOVAID: a personal robot in everyday life of disabled and elderly people. Technol. Disabil. 10(2), 77–93 (1999) IOS Press. https://doi.org/10.3233/tad-1999-10202

  133. R. Bevilacqua et al., Robot-era project: Preliminary results on the system usability. Lecture Notes in Comput. Sci. (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 9188, 553–561 (2015). https://doi.org/10.1007/978-3-319-20889-3_51

    Article  Google Scholar 

  134. B. Graf, U. Reiser, M. Hägele, K. Mauz, P. Klein, Robotic home assistant care-O-bot® 3―product vision and innovation platform. in Proceedings of IEEE Workshop on Advanced Robotics and its Social Impacts, ARSO (2009). pp. 139–144. https://doi.org/10.1109/ARSO.2009.5587059

  135. L. Lammer, A. Huber, A. Weiss, M. Vincze, Mutual care: how older adults react when they should help their care robot (2021). Accessed 14 Feb 2021. [Online]. Available http://hobbit-project.eu

  136. Mobius Mobility―The next generation iBOT is here. Offering extraordinary levels of mobility and performance. With its rich history of innovation. Now fully updated with the latest technology. Ready to go where you want to go.” https://mobiusmobility.com/ Accessed 09 Feb 2021

  137. S.P. Levine, D.A. Bell, L.A. Jaros, R.C. Simpson, Y. Koren, J. Borenstein, The navchair assistive wheelchair navigation system. IEEE Trans. Rehabil. Eng. 7(4), 443–451 (1999). https://doi.org/10.1109/86.808948

    Article  Google Scholar 

  138. R.C. Simpson, D. Poirot, F. Baxter, The hephaestus smart wheelchair system. IEEE Trans. Neural Syst. Rehabil. Eng. 10(2), 118–122 (2002). https://doi.org/10.1109/TNSRE.2002.1031980

    Article  Google Scholar 

  139. W.K. Song, H. Lee, Z. Bien, KARES: intelligent wheelchair-mounted robotic arm system using vision and force sensor. Rob. Auton. Syst. 28(1), 83–94 (1999). https://doi.org/10.1016/S0921-8890(99)00031-7

    Article  Google Scholar 

  140. G. Lacey, S. Macnamara, User involvement in the design and evaluation of a smart mobility aid. J. Rehabil. Res. Dev. 37(6), (2000)

    Google Scholar 

  141. T.A. Swift, K.A. Strausser, A.B. Zoss, H. Kazerooni, Control and experimental results for post stroke gait rehabilitation with a prototype mobile medical exoskeleton. in ASME 2010 Dynamic Systems and Control Conference, DSCC2010, January, vol. 1. (2010). pp. 405–411. https://doi.org/10.1115/DSCC2010-4204

  142. ReWalk Robotics—More Than Walking (2020). https://rewalk.com/ Accessed 30 Aug 2020

  143. Hal For Medical Use (Lower Limb Type) Cyberdyne (2020). https://www.cyberdyne.jp/english/products/LowerLimb_medical.html Accessed 30 Aug 2020

  144. FreeGait―Bama Teknoloji (2020). http://www.bamateknoloji.com/products/robotic-rehabilitation-3/1971/?lang=en Accessed 30 Aug 2020

  145. Myomo—Medical Robotics Solutions for Stroke, BPI, Upper Limb Paralysis (2020). https://myomo.com/ Accessed 30 Aug 2020

  146. G.A. Bertos, E.G. Papadopoulos, Upper-limb prosthetic devices. in Handbook of Biomechatronics, (Academic Press, 2018). pp. 177–240

    Google Scholar 

  147. S. Raspopovic et al., Bioengineering: restoring natural sensory feedback in real-time bidirectional hand prostheses. Sci. Transl. Med. 6(222), 222ra19–222ra19 (2014). https://doi.org/10.1126/scitranslmed.3006820

  148. L.R. Hochberg et al., Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442(7099), 164–171 (2006). https://doi.org/10.1038/nature04970

    Article  Google Scholar 

  149. D. Berry, Microprocessor prosthetic knees. Phys. Med. Rehab. Clinics of North America 17(1), 91–113 (Elsevier, 2006). https://doi.org/10.1016/j.pmr.2005.10.006

  150. POWER KNEETM (2020). https://www.ossur.com/en-us/prosthetics/knees/power-knee Accessed 30 Aug 2020

  151. LUKE Arm Detail Page―Mobius Bionics (2020). https://www.mobiusbionics.com/luke-arm/ Accessed 30 Aug 2020

  152. J. Wainer, D.J. Feil-Seifer, D.A. Shell, M.J. Matarić, Embodiment and human-robot interaction: a task-based perspective. in Proceedings—IEEE International Workshop on Robot and Human Interactive Communication, (2007), pp. 872–877. https://doi.org/10.1109/ROMAN.2007.4415207

  153. D. Leyzberg, S. Spaulding, M. Toneva, B. Scassellati, in UC Merced Proceedings of the Annual Meeting of the Cognitive Science Society Title The Physical Presence of a Robot Tutor Increases Cognitive Learning Gains Publication Date, The Physical Presence of a Robot Tutor Increases Cognitive Learning Gains, vol.34. (2012) pp. 34

    Google Scholar 

  154. PARO Therapeutic Robot (2021). http://www.parorobots.com/ Accessed 09 Feb 2021

  155. L.D. Riek, Robotics technology in mental health care. in Artificial Intelligence in Behavioral and Mental Health Care, (Elsevier Inc., 2016), pp. 185–203

    Google Scholar 

  156. E. Martinez-Martin, A.P. del Pobil, in Personal Robot Assistants for Elderly Care: An Overview (2018), pp. 77–91

    Google Scholar 

  157. S.J. Stroessner, J. Benitez, The social perception of humanoid and non-humanoid robots: effects of gendered and machinelike features. Int. J. Soc. Robot. 11(2), 305–315 (2019). https://doi.org/10.1007/s12369-018-0502-7

    Article  Google Scholar 

  158. M. Heimerdinger, A. LaViers, Modeling the interactions of context and style on affect in motion perception: stylized gaits across multiple environmental contexts. Int. J. Soc. Robot. 11(3), 495–513 (2019). https://doi.org/10.1007/s12369-019-00514-1

    Article  Google Scholar 

  159. C. Moro, S. Lin, G. Nejat, A. Mihailidis, Social robots and seniors: a comparative study on the influence of dynamic social features on human-robot interaction. Int. J. Soc. Robot. 11(1), 5–24 (2019). https://doi.org/10.1007/s12369-018-0488-1

    Article  Google Scholar 

  160. A.E. Block, K.J. Kuchenbecker, Softness, warmth, and responsiveness improve robot hugs. Int. J. Soc. Robot. 11(1), 49–64 (2019). https://doi.org/10.1007/s12369-018-0495-2

    Article  Google Scholar 

  161. C.J.A.M. Willemse, J.B.F. van Erp, Social touch in human-robot interaction: robot-initiated touches can induce positive responses without extensive prior bonding. Int. J. Soc. Robot. 11(2), 285–304 (2019). https://doi.org/10.1007/s12369-018-0500-9

    Article  Google Scholar 

  162. L.I. Ismail, T. Verhoeven, J. Dambre, F. Wyffels, Leveraging robotics research for children with autism: a review. Int. J. Social Robot. 11(3), 389–410 (Springer Netherlands , 2019). https://doi.org/10.1007/s12369-018-0508-1

  163. E. Mordoch, A. Osterreicher, L. Guse, K. Roger, G. Thompson, Use of social commitment robots in the care of elderly people with dementia: a literature review. Maturitas 74(1), 14–20 (Elsevier, 2013). https://doi.org/10.1016/j.maturitas.2012.10.015

  164. D. Karunarathne, Y. Morales, T. Nomura, T. Kanda, H. Ishiguro, Will older adults accept a humanoid robot as a walking partner? Int. J. Soc. Robot. 11(2), 343–358 (2019). https://doi.org/10.1007/s12369-018-0503-6

    Article  Google Scholar 

  165. M.J. Matarić, J. Eriksson, D.J. Feil-Seifer, C.J. Winstein, Socially assistive robotics for post-stroke rehabilitation. J. Neuroeng. Rehabil. 4(1), 1–9 (2007). https://doi.org/10.1186/1743-0003-4-5

    Article  Google Scholar 

  166. H. Robinson, B. MacDonald, N. Kerse, E. Broadbent, The psychosocial effects of a companion robot: a randomized controlled trial. J. Am. Med. Dir. Assoc. 14(9), 661–667 (2013). https://doi.org/10.1016/j.jamda.2013.02.007

    Article  Google Scholar 

  167. H. Petrie, J. Darzentas, Older people and robotic technologies in the home: perspectives from recent research literature. in ACM International Conference Proceeding Series, June 2017, vol. Part F128530. (2017), pp. 29–36. https://doi.org/10.1145/3056540.3056553

  168. Z.H. Khan, A. Siddique, C.W. Lee, Robotics utilization for healthcare digitization in global COVID-19 management. Int. J. Environ. Res. Public Health 17(11), 3819 (2020). https://doi.org/10.3390/ijerph17113819

    Article  Google Scholar 

  169. XAG Robot Joins Drone Fleet to Initiate Ground Air Disinfection in Coronavirus Battle (2021). https://www.xa.com/en/news/official/xag/72 Accessed 14 Feb 2021

  170. A. Begić, Application of service robots for disinfection in medical institutions. in Lecture Notes in Networks and Systems, vol. 28. (Springer, 2018), pp. 1056–1065

    Google Scholar 

  171. C. Wang, A.V. Savkin, R. Clout, H.T. Nguyen, An intelligent robotic hospital bed for safe transportation of critical neurosurgery patients along crowded hospital corridors. IEEE Trans. Neural Syst. Rehabil. Eng. 23(5), 744–754 (2015). https://doi.org/10.1109/TNSRE.2014.2347377

    Article  Google Scholar 

  172. T. Mukai et al., Development of a nursing-care assistant robot RIBA that can lift a human in its arms. in IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems, IROS 2010―Conference Proceedings (2010), pp. 5996–6001. https://doi.org/10.1109/IROS.2010.5651735

  173. J. Ding et al., Giving patients a liftthe robotic nursing assistant (rona) (2014). https://doi.org/10.1109/TePRA.2014.6869137

  174. T.E. Kirschling, S.S. Rough, B.C. Ludwig, Determining the feasibility of robotic courier medication delivery in a hospital setting. Am. J. Heal. Pharm. 66(19), 1754–1762 (2009). https://doi.org/10.2146/ajhp080184

    Article  Google Scholar 

  175. ROBOT-Rx Central Pharmacy Robotic System | Omnicell (2021). https://www.omnia-health.com/product/robot-rx-central-pharmacy-robotic-system Accessed 14 Feb 2021

  176. C. Perez-Vidal et al., Steps in the development of a robotic scrub nurse. Rob. Auton. Syst. 60(6), 901–911 (2012). https://doi.org/10.1016/j.robot.2012.01.005

    Article  Google Scholar 

  177. China Buys Danish Robots To Fight Coronavirus (2021). https://www.uvd-robots.com/blog/test Accessed 14 Feb 2021

  178. A. Efimov et al., Practical use of robots and related technologies in counteraction to COVID-19 pandemic. Robot. Tech. Cybern. 8(2), 87–100 (2020). https://doi.org/10.31776/rtcj.8201

    Article  Google Scholar 

  179. Robot Medical Assessor | PROMOBOT. (2021). https://promo-bot.ai/use-case/medical-assessor/ Accessed 14 Feb 2021

  180. UVD Robots® (2021). https://www.uvd-robots.com/ Accessed 14 Feb 2021

  181. S. Ruiz, B. Mead, V. Palmre, K.J. Kim, W. Yim, A cylindrical ionic polymer-metal composite-based robotic catheter platform: modeling, design and control. Smart Mater. Struct. 24(1), 015007 (2015).https://doi.org/10.1088/0964-1726/24/1/015007

  182. J. Guo, S. Guo, L. Shao, P. Wang, Q. Gao, Design and performance evaluation of a novel robotic catheter system for vascular interventional surgery. Microsyst. Technol. 22(9), 2167–2176 (2016). https://doi.org/10.1007/s00542-015-2659-4

    Article  Google Scholar 

  183. C. Bergeles, A.H. Gosline, N.V. Vasilyev, P.J. Codd, P.J. Del Nido, P.E. Dupont, Concentric tube robot design and optimization based on task and anatomical constraints. IEEE Trans. Robot. 31(1), 67–84 (2015). https://doi.org/10.1109/TRO.2014.2378431

    Article  Google Scholar 

  184. C. Chautems, A. Tonazzini, D. Floreano, B.J. Nelson, A variable stiffness catheter controlled with an external magnetic field. in IEEE International Conference on Intelligent Robots and Systems, December 2017, vol 2017-September, (2017). pp. 181–186. https://doi.org/10.1109/IROS.2017.8202155

  185. F. Ju et al., A miniature piezoelectric spiral tactile sensor for tissue hardness palpation with catheter robot in minimally invasive surgery. Smart Mater. Struct. 28(2), 025033 (2019).https://doi.org/10.1088/1361-665X/aafc8d

  186. A. Zeiaee, R. Soltani-Zarrin, R. Langari, R. Tafreshi, Design and kinematic analysis of a novel upper limb exoskeleton for rehabilitation of stroke patients. in IEEE International Conference on Rehabilitation Robotics, August (2017), pp. 759–764. https://doi.org/10.1109/ICORR.2017.8009339

  187. A. Schiele, F.C.T. Van Der Helm, Kinematic design to improve ergonomics in human machine interaction. IEEE Trans. Neural Syst. Rehabil. Eng. 14(4), 456–469 (2006). https://doi.org/10.1109/TNSRE.2006.881565

    Article  Google Scholar 

  188. N. Jarrassé et al., Robotic exoskeletons: a perspective for the rehabilitation of arm coordination in stroke patients. Front. Human Neurosci. 8, 947 (2014). Frontiers Media S. A. https://doi.org/10.3389/fnhum.2014.00947

  189. K. Baraka, P. Alves-Oliveira, T. Ribeiro, An extended framework for characterizing social robots. arXiv. arXiv, (2019), pp. 21–64. https://doi.org/10.1007/978-3-030-42307-0_2

  190. B.A. Jones, I.D. Walker, Kinematics for multisection continuum robots. IEEE Trans. Robot. 22(1), 43–55 (2006). https://doi.org/10.1109/TRO.2005.861458

    Article  Google Scholar 

  191. J. Lai, K. Huang, H.K. Chu, A learning-based inverse kinematics solver for a multi-segment continuum robot in robot-independent mapping. in 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), December 2019, (2019). pp. 576–582. https://doi.org/10.1109/ROBIO49542.2019.8961669

  192. A. Aristidou, J. Lasenby, FABRIK: a fast, iterative solver for the inverse kinematics problem. Graph. Models 73(5), 243–260 (2011). https://doi.org/10.1016/j.gmod.2011.05.003

    Article  Google Scholar 

  193. D. Kolpashchikov, N. Laptev, V. Danilov, I. Skirnevskiy, R. Manakov, O. Gerget, FABRIK-based inverse kinematics for multi-section continuum robots (2018)

    Google Scholar 

  194. J. Xiao, R. Vatcha, Real-time adaptive motion planning for a continuum manipulator. in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, October (2010), pp. 5919–5926. https://doi.org/10.1109/IROS.2010.5648888

  195. O.M. Gerget, D.Y. Kolpashchikov, Collision avoidance for continuum robot using FABRIK algorithm. in 2019 Twelfth International Conference “Management of large-scale system development” (MLSD), October (2019), pp. 1–4. https://doi.org/10.1109/MLSD.2019.8911070

  196. D.Y. Kolpashchikov, N.V. Laptev, R.A. Manakov, V.V. Danilov, O.M. Gerget, R.V. Meshcheryakov, Motion planning algorithm for continuum robots bending over obstacles. in Proceedings of 2019 3rd International Conference on Control in Technical Systems, CTS 2019, October (2019), pp 269–272. https://doi.org/10.1109/CTS48763.2019.8973282

  197. V. Danilov, K. Klyshnikov, O. Gerget, A. Kutikhin, V. Ganyukov, A. Frangi, Real-time coronary artery stenosis detection based on modern neural networks (2021). https://doi.org/10.21203/rs.3.rs-130610/v1

  198. M. Allan, S. Ourselin, D.J. Hawkes, J.D. Kelly, D. Stoyanov, 3-D pose estimation of articulated instruments in robotic minimally invasive surgery. IEEE Trans. Med. Imaging 37(5), 1204–1213 (2018). https://doi.org/10.1109/TMI.2018.2794439

    Article  Google Scholar 

  199. D. Shen, G. Wu, H. Il Suk, Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 19, 221–248 (2017). https://doi.org/10.1146/annurev-bioeng-071516-044442

  200. H.W. Park, I. Grover, S. Spaulding, L. Gomez, C. Breazeal, A model-free affective reinforcement learning approach to personalization of an autonomous social robot companion for early literacy education. in 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, July 2019, vol 33(01) (2019). pp. 687–694. https://doi.org/10.1609/aaai.v33i01.3301687

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Meshcheryakov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kolpashchikov, D., Gerget, O., Meshcheryakov, R. (2022). Robotics in Healthcare. In: Lim, CP., Chen, YW., Vaidya, A., Mahorkar, C., Jain, L.C. (eds) Handbook of Artificial Intelligence in Healthcare. Intelligent Systems Reference Library, vol 212. Springer, Cham. https://doi.org/10.1007/978-3-030-83620-7_12

Download citation

Publish with us

Policies and ethics