Skip to main content

Chemistry and Biological Activities of Phenolic Compounds from Baccharis Genus

  • Chapter
  • First Online:
Baccharis

Abstract

Plants belonging to Baccharis genus (Asteraceae) have been used in folk medicine since ancient times. Usually, different Baccharis species are used in folk medicine as infusion or tea for gastrointestinal diseases, inflammation, ulcers, as an analgesic, spasmolytic, and antimicrobial, among others. Examples of medicinal plants from Baccharis are B. dracunculifolia D.C., B. illinita D.C., and B. trimera (Less.) DC., among many others. Over the years, these plants have been more studied: both chemical composition and biological activities. There are approximately 500 Baccharis species spread across the American continent, especially in South and Central America, which are important sources of bioactive compounds. The chemistry of these plants is characterized mainly by the presence of monoterpenes and sesquiterpenes in their essential oils. The nonvolatile fraction is characterized by diterpenes, triterpenes, and phenolic compounds, among others. Phenolic compounds are represented by phenylpropanoids, prenylated phenylpropanoids, flavonoids, flavonoid glycosides, coumarins, and simple phenolic compounds. In Baccharis spp. luteolin, chlorogenic acid, apigenin, acacetin, quercetin, kaempferol, p-coumaric acid derivatives, and coumarins have also been found. Many Baccharis spp. crude extracts and some of their isolated compounds were correlated with several biological activities. One example is the antioxidant effect of Brazilian Green Propolis, which is composed mainly of B. dracunculifolia compounds, such as flavonoid aglycones and p-coumaric acid derivatives, like artepillin C, baccharin, and drupanin. Baccharis spp. extracts display trypanocidal, antimicrobial, and anti-inflammatory activities, corroborating many folk medicinal uses. Therefore, in this chapter, an overview of the chemical composition is presented, highlighting the phenolic compounds of Baccharis spp., as well as its ethnopharmacological uses, in the light of many published scientific studies, focusing on the corroboration of folk uses. Furthermore, the toxicity of Baccharis species is discussed, which is a very important issue that is not well discussed in folk medicine: B. coridifolia, for example, is a poisonous plant responsible for necrosis of gastrointestinal tissue of rabbits and horses. Also, the chromatographic analyses of these plant extracts are addressed due to the importance of their chemical composition, the content of active compounds, and certainty of the correct botanical identification. In the final part, we conclude and discuss future perspectives for Baccharis extracts and their isolated compounds in the development of efficacious and safe medicines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abad MJ, Bermejo P (2006) Baccharis (Compositae): a review update. ARKIVOC 2007:76–96

    Google Scholar 

  • Abad MJ, Bessa AL, Ballarin B et al (2006) Anti-inflammatory activity of four bolivian Baccharis species (Compositae). J Ethnopharmacol 103:338–344

    Article  CAS  PubMed  Google Scholar 

  • Aboy AL, Apel MA, Debenedetti S et al (2012) Assay of caffeoylquinic acids in Baccharis trimera by reversed-phase liquid chromatography. J Chromatogr A 1219:147–153

    Article  CAS  PubMed  Google Scholar 

  • Agudelo IJ, Isolabella SA, Filip R et al (2016) Baccharis spicata (Lam) Baill: polyphenol screening, determination of their antioxidant activity and their main polyphenolic metabolites. J Pharmacogn Phytochem 5:278–285

    Google Scholar 

  • Ahn MR, Kunimasa K, Ohta T et al (2007) Suppression of tumor-induced angiogenesis by Brazilian propolis: major component artepillin C inhibits in vitro tube formation and endothelial cell proliferation. Cancer Lett 252:235–243

    Article  CAS  PubMed  Google Scholar 

  • Argoti JC, Linares-Palomino PJ, Salido S et al (2013) On-line activity screening for radical scavengers from Baccharis chilco. Chem Biodivers 10:189–197

    Article  CAS  PubMed  Google Scholar 

  • Arruda C, Eugênio D de S, Moreira MR et al (2017) Biotransformation of (-)-cubebin by Aspergillus spp. into (-)-hinokinin and (-)-parabenzlactone, and their evaluation against oral pathogenic bacteria. Nat Prod Res 6419:1–14

    Google Scholar 

  • Baggio CH, Freitas CS, Rieck L, Marques MCA (2003) Gastroprotective effects of a crude extract of Baccharis illinita DC in rats. Pharmacol Res 47:93–98

    Article  PubMed  Google Scholar 

  • Balasundram N, Sundram K, Samman S (2006) Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem 99:191–203

    Article  CAS  Google Scholar 

  • Barros MP, Lemos M, Maistro EL et al (2008) Evaluation of antiulcer activity of the main phenolic acids found in Brazilian Green Propolis. J Ethnopharmacol 120:372–377

    Article  PubMed  Google Scholar 

  • Berretta AA, Arruda C, Miguel FG et al (2017) Functional properties of Brazilian propolis: from chemical composition until the market technology & medicine. In: Waisundara V, Shiomi N (eds) Superfood and functional food – an overview of their processing and utilization. Intech, London, pp 56–98

    Google Scholar 

  • Biondo TMA, Tanae MM, Coletta ED et al (2011) Antisecretory actions of Baccharis trimera (Less.) DC aqueous extract and isolated compounds: analysis of underlying mechanisms. J Ethnopharmacol 136:368–373

    Article  CAS  PubMed  Google Scholar 

  • Bocco BM, Fernandes GW, Lorena FB et al (2016) Combined treatment with caffeic and ferulic acid from Baccharis uncinella C. DC. (Asteraceae) protects against metabolic syndrome in mice. Braz J Med Biol Res 49:3–9

    Article  Google Scholar 

  • Boller S, Soldi C, Marques MCA et al (2010) Anti-inflammatory effect of crude extract and isolated compounds from Baccharis illinita DC in acute skin inflammation. J Ethnopharmacol 130:262–266

    Article  CAS  PubMed  Google Scholar 

  • Borgo J, Xavier CAG, Moura DJ et al (2010) Influência dos processos de secagem sobre o teor de flavonoides e na atividade antioxidante dos extratos de Baccharis articulata (Lam.) pers., Asteraceae. Braz J Pharmacogn 20:12–17

    Article  CAS  Google Scholar 

  • Cariddi L, Escobar F, Sabini C et al (2012) Apoptosis and mutagenicity induction by a characterized aqueous extract of Baccharis articulata (Lam.) Pers. (Asteraceae) on normal cells. Food Chem Toxicol 50:155–161

    Article  CAS  PubMed  Google Scholar 

  • Cestari SH, Bastos JK, Di Stasi LC (2011) Intestinal anti-inflammatory activity of Baccharis dracunculifolia in the trinitrobenzenesulphonic acid model of rat colitis. Evidence-Based Complement Altern Med 524349:1–9

    Article  Google Scholar 

  • Chang R, Piló-Veloso D, Morais SAL, Nascimento EA (2008) Analysis of a brazilian green propolis from Baccharis dracunculifolia by HPLC-APCI-MS and GC-MS. Braz J Pharmacogn 18:549–556

    Article  CAS  Google Scholar 

  • Choi SS, Cha BY, Iida K et al (2011) Artepillin C, as a PPARγ ligand, enhances adipocyte differentiation and glucose uptake in 3T3-L1 cells. Biochem Pharmacol 81:925–933

    Article  CAS  PubMed  Google Scholar 

  • Coelho MGP, Reis PA, Gava VB et al (2004) Anti-arthritic effect and subacute toxicological evaluation of Baccharis genistelloides aqueous extract. Toxicol Lett 154:69–80

    Article  CAS  PubMed  Google Scholar 

  • Costa P, Almeida MO, Lemos M et al (2018) Artepillin C, drupanin, aromadendrin-4′-O-methyl-ether and kaempferide from Brazilian green propolis promote gastroprotective action by diversified mode of action. J Ethnopharmacol 226:82–89

    Article  CAS  PubMed  Google Scholar 

  • Da Silva Filho AA, de Sousa JPB, Soares S et al (2008) Antimicrobial activity of the extract and isolated compounds from Baccharis dracunculifolia DC. (Asteraceae). Z Naturforsch C 63:40–46

    Article  PubMed  Google Scholar 

  • Da Silva Filho AA, Resende DO, Fukui MJ et al (2009) In vitro antileishmanial, antiplasmodial and cytotoxic activities of phenolics and triterpenoids from Baccharis dracunculifolia D. C. (Asteraceae). Fitoterapia 80:478–482

    Google Scholar 

  • da Silva ARH, Reginato FZ, Guex CG et al (2016) Acute and sub-chronic (28 days) oral toxicity evaluation of tincture Baccharis trimera (Less) Backer in male and female rodent animals. Regul Toxicol Pharmacol 74:170–177

    Article  PubMed  Google Scholar 

  • Da Silva EM, Roel ARRR, Porto KRA et al (2017) Insecticidal effect of the ethanol extract of Baccharis dracunculifolia (Asterales: Asteraceae). Rev Biol Trop 65:517–523

    Article  Google Scholar 

  • De Araújo GR, Rabelo ACS, Meira JS et al (2017) Baccharis trimera inhibits reactive oxygen species production through PKC and down-regulation p47phoxphosphorylation of NADPH oxidase in SK Hep-1 cells. Exp Biol Med 242:333–343

    Google Scholar 

  • De Figueiredo-Rinhel ASG, de Andrade MF, Landi-Librandi AP et al (2018) Incorporation of Baccharis dracunculifolia DC (Asteraceae) leaf extract into phosphatidylcholine-cholesterol liposomes improves its anti-inflammatory effect in vivo. Nat Prod Res 6419:1–5

    Google Scholar 

  • De Oliveira SQ, Dal-Pizzol F, Moreira JCF et al (2004) Antioxidant activity of Baccharis spicata, Baccharis trimera and Baccharis usterii. Acta Farm Bonaer 23:365–368

    Google Scholar 

  • De Oliveira SQ, Barbon G, Gosmann G, Bordignon S (2006) Differentiation of south Brazilian Baccharis species by TLC. J Liq Chromatogr Relat Technol 29:2603–2609

    Article  Google Scholar 

  • De Oliveira CB, Comunello LN, Lunardelli A et al (2012a) Phenolic enriched extract of Baccharis trimera presents anti-inflammatory and antioxidant activities. Molecules 17:1113–1123

    Article  PubMed  PubMed Central  Google Scholar 

  • De Oliveira RN, Rehder VLG, Santos Oliveira AS et al (2012b) Schistosoma mansoni: in vitro schistosomicidal activity of essential oil of Baccharis trimera (less) DC. Exp Parasitol 132:135–143

    Google Scholar 

  • De Oliveira RN, Rehder VLG, Oliveira ASS et al (2014) Anthelmintic activity in vitro and in vivo of Baccharis trimera (Less) DC against immature and adult worms of Schistosoma mansoni. Exp Parasitol 139:63–72

    Article  PubMed  Google Scholar 

  • De Sousa JPB, Leite MF, Jorge RF et al (2011) Seasonality role on the phenolics from cultivated Baccharis dracunculifolia. Evidence-Based Complement Altern Med 464289:1–8

    Article  Google Scholar 

  • De Souza GC, Haas APS, Von Poser GL et al (2004) Ethnopharmacological studies of antimicrobial remedies in the south of Brazil. J Ethnopharmacol 90:135–143

    Article  PubMed  Google Scholar 

  • De Souza SP, Pereira LLS, Souza AA, dos Santos CD (2011) Inhibition of pancreatic lipase by extracts of Baccharis trimera: evaluation of antinutrients and effect on glycosidases. Braz J Pharmacogn 21:450–455

    Article  Google Scholar 

  • Do Nascimento DSM, Oliveira RM, Camara RBG et al (2017) Baccharis trimera (Less.) DC exhibits an anti-adipogenic effect by inhibiting the expression of proteins involved in adipocyte differentiation. Molecules 22:1–16

    Google Scholar 

  • Dos Santos DA, Fukui MJ, Nanayakkara DNP et al (2010) Anti-inflammatory and antinociceptive effects of Baccharis dracunculifolia DC (Asteraceae) in different experimental models. J Ethnopharmacol 127:543–550

    Article  PubMed  Google Scholar 

  • Freitas CS, Baggio CH, Finau J et al (2008) Inhibition of H + /K + ATPase in the gastroprotective effect of Baccharis illinita DC. J Pharm Pharmacol 60:1105–1110

    Article  CAS  PubMed  Google Scholar 

  • Freitas CS, Baggio CH, Dos Santos AC et al (2009) Antinociceptive properties of the hydroalcoholic extract, fractions and compounds obtained from the aerial parts of Baccharis illinita DC in Mice. Basic Clin Pharmacol Toxicol 104:285–292

    Article  CAS  PubMed  Google Scholar 

  • Grecco SS, Gimenes L, Ferreira MJP et al (2010a) Triterpenoids and phenolic derivatives from Baccharis uncinella C.DC. (Asteraceae). Biochem Syst Ecol 38:1234–1237

    Article  CAS  Google Scholar 

  • Grecco SS, Reimão JQ, Tempone AG et al (2010b) Isolation of an antileishmanial and antitrypanosomal flavanone from the leaves of Baccharis retusa DC. (Asteraceae). Parasitol Res 106:1245–1248

    Article  PubMed  Google Scholar 

  • Grecco SS, Reimão JQ, Tempone AG et al (2012) In vitro antileishmanial and antitrypanosomal activities of flavanones from Baccharis retusa DC. (Asteraceae). Exp Parasitol 130:141–145

    Google Scholar 

  • Guimarães NSS, Mello JC et al (2012) Baccharis dracunculifolia, the main source of green propolis, exhibits potent antioxidant activity and prevents oxidative mitochondrial damage. Food Chem Toxicol 50:1091–1097

    Google Scholar 

  • Hennig L, Garcia GM, Giannis A, Bussmann RW (2011) New constituents of Baccharis genistelloides (Lam.) Pers. ARKIVOC 2011:74–81

    Article  Google Scholar 

  • Herrerias T, Oliveira AAA, Belem ML et al (2010) Effects of natural flavones on membrane properties and citotoxicity of HeLa cells. Rev Bras Farmacogn 20:403–408

    Article  CAS  Google Scholar 

  • Hocayen PAS, Grassiolli S, Leite NC et al (2016) Baccharis dracunculifolia methanol extract enhances glucose-stimulated insulin secretion in pancreatic islets of monosodium glutamate induced-obesity model rats. Pharm Biol 54:1263–1271

    Google Scholar 

  • Jaramillo-García V, Trindade C, Lima E et al (2018) Chemical characterization and cytotoxic, genotoxic, and mutagenic properties of Baccharis trinervis (Lam, Persoon) from Colombia and Brazil. J Ethnopharmacol 213:210–220

    Article  PubMed  Google Scholar 

  • Kappel VD, Pereira DF, Cazarolli LH et al (2012) Short and long-term effects of Baccharis articulata on glucose homeostasis. Molecules 17:6754–6768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumazawa S, Yoned M, Shibata I et al (2003) Direct evidence for the plant origin of Brazilian Propolis by the observation of honeybee behavior and phytochemical analysis. Chem Pharm Bull 51:740–742

    Article  CAS  Google Scholar 

  • Kupchan SM, Jarvis BB, Dailey RG et al (1976) Baccharin, a novel potent antileukemic trichothecene triepoxide from Baccharis megapotamica. J Am Chem Soc 98:7092–7093

    Article  CAS  PubMed  Google Scholar 

  • Kurdelas RR, Lima B, Tapia A et al (2010) Antifungal activity of extracts and prenylated coumarins isolated from Baccharis darwinii Hook & Arn. (Asteraceae). Molecules 15:4898–4907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lázaro SF, Fonseca LD, Martins ER et al (2013) Effect of aqueous extracts of Baccharis trimera on development and hatching of Rhipicephalus microplus (Acaridae) eggs. Vet Parasitol 194:79–82

    Article  PubMed  Google Scholar 

  • Lemos M, De Barros MP, Sousa JPB et al (2007) Baccharis dracunculifolia, the main botanical source of Brazilian green propolis, displays antiulcer activity. J Pharm Pharmacol 59:603–608

    Google Scholar 

  • Li H, Kapur A, Yang JX et al (2007) Antiproliferation of human prostate cancer cells by ethanolic extracts of Brazilian propolis and its botanical origin. Int J Oncol 31:601–606

    PubMed  Google Scholar 

  • Lívero FAR, da Silva LM, Ferreira DM et al (2016a) Hydroethanolic extract of Baccharis trimera promotes gastroprotection and healing of acute and chronic gastric ulcers induced by ethanol and acetic acid. Arch Pharmacol 389:985–998

    Article  Google Scholar 

  • Lívero FAR, Martins GG, Telles JEQ et al (2016b) Hydroethanolic extract of Baccharis trimera ameliorates alcoholic fatty liver disease in mice. Chem Biol Interact 260:22–32

    Article  PubMed  Google Scholar 

  • Lonni ASG, Scarminio IS, Silva LMC, Ferreira DT (2003) Differentiation of species of the Baccharis genus by HPLC and chemometric methods. Anal Sci 19:1013–1017

    Article  CAS  PubMed  Google Scholar 

  • Maistro EL, Angeli JP, Andrade SF, Mantovani MS (2011) In vitro genotoxicity assessment of caffeic, cinnamic and ferulic acids. Genet Mol Res 10:1130–1140

    Google Scholar 

  • Martinez MJA, Bessa AL, Benito PB (2005) Biologically active substances from the genus Baccharis L. (Compositae). Stud Nat Prod Chem 30:703–759

    Article  Google Scholar 

  • Miean KH, Mohamed S (2001) Apigenin content of edible tropical plants. J Agric Food Chem 49:3106–3112

    Article  CAS  PubMed  Google Scholar 

  • Missima F, Da Silva Filho AA, Nunes GA et al (2007) Effect of Baccharis dracunculifolia D.C (Asteraceae) extracts and its isolated compounds on macrophage activation. J Pharm Pharmacol 59:463–468

    Article  CAS  PubMed  Google Scholar 

  • Monteiro Neto MAB, de Souza Lima IM, Furtado RA et al (2011) Antigenotoxicity of artepillin C in vivo evaluated by the micronucleus and comet assays. J Appl Toxicol 31:714–719

    Article  CAS  Google Scholar 

  • Nakajima Y, Shimazawa M, Mishima S, Hara H (2007) Water extract of propolis and its main constituents, caffeoylquinic acid derivatives, exert neuroprotective effects via antioxidant actions. Life Sci 80:370–377

    Article  CAS  PubMed  Google Scholar 

  • Nuño G, Zampini IC, Ordoñez RM et al (2012) Antioxidant/antibacterial activities of a topical phytopharmaceutical formulation containing a standardized extract of Baccharis incarum, an extremophile plant species from argentine Puna. Phyther Res 26:1759–1767

    Article  Google Scholar 

  • Oliveira PF, Monteiro Neto MAB, Leandro LF et al (2011) In vivo antigenotoxicity of baccharin, an important constituent of Baccharis dracunculifolia DC (Asteraceae). Basic Clin Pharmacol Toxicol 109:35–41

    Google Scholar 

  • Oliveira TA, Michel RG, Snak AL et al (2014) Baccharis dracunculifolia with high levels of phenol compounds reduces blood glucose in healthy human. Afr J Pharm Pharmacol 8:670–673

    Google Scholar 

  • Olthof MR, Hollman PCH, Katan MB (2001) Human nutrition and metabolism chlorogenic acid and caffeic acid are absorbed in humans. J Nutr 131:66–71

    Article  CAS  PubMed  Google Scholar 

  • Palomino SP, Abad MJ, Bedoya LM et al (2002) Screening of south american plants against human immunodeficiency virus: preliminary fractionation of aqueous extract from Baccharis trinervis. Biol Pharm Bull 25:1147–1150

    Article  Google Scholar 

  • Passero LFD, Bonfim-Melo A, Corbett CEP et al (2011) Anti-leishmanial effects of purified compounds from aerial parts of Baccharis uncinella C. DC. (Asteraceae). Parasitol Res 108:529–536

    Article  PubMed  Google Scholar 

  • Paul EL, Lunardelli A, Caberlon E et al (2009) Anti-inflammatory and immunomodulatory effects of Baccharis trimera aqueous extract on induced pleurisy in rats and lymphoproliferation in vitro. Inflammation 32:419–425

    Article  CAS  PubMed  Google Scholar 

  • Paula JT, Sousa IMO, Foglio MA, Cabral FA (2017) Selective fractionation of supercritical extracts from leaves of Baccharis dracunculifolia. J Supercrit Fluids 127:62–70

    Article  CAS  Google Scholar 

  • Paulino N, Abreu SRL, Uto Y et al (2008) Anti-inflammatory effects of a bioavailable compound, Artepillin C, in Brazilian propolis. Eur J Pharmacol 587:296–301

    Article  CAS  PubMed  Google Scholar 

  • Prasad NR, Jeyanthimala K, Ramachandran S (2009) Caffeic acid modulates ultraviolet radiation-B induced oxidative damage in human blood lymphocytes. J Photochem Photobiol B Biol 95:196–203

    Article  CAS  Google Scholar 

  • Rezende TP, Corrêa JODA, Aarestrup BJV et al (2014) Protective effects of Baccharis dracunculifolia leaves extract against carbon tetrachloride and acetaminophen-induced hepatotoxicity in experimental animals. Molecules 19:9257–9272

    Article  PubMed  PubMed Central  Google Scholar 

  • Ribeiro VP, Arruda C, Abd El-Salam M, Bastos JK (2018) Brazilian medicinal plants with corroborated anti-inflammatory activities: a review. Pharm Biol 56:253–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues CRF, Dias JH, Semedo JG et al (2009) Mutagenic and genotoxic effects of Baccharis dracunculifolia (D.C.). J Ethnopharmacol 124:321–324

    Article  PubMed  Google Scholar 

  • Sartor T, Xavier VB, Falcão MA et al (2013) Seasonal changes in phenolic compounds and in the biological activities of Baccharis dentata (Vell.) G.M. Barroso. Ind Crop Prod 51:355–359

    Article  CAS  Google Scholar 

  • Sharp H, Bartholomew B, Bright C et al (2001) 6-Oxygenated flavones from Baccharis trinervis (Asteraceae). Biochem Syst Ecol 29:105–107

    Article  CAS  PubMed  Google Scholar 

  • Soicke H, Leng-Peschlow E (1987) Characterisation of flavonoids from Baccharis trimera and their antihepatotoxic properties. Planta Med 53:37–39

    Article  CAS  PubMed  Google Scholar 

  • Sousa JPB, Da Silva Filho AA, Bueno PCP et al (2009) A validated reverse-phase HPLC analytical method for the quantification of phenolic compounds in Baccharis dracunculifolia. Phytochem Anal 20:24–32

    Article  PubMed  Google Scholar 

  • Stegelmeier BL, Sani Y, Pfister JA (2009) Bacchavis pteronioides toxicity in livestock and hamsters. J Vet Diagn Investig 21:208–213

    Google Scholar 

  • Szliszka E, Zydowicz G, Mizgala E, Krol W (2012) Artepillin C (3,5-diprenyl-4-hydroxycinnamic acid) sensitizes LNCaP prostate cancer cells to TRAIL-induced apoptosis. Int J Oncol 41:818–828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taguchi L, Pinheiro NM, Olivo CR et al (2015) A flavanone from Baccharis retusa (Asteraceae) prevents elastase-induced emphysema in mice by regulating NF-κB, oxidative stress and metalloproteinases. Respir Res 16:1–15

    CAS  Google Scholar 

  • Tarqui ST, Segura YF, Vega GRA (2012) Polyoxygenated flavonoids from Baccharis Pentlandii. Rev Boliv Quim 29:10–14

    CAS  Google Scholar 

  • Toyama DO, Ferreira MJP, Romoff P et al (2014) Effect of chlorogenic acid (5-Caffeoylquinic Acid) isolated from Baccharis oxyodonta on the structure and pharmacological activities of secretory phospholipase A2 from Crotalus durissus terrificus. Biomed Res Int 726585:1–10

    Google Scholar 

  • Ueno AK, Barcellos AF, Grecco SS et al (2018) Sesquiterpenes, diterpenes, alkenyl p -coumarates, and flavonoid from the aerial parts of Baccharis retusa (Asteraceae). Biochem Syst Ecol 78:39–42

    Article  CAS  Google Scholar 

  • Verdi LG, Brighente IMC, Pizzolatti MG (2005) Gênero Baccharis (Asteraceae): Aspectos químicos, econômicos e biológicos. Quim Nova 28:85–94

    Article  CAS  Google Scholar 

  • Vijayarathna S, Sasidharan S (2012) Cytotoxicity of methanol extracts of Elaeis guineensis on MCF-7 and Vero cell lines. Asian Pac J Trop Biomed 2:826–829

    Article  PubMed  PubMed Central  Google Scholar 

  • Zalewski CA, Passero LFD, Melo ASRB et al (2011) Evaluation of anti-inflammatory activity of derivatives from aerial parts of Baccharis uncinella. Pharm Biol 49:602–607

    Article  CAS  PubMed  Google Scholar 

  • Zampini IC, Isla MI, Schmeda-Hirschmann G (2009) Antimicrobial and antioxidant compounds from the infusion and methanolic extract of Baccharis incarum (WEDD.) Perkins. J Chil Chem Soc 54:477–481

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jairo Kenupp Bastos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bastos, J.K., Arruda, C. (2021). Chemistry and Biological Activities of Phenolic Compounds from Baccharis Genus. In: Fernandes, G.W., Oki, Y., Barbosa, M. (eds) Baccharis. Springer, Cham. https://doi.org/10.1007/978-3-030-83511-8_12

Download citation

Publish with us

Policies and ethics