Skip to main content

Adaptation by Nash Games in Gradient-Based Multi-objective/Multi-disciplinary Optimization

  • Conference paper
  • First Online:
Mathematical Control and Numerical Applications (JANO'13 2021)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 372))

Included in the following conference series:

  • 229 Accesses

Abstract

A two-phase numerical process is proposed for gradient-based multi-disciplinary optimization. In a first phase, one or several Pareto-optimal solutions associated with a subset of the cost functions, the primary objective functions, subject to constraints, are determined by some effective multi-objective optimizer. In the second phase, a continuum of Nash equilibria is constructed tangent to the Primary Pareto Front along which secondary cost functions are to be reduced, while best preserving the Pareto-optimality of the primary cost functions. The focus of the article is on estimating the rate at which the secondary cost functions are diminished. The method is illustrated by the numerical treatment of the optimal sizing problem of a sandwich panel w.r.t. structural resistance under bending loads and blast mitigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.P. Aubin, Mathematical Methods of Game and Economic Theory (Courier Corporation, 2007)

    Google Scholar 

  2. I. Das, J. Dennis, Normal-Boundary Intersection: An Alternate Method for Generating Pareto Optimal Points in Multicriteria Optimization Problems, ICASE Report 96–62, ICASE (1996)

    Google Scholar 

  3. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation 6 (2002), pp. 182–197

    Article  Google Scholar 

  4. J.A. Désidéri, MGDA Software Platform for Multi-Objective Differentiable Optimization, http://mgda.inria.fr

  5. J.A. Désidéri, Révision de l’algorithme de descente à gradients multiples (MGDA) par orthogonalisation hiérarchique, Research Report 8710, Inria (2015). https://hal.inria.fr/hal-01139994

  6. J.A. Désidéri, Platform for Prioritized Multi-objective Optimization by metamodel-Assisted Nash Games, Research Report 9290, Inria (2019). https://hal.inria.fr/hal-02285197

  7. J.A. Désidéri, R. Duvigneau, Direct and Adpative Approaches to Multi-objective Optimization, Research Report 9291, Inria (2019). https://hal.inria.fr/hal-02285899

  8. J.A. Désidéri, R. Duvigneau, DA. Habbal, Computational Intelligence in Aerospace Sciences, V. M. Becerra and M. Vassile Eds., Progress in Astronautics and Aeronautics, T. C. Lieuwen Ed.-in-Chief Vol. 244, chap. Multi-Objective Design Optimization Using Nash Games, American Institute for Aeronautics and Astronautics Inc., Reston, Virginia (2014)

    Google Scholar 

  9. J.A. Désidéri, P. Leite, Q. Mercier, Prioritized Multi-objective Optimization of a Sandwich Panel, Research Report 9362, Inria, 2020. https://hal.inria.fr/hal-02931770

  10. M. Emmerich, K. Yang, A. Deutz, H. Wang, C.M. Fonseca, Advances in Stochastic and Deterministic Global Optimization, P. M. Pardalos and A. Zhigljavsky and J. Žilinskas eds., chap. A Multicriteria Generalization of Bayesian Global Optimization, Springer Optimization and Its Applications, Springer, Cham (2016)

    Google Scholar 

  11. J. Fliege, B.F. Svaiter, Steepest Descent Methods for Multicriteria Optimization, Math. Methods Oper. Rese., pp. 479–494 (2000)

    Google Scholar 

  12. M.B. Giles, N.A. Pierce, An Introduction to the Adjoint Approach to Design, Flow, Turbulence and Combustion, pp. 393–415 (2000)

    Google Scholar 

  13. D. Greiner, J. Périaux, J.M. Emperador, B. Galván, G. Winter, Game Theory Based Evolutionary Algorithms: A Review with Nash Applicationss in Structural Engineering Optimization Problems, Arch Comput Methods Eng (Springer), pp. 703–750 (2017)

    Google Scholar 

  14. M. Hartikainen and K. Miettinen, Constructing a pareto front approximation for decision making. Math. Methods Oper. Rese., 209–234 (2011)

    Google Scholar 

  15. M. Hartikainen, K. Miettinen, M.M. Wiecek, PAINT: Pareto front interpolation for nonlinear multiobjective optimization, Computational Optimization and Applications (2012), pp. 845–867

    Google Scholar 

  16. L. Hascoët, Tapenade, version 3, https://team.inria.fr/ecuador/fr/tapenade/

  17. J. Horn, N. Nafpliotis, D.E. Goldberg, A niched Pareto genetic algorithm for multiobjective optimization, in Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence (1991)

    Google Scholar 

  18. A. Jameson, K. Leoviriyakit, and S. Shankaran, Multi-point Aero-Structural Optimization of Wings Including Planform Variations, in 45th Aerospace Sciences Meeting and Exhibit, Reno, Nevada, January 8–11. 2007

    Google Scholar 

  19. A. Jameson, J.C. Vassberg, S. Shankaran, Aerodynamic-structural design studies of low-sweep transonic wings. J. Aircraft, 47 (2010)

    Google Scholar 

  20. D.R. Jones, M. Schonlau, and W.J. Welch, Efficient global optimization of expensive black-box functions, Journal of Global Optimization 13 (1998), pp. 455–492

    Article  MathSciNet  Google Scholar 

  21. P. Leite, Conception architecturale appliquée aux matériaux sandwichs pour propriétés multifonctionnelles, Ph.D. diss., Université de Grenoble, École Doctorale I-MEP2, 2013. http://www.theses.fr/2013GRENI053

  22. J.R.R.A. Martins, A.B. Lambe, Multidisciplinary design optimization: A survey of architectures. AIAA J., 51 (2013)

    Google Scholar 

  23. A. Messac, A. Isamail-Yahaya, C. Mattson, The normalized normal constraint method for generating the pareto frontier. Struct. Multidisciplinary Optim., 86–98 (2003)

    Google Scholar 

  24. T. Murata, H. Hishibuchi, MOGA: multi-objective genetic algorithms, in Proceedings of 1995 IEEE International Conference on Evolutionary Computation, Perth, Australia, pp. 289–294 (1995)

    Google Scholar 

  25. K. Parsopoulos, M. Vrahatis, Recent approaches to global optimization problems through particle swarm optimization. Natural Comput., 235–306 (2002)

    Google Scholar 

  26. J. Périaux, F. Gonzalez, D.S.C. Lee, Evolutionary optimization and game strategies for advanced multi-disciplinary design - applications to aeronautics and UAV design. Intelli. Syst. Control Autom. Sci. Eng. 75, Springer (2015)

    Google Scholar 

  27. J. Sobieszczanski-Sobieski, T.D. Altus, M. Phillips, R. Sandusky,Bilevel integrated system synthesis for concurrent and distributed processing. AIAA J., 41 (2003)

    Google Scholar 

  28. E. Zitzler and L. Thiele, Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach, IEEE Transactions on Evolutionary Computation 3 (1999), pp. 257–271

    Article  Google Scholar 

Download references

Acknowledgements

The author wishes to express his warmest thanks to his colleagues from Inria and the University Côte d’Azur R. Duvigneau, A. Habbal, L. Hascoët, L. Monasse and B. Mourrain for very fruitful scientific discussions on Nash games and polytope exploration in large dimension, as well as software implementation of algorithms.

Special thanks are also due to the Inria Service of Experimentation and Development (SED), T. Kloczko, N. Niclausse and J.Wintz particularly, for the development of the web interface of the software platform http://mgda.inria.fr.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-A. Désidéri .

Editor information

Editors and Affiliations

Appendix: Configuration of Convex Hulls

Appendix: Configuration of Convex Hulls

See the Fig. 8.

Fig. 8
figure 8figure 8

Various geometrical configurations of the convex hull for two and three gradients vectors—In this affine-space representation, the vectors of the convex hull are given the origin O and are pointing over the green line or triangle

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Désidéri, JA. (2021). Adaptation by Nash Games in Gradient-Based Multi-objective/Multi-disciplinary Optimization. In: Nachaoui, A., Hakim, A., Laghrib, A. (eds) Mathematical Control and Numerical Applications. JANO'13 2021. Springer Proceedings in Mathematics & Statistics, vol 372. Springer, Cham. https://doi.org/10.1007/978-3-030-83442-5_9

Download citation

Publish with us

Policies and ethics