Skip to main content

Whole Slide Imaging Hardware, Software, and Infrastructure

  • Chapter
  • First Online:
Whole Slide Imaging

Abstract

Whole slide imaging is the process of digitizing a glass slide into a single file, high magnification virtual image object, or whole slide image (WSI). This process requires the use of slide scanners and specialized WSI devices that automate the image capture process. While slide scanners trace their roots to automated robotic microscopes developed in the mid-1990s, today they are purpose-built devices designed to produce high-quality WSIs with minimal human intervention. While commercial slide scanners have many similarities, it is important to recognize their various components in order to be able to evaluate their fitness for an intended use case. Scanners vary in many hardware capacities, including slide capacity, slide loading/handling, scan speed, slide throughput, optics, and image modalities supported. Adding additional hardware (workstations and displays) and software components (viewer, image management system) to a slide scanner results in the formation of a whole slide imaging system. Further, information technology, including networking and storage infrastructures, plays an important role when implementing WSI systems. Overall, it is important to understand how each of the different hardware, software, and infrastructure components of a whole slide imaging system interacts prior to adopting this technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abels E, Pantanowitz L, Aeffner F, Zarella MD, Laak J, Bui MM, et al. Computational pathology definitions, best practices, and recommendations for regulatory guidance: a white paper from the digital pathology association. J Pathol. 2019;249(3):286–94.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Yagi Y, Gilbertson JR. Digital imaging in pathology: the case for standardization. J Telemed Telecare. 2005;11(3):109–16.

    Article  PubMed  Google Scholar 

  3. Ho J, Parwani AV, Jukic DM, Yagi Y, Anthony L, Gilbertson JR. Use of whole slide imaging in surgical pathology quality assurance: design and pilot validation studies. Hum Pathol. 2006;37(3):322–31.

    Article  PubMed  Google Scholar 

  4. Pantanowitz L, Sharma A, Carter A, Kurc T, Sussman A, Saltz J. Twenty years of digital pathology: an overview of the road travelled, what is on the horizon, and the emergence of vendor-neutral archives. J Pathol Inform. 2018;9(1):40.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Stathonikos N, Nguyen TQ, Spoto CP, Verdaasdonk MAM, van Diest PJ. Being fully digital: perspective of a Dutch academic pathology laboratory. Histopathology. 2019;75(5):621–35.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Retamero JA, Aneiros-Fernandez J, del Moral RG. Complete digital pathology for routine histopathology diagnosis in a multicenter hospital network. Arch Pathol Lab Med. 2020;144(2):221–8.

    Article  PubMed  Google Scholar 

  7. Vodovnik A, Aghdam MF. Complete routine remote digital pathology services. J Pathol Inform. 2018;9(1):36.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Food and Drug Administration. FDA allows marketing of first whole slide imaging system for digital pathology [Internet]. FDA. FDA; 2020 [cited 2020 Aug 18]. Available from: https://www.fda.gov/news-events/press-announcements/fda-allows-marketing-first-whole-slide-imaging-system-digital-pathology.

  9. Food and Drug Administration. 510(k) Premarket Notification-Aperio AT2 DX System [Internet]. [cited 2020 Aug 18]. Available from: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K190332.

  10. Hanna MG, Reuter VE, Hameed MR, Tan LK, Chiang S, Sigel C, et al. Whole slide imaging equivalency and efficiency study: experience at a large academic center. Mod Pathol. 2019;32(7):916–28.

    Article  PubMed  Google Scholar 

  11. Zheng P-P, van der Weiden M, Kros JM. Fast tracking of co-localization of multiple markers by using the nanozoomer slide scanner and NDPViewer. J Cell Physiol. 2014;229(8):967–73.

    Article  CAS  PubMed  Google Scholar 

  12. Catalyurek U, Beynon MD, Chang C, Kurc T, Sussman A, Saltz J. The virtual microscope. IEEE Trans Inf Technol Biomed. 2003;7(4):230–48.

    Article  PubMed  Google Scholar 

  13. Gilbertson JR, Ho J, Anthony L, Jukic DM, Yagi Y, Parwani AV. Primary histologic diagnosis using automated whole slide imaging: a validation study. BMC Clin Pathol. 2006;6(1):4.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bacus J. BLISS System [Internet]. [cited 2020 Aug 18]. Available from: http://jamesbacus.com/page10.html

  15. Montalto MC. An industry perspective: an update on the adoption of whole slide imaging. J Pathol Inform. 2016;7(1):18.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Boyce B. Whole slide imaging: uses and limitations for surgical pathology and teaching. Biotech Histochem. 2015;90(5):321–30.

    Article  CAS  PubMed  Google Scholar 

  17. Griffin J, Treanor D. Digital pathology in clinical use: where are we now and what is holding us back? Histopathology. 2017;70(1):134–45.

    Article  PubMed  Google Scholar 

  18. Pantanowitz L, Sinard JH, Henricks WH, Fatheree LA, Carter AB, Contis L, et al. Validating whole slide imaging for diagnostic purposes in pathology: guideline from the College of American Pathologists Pathology and Laboratory Quality Center. Arch Pathol Lab Med. 2013;137(12):1710–22.

    Article  PubMed  PubMed Central  Google Scholar 

  19. International Organization for Standardization. ISO/IEC 7498-4:1989 – Information technology – Open Systems Interconnection – Basic Reference Model: Naming and addressing [Internet]. ISO Standards Maintenance Portal. ISO Central Secretariat; 1989 [cited 2020 Aug 18]. Available from: http://standards.iso.org/ittf/PubliclyAvailableStandards/s014258_ISO_IEC_7498-4_1989(E).zip.

  20. OSI model. In: Wikipedia [Internet]. 2020 [cited 2020 Aug 18]. Available from: https://en.wikipedia.org/w/index.php?title=OSI_model&oldid=973511610.

  21. Ferreira R, Moon B, Humphries J, Sussman A, Saltz J, Miller R, et al. The virtual microscope. Proc AMIA Annu Fall Symp. 1997:449–53.

    Google Scholar 

  22. NEMA. DICOM Whole Slide Imaging (WSI) [Internet]. [cited 2020 Aug 18]. Available from: http://dicom.nema.org/Dicom/DICOMWSI/.

  23. Daniel C, Macary F, García Rojo M, Klossa J, Laurinavičius A, Beckwith BA, et al. Recent advances in standards for collaborative digital anatomic pathology. Diagn Pathol. 2011;6(Suppl 1):S17.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Marques Godinho T, Lebre R, Silva LB, Costa C. An efficient architecture to support digital pathology in standard medical imaging repositories. J Biomed Inform. 2017;71:190–7.

    Article  PubMed  Google Scholar 

  25. Singh R, Chubb L, Pantanowitz L, Parwani A. Standardization in digital pathology: supplement 145 of the DICOM standards. J Pathol Inform. 2011;2(1):23.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Herrmann MD, Clunie DA, Fedorov A, Doyle SW, Pieper S, Klepeis V, et al. Implementing the DICOM standard for digital pathology. J Pathol Inform [Internet]. 2018 Nov 2 [cited 2020 May 27];9. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6236926/.

  27. Taubman DS, Marcellin MW. Introduction to JPEG2000. In: Taubman DS, Marcellin MW, editors. JPEG2000 image compression fundamentals, standards and practice [internet]. Boston, MA: springer US; 2002. p. 399–415. Available from: doi:https://doi.org/10.1007/978-1-4615-0799-4_9.

  28. Zarella MD, Bowman D, Aeffner F, Farahani N, Xthona A, Absar SF, et al. A practical guide to whole slide Imaging: a white paper from the digital pathology association. Arch Pathol Lab Med. 2018;143(2):222–34.

    Article  PubMed  Google Scholar 

  29. TIFF, Revision 6.0 [Internet]. 2009 [cited 2020 Aug 18]. Available from: https://www.loc.gov/preservation/digital/formats/fdd/fdd000022.shtml.

  30. BigTIFF version of libtiff library [Internet]. [cited 2020 Aug 18]. Available from: http://bigtiff.org/.

  31. Hamamatsu format [Internet]. [cited 2020 Aug 16]. Available from: https://openslide.org/formats/hamamatsu/.

  32. Deep Zoom [Internet]. [cited 2020 Aug 18]. Available from: https://docs.microsoft.com/en-us/previous-versions/windows/silverlight/dotnet-windows-silverlight/cc645050(v=vs.95).

  33. OpenSeadragon [Internet]. [cited 2020 Aug 18]. Available from: https://openseadragon.github.io/.

  34. DICOM Standards Committee, Working Groups 26, Pathology. Digital Imaging and Communications in Medicine (DICOM) Supplement 122: Specimen Module and Revised Pathology SOP Classes [Internet]. 2008 [cited 2020 Aug 18]. Available from: https://www.dicomstandard.org/News/ftsup/docs/sups/sup122.pdf.

  35. DICOM Standards Committee, Working Groups 26, Pathology. Digital Imaging and Communications in Medicine (DICOM) Supplement 145: Whole Slide Microscopic Image IOD and SOP Classes [Internet]. 2010 [cited 2020 Aug 18]. Available from: https://www.dicomstandard.org/News/ftsup/docs/sups/sup145.pdf.

  36. Clunie D, Hosseinzadeh D, Wintell M, De Mena D, Lajara N, Garcia-Rojo M, et al. Digital imaging and communications in medicine whole slide imaging connectathon at digital pathology association pathology visions 2017. J Pathol Inform [Internet]. 2018 Mar 5 [cited 2020 Aug 9];9. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5869966/.

  37. Herrmann MD, Clunie DA, Fedorov A, Doyle SW, Pieper S, Klepeis V, et al. Implementing the DICOM standard for digital pathology. J Pathol Inform. 2018;9:37.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Leica Biosystems Division of Leica Microsystems Inc. Aperio GT 450 - Automated, High Capacity Digital Pathology Scanner [Internet]. Leica Biosystems. [cited 2020 Aug 9]. Available from: https://www.leicabiosystems.com/digital-pathology/scan/aperio-gt-450/.

  39. Press Trust of India. Leica Biosystems launches Aperio GT 450 DX in Asia enabling high volume clinical labs to scale up digital pathology operations. Business Standard India [Internet]. 2020 May 12 [cited 2020 Aug 12]; Available from: https://www.business-standard.com/article/pti-stories/leica-biosystems-launches-aperio-gt-450-dx-in-asia-enabling-high-volume-clinical-labs-to-scale-up-digital-pathology-operations-120051200223_1.html.

  40. Leica Biosystems. Leica Biosystems Unveils its Aperio GT 450 DX Digital Pathology Scanner and Delivers Excellence to Leeds Teaching Hospitals NHS Trust, UK [Internet]. 2020 [cited 2020 Aug 12]. Available from: https://tissuepathology.com/2020/08/11/leica-biosystems-unveils-its-aperio-gt-450-dx-digital-pathology-scanner-and-delivers-excellence-to-leeds-teaching-hospitals-nhs-trust-uk/.

  41. Hanna MG, Parwani A, Sirintrapun SJ. Whole slide imaging: technology and applications. Adv Anat Pathol. 2020;27(4):251–9.

    Article  PubMed  Google Scholar 

  42. McClintock DS, Lee RE, Gilbertson JR. Using computerized workflow simulations to assess the feasibility of whole slide Imaging full adoption in a high-volume histology laboratory. Anal Cell Pathol Amst. 2012;35(1):57–64.

    Article  PubMed  Google Scholar 

  43. Montironi R, Cimadamore A, Massari F, Montironi MA, Lopez-Beltran A, Cheng L, et al. Whole slide imaging of large format histology in prostate pathology: potential for information fusion. Arch Pathol Lab Med. 2017;141(11):1460–1.

    Article  PubMed  Google Scholar 

  44. Montironi R, Cheng L, Lopez-Beltran A, Scarpelli M. Quantitative image analysis on histologic virtual slides for prostate pathology diagnosis, response to chemopreventive agents, and prognosis. Eur Urol Focus. 2017;3(4):467–9.

    Article  PubMed  Google Scholar 

  45. Bryant P, Haine N, Johnston J, Ntiamoah P. Application of large format tissue processing in the histology laboratory. J Histotechnol. 2019;42(3):150–62.

    Article  PubMed  Google Scholar 

  46. Tot T. Cost-benefit analysis of using large-format histology sections in routine diagnostic breast care. Breast. 2010;19(4):284–8.

    Article  PubMed  Google Scholar 

  47. Foschini MP, Baldovini C, Ishikawa Y, Eusebi V. The value of large sections in surgical pathology. Int J Breast Cancer [Internet]. 2012 [cited 2020 Aug 18];2012. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3512286/.

  48. Sellaro TL, Filkins R, Hoffman C, Fine JL, Ho J, Parwani AV, et al. Relationship between magnification and resolution in digital pathology systems. J Pathol Inform. 2013;4(1):21.

    Article  PubMed  PubMed Central  Google Scholar 

  49. DMetrix Ultra-rapid, Dependable Digital Slide Scanning [Internet]. 2012 [cited 2020 Aug 12]. Available from: https://www.youtube.com/watch?v=pDKMnIgdtCo.

  50. Weinstein RS, Descour MR, Liang C, Barker G, Scott KM, Richter L, et al. An array microscope for ultrarapid virtual slide processing and telepathology. Design, fabrication, and validation study. Hum Pathol. 2004;35(11):1303–14.

    Article  PubMed  Google Scholar 

  51. Cucoranu IC, Parwani AV, Vepa S, Weinstein RS, Pantanowitz L. Digital pathology: a systematic evaluation of the patent landscape. J Pathol Inform. 2014;5(1):16.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Montalto MC, McKay RR, Filkins RJ. Autofocus methods of whole slide imaging systems and the introduction of a second-generation independent dual sensor scanning method. J Pathol Inform. 2011;2(1):44.

    Article  PubMed  PubMed Central  Google Scholar 

  53. McKay RR, Baxi VA, Montalto MC. The accuracy of dynamic predictive autofocusing for whole slide imaging. J Pathol Inform. 2011;2(1):38.

    Article  PubMed  PubMed Central  Google Scholar 

  54. van der Graaff L, van der Graaff L, van Leenders GJLH, Boyaval F, Stallinga S, Stallinga S. Computational imaging modalities for multi-focal whole-slide imaging systems. Appl Opt. 2020;59(20):5967–82.

    Article  PubMed  Google Scholar 

  55. Liao J, Jiang Y, Bian Z, Mahrou B, Nambiar A, Magsam AW, et al. Rapid focus map surveying for whole slide imaging with continuous sample motion. Opt Lett. 2017;42(17):3379–82.

    Article  PubMed  Google Scholar 

  56. Jiang S, Bian Z, Huang X, Song P, Zhang H, Zhang Y, et al. Rapid and robust whole slide imaging based on LED-array illumination and color-multiplexed single-shot autofocusing. Quant Imaging Med Surg. 2019;9(5):823–31.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Yagi Y, Gilbertson JR. A relationship between slide quality and image quality in whole slide imaging (WSI). Diagn Pathol. 2008;3 Suppl 1:S12.

    Google Scholar 

  58. 3DHistech Ltd. Pannoramic 1000 [Internet]. 3DHISTECH Ltd. [cited 2020 Aug 17]. Available from: https://www.3dhistech.com/products-and-software/hardware/pannoramic-digital-slide-scanners/pannoramic-1000/.

  59. Mukhopadhyay S, Feldman MD, Abels E, Ashfaq R, Beltaifa S, Cacciabeve NG, et al. Whole slide imaging versus microscopy for primary diagnosis in surgical pathology: a multicenter blinded randomized noninferiority study of 1992 cases (pivotal study). Am J Surg Pathol. 42, no. 1. 2018:39–52. https://doi.org/10.1097/PAS.0000000000000948.

  60. Borowsky AD, Glassy EF, Wallace WD, Kallichanda NS, Behling CA, Miller DV, et al. Digital whole slide imaging compared with light microscopy for primary diagnosis in surgical pathology: a multicenter, double-blinded, randomized study of 2045 cases. Arch Pathol Lab Med [Internet]. 2020 Feb 14 [cited 2020 Aug 8]; Available from: https://www.archivesofpathology.org/doi/10.5858/arpa.2019-0569-OA.

  61. Ortega S, Halicek M, Fabelo H, Callico GM, Fei B. Hyperspectral and multispectral imaging in digital and computational pathology: a systematic review [invited]. Biomed Opt Express. 2020;11(6):3195–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hollon TC, Lewis S, Pandian B, Niknafs YS, Garrard MR, Garton H, et al. Rapid intraoperative diagnosis of pediatric brain tumors using stimulated Raman histology. Cancer Res. 2018;78(1):278–89.

    Article  CAS  PubMed  Google Scholar 

  63. Qorbani A, Fereidouni F, Levenson R, Lahoubi SY, Harmany ZT, Todd A, et al. Microscopy with ultraviolet surface excitation (MUSE): a novel approach to real-time inexpensive slide-free dermatopathology. J Cutan Pathol. 2018;45(7):498–503.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Abels E, Pantanowitz L. Current state of the regulatory trajectory for whole slide imaging devices in the USA. J Pathol Inform. 2017;8(1):23.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Food and Drug Administration. 510(k) Substantial Equivalence Determination Decision Summary: K190332 [Internet]. Food and Drug Administration; 2019 [cited 2020 Aug 18]. Available from: https://www.accessdata.fda.gov/cdrh_docs/reviews/K190332.pdf.

  66. Food and Drug Administration. De Novo Decision Summary: DEN160056 [Internet]. Food and Drug Administration; 2017 [cited 2020 Apr 27]. Available from: https://www.accessdata.fda.gov/cdrh_docs/reviews/DEN160056.pdf.

  67. Abel JT, Ouillette P, Williams CL, Blau J, Cheng J, Yao K, et al. Display characteristics and their impact on digital pathology: a current review of pathologists’ future “microscope”. J Pathol Inform. 2020;11(1):23.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Samei E, Krupinski EA, editors. The handbook of medical image perception and techniques. 2nd ed. Cambridge; New York: Cambridge University Press; 2019. p. 522.

    Google Scholar 

  69. Food and Drug Administration. 510(k) Substantial Equivalence Determination Decision Summary: K193054 [Internet]. Food and Drug Administration; 2020 [cited 2020 Aug 18]. Available from: https://www.accessdata.fda.gov/cdrh_docs/reviews/K193054.pdf.

  70. Food and Drug Administration. 510(k) Substantial Equivalence Determination Decision Summary: K172922 [Internet]. Food and Drug Administration; 2017 [cited 2020 Aug 18]. Available from: https://www.accessdata.fda.gov/cdrh_docs/reviews/K172922.pdf.

  71. Business Wire. Paige Receives FDA Clearance for the FullFocus™ Viewer for Digital Pathology [Internet]. 2020 [cited 2020 Aug 18]. Available from: https://www.businesswire.com/news/home/20200721005369/en/Paige-Receives-FDA-Clearance-FullFocus%E2%84%A2-Viewer-Digital.

  72. Food and Drug Administration. 510(k) Premarket Notification-Sectra Digital Pathology Module [Internet]. [cited 2020 Aug 18]. Available from: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K193054.

  73. Norgan AP, Shah KK, Juskewitch JE, Maleszewski JJ. Open-source whole slide image preparation and viewing pipeline. Arch Pathol Lab Med. 2018;142(12):1454–5.

    Article  PubMed  Google Scholar 

  74. OpenSlide [Internet]. [cited 2020 Aug 18]. Available from: https://openslide.org/.

  75. DPA: Digital Pathology Association [Internet]. [cited 2020 Aug 9]. Available from: https://digitalpathologyassociation.org/software-vendors.

  76. Besson S, Leigh R, Linkert M, Allan C, Burel J-M, Carroll M, et al. Bringing open data to whole slide imaging. Digit Pathol 15th Eur Congr ECDP 2019 Warwick UK April 10–13 2019 Proc Eur Congr Digit Pathol 15th 2019 Warwick U K. 2019 Apr;2019:3–10.

    Google Scholar 

  77. Philips Teams up with Visiopharm to Boost Breast Cancer Diagnosis Objectivity Through Computational Pathology [Internet]. 2016 [cited 2020 Aug 18]. Available from: https://www.businesswire.com/news/home/20160621005195/en/Philips-Teams-Visiopharm-Boost-Breast-Cancer-Diagnosis.

  78. Inspirata and IBEX Medical Analytics Announce New Technical Partnership at the European Congress of Pathology, Nice [Internet]. GlobeNewswire News Room. 2019 [cited 2020 Aug 18]. Available from: http://www.globenewswire.com/news-release/2019/09/09/1912498/0/en/Inspirata-and-IBEX-Medical-Analytics-Announce-New-Technical-Partnership-at-the-European-Congress-of-Pathology-Nice.html.

  79. Evans AJ, Salama ME, Henricks WH, Pantanowitz L. Implementation of whole slide imaging for clinical purposes: issues to consider from the perspective of early adopters. Arch Pathol Lab Med. 2017;141(7):944–59.

    Article  PubMed  Google Scholar 

  80. University of Michigan Department of Pathology. Virtual Slide Box [Internet]. 2020 [cited 2020 Aug 18]. Available from: https://www.pathology.med.umich.edu/slides/.

  81. Digital Pathology Association. Whole Slide Imaging Repository [Internet]. 2020 [cited 2020 Aug 18]. Available from: https://digitalpathologyassociation.org/whole-slide-imaging-repository.

  82. Dumery B. Digital image archiving: challenges and choices. Radiol Manage. 2002;24(3):30–8; quiz 39–41

    PubMed  Google Scholar 

  83. De Backer AI, Mortelé KJ, De Keulenaer BL. Picture archiving and communication system-spart one: filmless radiology and distance radiology. JBR-BTR. 2004;87(5):234–41.

    PubMed  Google Scholar 

  84. Ortiz AO, Luyckx MP. Preparing a business justification for going electronic. Radiol Manage. 2002;24(1):14–21.

    PubMed  Google Scholar 

  85. Bergh B. Enterprise imaging and multi-departmental PACS. Eur Radiol. 2006;16(12):2775–91.

    Article  PubMed  Google Scholar 

  86. Isaacs M, Lennerz JK, Yates S, Clermont W, Rossi J, Pfeifer JD. Implementation of whole slide imaging in surgical pathology: a value added approach. J Pathol Inform. 2011;2(1):39.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Ghaznavi F, Evans A, Madabhushi A, Feldman M. Digital imaging in pathology: whole-slide imaging and beyond. Annu Rev Pathol Mech Dis. 2013;8(1):331–59.

    Article  CAS  Google Scholar 

  88. Business Wire. FDA Grants Breakthrough Designation to Paige.AI [Internet]. 2019 [cited 2020 Aug 18]. Available from: https://www.businesswire.com/news/home/20190307005205/en/FDA-Grants-Breakthrough-Designation-Paige.AI.

  89. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44–56.

    Article  CAS  PubMed  Google Scholar 

  90. Acs B, Rimm DL. Not just digital pathology, intelligent digital pathology. JAMA Oncol. 2018;4(3):403–4.

    Article  PubMed  Google Scholar 

  91. Niazi MKK, Parwani AV, Gurcan MN. Digital pathology and artificial intelligence. Lancet Oncol. 2019;20(5):e253–61.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Tizhoosh HR, Pantanowitz L. Artificial intelligence and digital pathology: challenges and opportunities. J Pathol Inform. 2018;9(1):38.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Definitions of the SI units: The twenty SI prefixes [Internet]. [cited 2020 Aug 18]. Available from: https://physics.nist.gov/cuu/Units/prefixes.html.

  94. Seibert J. Archiving, Chapter 2: Medical Image Data Characteristics [Internet]. SIIM.org. [cited 2020 Aug 18]. Available from: https://siim.org/page/archiving_chapter2.

  95. Philips. Pathology Remote Viewing IT requirements [Internet]. 2015 [cited 2020 Aug 18]. Available from: http://incenter.medical.philips.com/doclib/enc/fetch/2000/4504/577242/577260/593280/593786/452220726501_Pathology_Remote_viewing.pdf%3Fnodeid%3D11281278%26vernum%3D-2.

  96. Alba D, Kang C. So We’re Working From Home. Can the Internet Handle It? The New York Times [Internet]. 2020 Mar 16 [cited 2020 Aug 18]; Available from: https://www.nytimes.com/2020/03/16/technology/coronavirus-working-from-home-internet.html.

  97. Gibson D. Hot, Warm and Cold Data Find a Home With Storage Groups [Internet]. 2012 [cited 2020 Aug 13]. Available from: https://ibmsystemsmag.com/Power-Systems/09/2012/storage-groups-hot-warm-cold.

  98. Stansberry M. Explaining the Uptime Institute’s Tier Classification System [Internet]. Uptime Institute Blog. 2014 [cited 2020 Aug 18]. Available from: https://journal.uptimeinstitute.com/explaining-uptime-institutes-tier-classification-system/.

  99. Computer Security Resource Center. Disaster recovery plan (DRP), NIST [Internet]. [cited 2020 Aug 18]. Available from: https://csrc.nist.gov/glossary/term/disaster_recovery_plan.

  100. College of American Pathologists. Anatomic Pathology Checklist. CAP Accreditation Program. College of American Pathologists. 2020.

    Google Scholar 

  101. Balis UGJ, Williams CL, Cheng J, Parwani A, McClintock DS. Whole-slide Imaging: thinking twice before hitting the delete key. AJSP Rev Rep. 2018;23(6):249–50.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. McClintock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

McClintock, D.S., Abel, J.T., Cornish, T.C. (2022). Whole Slide Imaging Hardware, Software, and Infrastructure. In: Parwani, A.V. (eds) Whole Slide Imaging. Springer, Cham. https://doi.org/10.1007/978-3-030-83332-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83332-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83331-2

  • Online ISBN: 978-3-030-83332-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics