Skip to main content

Hygrothermal and Acoustic Assessment of Earthen Materials

  • Chapter
  • First Online:
Testing and Characterisation of Earth-based Building Materials and Elements

Abstract

Thanks to their microstructure which allows both exchange of gas with their surrounding environment and internal water vapour sorption phenomena, earthen materials are highly hygroscopic. If no material is used as a barrier or retardant to the diffusion into the envelope between the earth and the indoor environment of a building, they have a great potential to enhance the thermal comfort and to regulate indoor air quality. In addition, even if few studies have been realised on that point, a high acoustic absorption can be anticipated due to their open porous structure. However, notably due to the lack of standardized procedure to measure their performances, these multi-functional capabilities of earthen walls are almost not considered in the design and rehabilitation operations. In that context, in the framework of the RILEM Technical committee TCE 274, this chapter aims at presenting a critical bibliographic review related to the assessment of hygrothermal and acoustic performance of earthen structures. It is a first necessary step in order to define performance-oriented tests to properly assess their hygrothermal and acoustic performances. In particular, the analysis of collected information allowed to underline some consensus on the protocols that should be used to measure some of the key parameters, while the necessity to perform some additional investigations on others was clearly identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Farouki OT (1981) Thermal properties of soils

    Google Scholar 

  2. ASTM-C177 (2013) Standard test method for steady-state heat flux measurements and thermal transmission properties by means of the guarded-hot-plate apparatus. ASTM International

    Google Scholar 

  3. ASTM-D5334 (2014) Standard test method for determination of thermal conductivity of soil and soft rock by thermal needle probe procedure. ASTM International

    Google Scholar 

  4. ASTM-E793-06 (2012) Standard test method for enthalpies of fusion and crystallization by differential scanning calorimetry. ASTM International

    Google Scholar 

  5. Adam EA, Jones PJ (1995) Thermophysical properties of stabilised soil building blocks. Build Environ 30(2):245–253. https://doi.org/10.1016/0360-1323(94)00041-P

    Article  Google Scholar 

  6. Adam EA (2001) Compressed stabilized earth block manufacturing in Sudan—UNESCO—Technical Note No. 12. Organization, p 101

    Google Scholar 

  7. Alev U et al (2014) Air leakage and hygrothermal performance of an internally insulated log house. NSB 2014:55–61

    Google Scholar 

  8. Allinson D, Hall M (2010) Hygrothermal analysis of a stabilised rammed earth test building in the UK. Energy and Buildings. https://doi.org/10.1016/j.enbuild.2009.12.005

    Article  Google Scholar 

  9. Allinson D, Hall MR (2010) Hygrothermal analysis of a stabilised rammed earth test building in the UK. Energy and Buildings 42:845–852

    Google Scholar 

  10. Aplin AC, Fleet AJ, Macquaker JHS (1999) Muds and mudstones: physical and fluid-flow properties. Geological Society of London

    Google Scholar 

  11. Arnold P (1969) Thermal conductivity of masonry materials. J Inst Heat Ventilating Eng 37:101–108

    Google Scholar 

  12. Arundel A, Sterling E, Biggin J (1986) Indirect health effect of relative humidity in indoor environments. Environ Health Perspect 65:351

    Google Scholar 

  13. Badea A et al (1994) A life-cycle cost analysis of the passive house “Politenica” from Bucharest. Energy Build 80(2014):542–555. https://doi.org/10.1016/j.enbuild.2014.04.044

  14. Baroghel-Bouny V et al (2007) Assessment of transport properties of cementitious materials: a major challenge as regards durability? Eur J Environ Civ Eng 11(6):671–696

    Google Scholar 

  15. Beckett CTS, Cardell-Oliver R, Ciancio D, Huebner C (2018) Measured and simulated thermal behaviour in rammed earth houses in a hot-arid climate. Part A: Structural behaviour. J Build Eng 15:243–251

    Google Scholar 

  16. Beckett C et al (2014) Sustainable and affordable rammed earth houses in Kalgoorlie, western Autralia : development of thermal monitoring techniques. In: ASEC 2014

    Google Scholar 

  17. Brace WF, Walsh JB, Frangos WT (1968) Permeability of granite under high pressure. J Geophys Res 73(6):2225–2236

    Google Scholar 

  18. Bras A (2015) Repair of Quinta da Mina buildings belonging to a social neighbourhood (Barreiro, Portugal)—selection of retrofit solutions to improve the energy efficiency of a group of buildings. Technical report for the city council

    Google Scholar 

  19. Butko D et al (2014) Comparing the acoustical nature of a Compressed Earth Block (CEB) residence to a traditional wood­‐framed residence. In: Proceedings of meetings on acoustics. Acoustical Society of America, p 015002. https://doi.org/10.1121/2.0000083

  20. CSTB (2011) Analyse des caractéristiques des systèmes constructifs non industrialisés

    Google Scholar 

  21. Cagnon H et al (2014) Hygrothermal properties of earth bricks. Energy Build 80:208–217

    Google Scholar 

  22. Carmeliet J, Descamps F, Houvenaghel G (1999) A mutliscale network model for simulating moisture transfer properties of porous media. Transp Porous Media 35:67–88

    Google Scholar 

  23. Carneiro P et al (2016) Improving building technologies with a sustainable strategy. Procedia Soc Behav Sci 216:829–840

    Google Scholar 

  24. Cassan M (2005) Les essais de perméabilité sur site dans la reconnaissance des sols. Presses de l’Ecole Nationale des Ponts et Chausées

    Google Scholar 

  25. Chabriac PA (2014) Mesure du comportement hygrothermique du pisé. ENTPE. Available at: https://tel.archives-ouvertes.fr/tel-01413611

  26. Champiré F et al (2016) Impact of relative humidity on the mechanical behavior of compacted earth as a building material. Constr Build Mater 110:70–78. https://doi.org/10.1016/j.conbuildmat.2016.01.027

    Article  Google Scholar 

  27. Chesworth W (2008) Encyclopedia of soil science. Springer

    Google Scholar 

  28. Cliffton AW, Wilson GW, Barbour SL (1999) Emergence of unsaturated soil mechanics. NRC Research Press

    Google Scholar 

  29. Corey A (1954) The interrelation between gas and oil relative permeabilities. Producers Monthly 19(19):38–41

    Google Scholar 

  30. DIN-51007 (1994) Thermal analysis; differential thermal analysis; principles. Deutsches Institut für Normung

    Google Scholar 

  31. DIN-52612-2 (1984) Tesing of thermal insulating materials; determination of thermal conductivity by means of the guarded hot plate apparatus; conversion of the measured values for building applications. Deutsches Institut für Normung

    Google Scholar 

  32. Daza AN, Zambrano E, Ruiz JA (2016) Acoustic performance in raw earth construction techniques used in Colombia. In: EuroRegio2016, European Association of Acoustics. Porto, pp 1–10

    Google Scholar 

  33. Delage P, Cui YJ (2000) L’eau dans les sols non saturés. Techniques de l’ingénieur, C301

    Google Scholar 

  34. Derluyn H et al (2012) Hysteretic behavior of concrete: Modeling and analysis. Cem Concr Res 42:1379–1388

    Google Scholar 

  35. Desta T, Langmans J, Roels S (2011) Experimental data set for validation of heat, air and moisture transport models of building envelopes. Build Environ 46:1038–1046

    Google Scholar 

  36. Dubois S et al (2014) An inverse modelling approach to estimate the hygric parameters of clay-based masonry during a Moisture Buffer Value test. Build Environ 81:192–203. https://doi.org/10.1016/j.buildenv.2014.06.018

    Article  Google Scholar 

  37. Emery AF, Kippenhan CJ (2005) A long term study of residential home heating consumption and the effect of occupant behavior on homes in the Pacific Northwest constructed according to improved thermal standards. Energy 31(2006):677–693. https://doi.org/10.1016/j.energy.2005.04.006

    Article  Google Scholar 

  38. Fabbri A, Al Haffar N, McGregor F (2019) Measurement of the relative air permeability of compacted earth in the hygroscopic regime of saturation. CR Mec 347:912–919

    Google Scholar 

  39. Fabbri A, McGregor F (2017) Impact of the determination of the sorption-desorption curves on the prediction of the hemp concrete hygrothermal behaviour. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2017.09.077

    Article  Google Scholar 

  40. Fabbri A et al (2017) Effect of temperature on the sorption curves of earthen materials. Materials and Structures/Materiaux et Constructions 50(6). https://doi.org/10.1617/s11527-017-1122-7

  41. Fang L, Clausen G, Fanger PO (1999) Impact of temperatre and humidity on chemical and sensory emissions from building materials. Indoor Air 9:193–201

    Google Scholar 

  42. Faria P, Bras A (2017) Building physics. In: Jones D, Brischke C (eds) Performance of bio-based building materials. Woodhead Publishing Series in Civil and Structural Engineering, pp 335–344

    Google Scholar 

  43. Faure X (2008) Enveloppe hybride pour bâtiment à haute performance énergétique. Université Joseph Fourier, Grenoble I

    Google Scholar 

  44. Feng C et al (2015) Hygric properties of porous building materials : Analysis of measurement repeatability and reproducibility. Build Environ 85:160–172

    Google Scholar 

  45. De Freitas VP, Abrantes V, Crausse P (1996) Moisture migration in building walls—analysis of the interface phenomena. Build Environ 31:99–108

    Google Scholar 

  46. Gardner W (1958) Some steady state solutions of the unsaturated moisture flow equation with application to evaporation from a water table. Soil Sci 85:228–232

    Google Scholar 

  47. Gemant A (1952) How to compute thermal soil conductivities. Heat Piping Air Cond 24(1):122–123

    Google Scholar 

  48. Goncalves H et al (2014) The influence of porogene additives on the properties of mortars used to control the ambient moisture. Energy Build 74:61–68

    Google Scholar 

  49. Guerra-santin O et al (2013) Monitoring the performance of low energy dwellings : two UK case studies. Energy Build 64:32–40. https://doi.org/10.1016/j.enbuild.2013.04.002

  50. Hagentoft C-EE et al (2004) Assessment method for numerical prediction models for combined heat, air and moisture transfer in building components: benchmarcks for one-dimensional cases. J Therm Envelope Build Sci 27(4):327–351. https://doi.org/10.1177/1097196304042436

    Article  Google Scholar 

  51. Hall MR, Allinson D (2009) Assessing the effects of soil grading on the moisture contentdependent thermal conductivity of stabilised rammed earth materials. Appl Therm Eng 29:740–747

    Google Scholar 

  52. Hall M, Lindsay R, Krayenhoff M (2012) Modern earth buildings 1st Edition Materials, Engineering, Constructions and Applications

    Google Scholar 

  53. Haynes WM, Lide DR, Bruno TJ (2015) Handbook of chemistry and physics. CRC Press

    Google Scholar 

  54. Horoshenkov KV et al (2011) The effect of moisture and soil type on the acoustical properties of green noise control elements. In: Proceedings of forum acusticum 2011, (ii), pp 845–849

    Google Scholar 

  55. IEEE-442 (1981) IEEE Guide for soil thermal resistivity measurements. Institute of Electrical and Electronics Engineers

    Google Scholar 

  56. ISO 11357-1 (2016) Plastics—differential scanning calorimetry (DSC)—Part 1: General principles. International Organization for Standardization

    Google Scholar 

  57. ISO 12571 (2013) Hygrothermal performance of building materials and products—determination of hygroscopic sorption properties. International Organization for Standardization, Geneva, Switzerland, pp 1–22

    Google Scholar 

  58. ISO 12572 (2001) Determination of water vapour transmission properties. International Organization for Standardization, Geneva, Switzerland

    Google Scholar 

  59. ISO 22007-2 (2015) Determination of thermal conductivity and thermal diffusivity—Part 2: Transient plane heat source (hot disc) method. International Organization for Standardization

    Google Scholar 

  60. ISO 8302 (1991) Thermal insulation—determination of steady-state thermal resistance and related properties—Guarded hot plate apparatus. International Organization for Standardization

    Google Scholar 

  61. Irulegi O et al (2014) The Ekihouse : an energy self-sufficient house based on passive design strategies. Energy Build 83:57–69. https://doi.org/10.1016/j.enbuild.2014.03.077

  62. Jacobson MZ (1999) Fundamentals of atmospheric modeling. Cambridge University Press

    MATH  Google Scholar 

  63. Kedowide Y (2015) Analyses expérimentales et numériques du comportement hygrothermique d’une paroi composée de matériaux fortement hygroscopiques. Université Savoie Mont-Blanc

    Google Scholar 

  64. Kwiatkowski J, Woloszyn M, Roux J-J (2009) Modelling of hysteresis influence on mass transfer in building materials. Build Environ 44:633–642

    Google Scholar 

  65. Künzel HM (1995) Simultaneous heat and moisture transport in building components. Fraunhofer IRB Verlag Suttgart

    Google Scholar 

  66. Künzel HM, Gertis EHMK (1995) Simultaneous heat and moisture transport in building components One-and two-dimensional calculation using simple parameters. Fraunhofer IRB Verlag Suttgart

    Google Scholar 

  67. Labarta G (2015) Rammed earth as a construction buiding material. Warsaw University of Technology

    Google Scholar 

  68. Labat M et al (2016) From the experimental characterisation of the hygrothermal properties of straw-cvlay mixtures to the numerical assessment of their bu ering potential. Build Environ 97:69–81

    Google Scholar 

  69. Labat M, Woloszyn M (2016) Moisture balance assessment at room scale for four cases based on numerical simulations of heat–air–moisture transfers for a realistic occupancy scenario. J Build Performance Simulation 9:487–509

    Google Scholar 

  70. Latif E et al (2016) In situ assessment of the fabric and energy performance of five conventional and non-conventional wall systems using comparative coheating tests. Build Environ 109:68–81. https://doi.org/10.1016/j.buildenv.2016.09.017

    Article  Google Scholar 

  71. Laurent J (1986) Contribution à la caractérisation thermique des milieux poreux granulaires. Institut National Polytechnique, Grenoble

    Google Scholar 

  72. Lelievre D, Colinart T, Glouannec P (2014) Hygrothermal behavior of bio-based building materials including hysteresis effects: experimental and numerical analyses. Energy Build 84:617–627

    Google Scholar 

  73. Liuzzi S et al (2013) Hygrothermal behaviour and relative humidity buffering of unfired and hydrated lime-stabilised clay composites in a Mediterranean climate. Build Environ 61:82–92

    Google Scholar 

  74. McGregor F et al (2017) Impact of the surface film resistance on the hygric properties of clay plasters. Mater Struct 50:193

    Google Scholar 

  75. McGregor F, Heath A, Shea A (2014) The moisture buffering capacity of unfiered clay masonry. Build Environ 82:207–599

    Google Scholar 

  76. McGregor F et al (2014) The moisture buffering capacity of unfired clay masonry. Build Environ 82. https://doi.org/10.1016/j.buildenv.2014.09.027

  77. McGregor F et al (2016) A review on the buffering capacity of earth building materials 169(5). https://doi.org/10.1680/jcoma.15.00035

  78. McQuarrie M (1954) Thermal conductivity: VII, Analysis of variation of conductivity with temperature for Al2O3, BeO, and MgO. J Am Ceramic Soc 37:91–95

    Google Scholar 

  79. Medjelekh D et al (2014) Mesure et modélisation des transferts hygrothermiques d’une enveloppe en béton de bois. IBPSA 2014:1–8

    Google Scholar 

  80. Midttomme K, Roaldset E, Aagaard P (1998) Thermal conductivity of selected claystones and mudstones from England. Clay Miner 33:131–145

    Google Scholar 

  81. Minke G (2012) Building with earth: design and technology of a sustainable architecture. Birkhäuser—Publishers for Architecture

    Google Scholar 

  82. Mwaba MG et al (2006) Experimental investigation of CaSO4 crystallization on a flat plate. Heat Transfer Eng 27(3):42–54

    Google Scholar 

  83. Osborn P (2013) Handbook of energy data and calculations. Butterworth

    Google Scholar 

  84. Osselin F et al (2015) ‘Experimental investigation of the influence of supercritical state on the relative permeability of Vosges sandstone’, Comptes Rendus - Mecanique. Elsevier Masson SAS 343(9):495–502. https://doi.org/10.1016/j.crme.2015.06.009

    Article  Google Scholar 

  85. Oti JE, Kinuthia JM, Bai J (2010) Design thermal values for unfired clay bricks. Mater Des 31:104–112

    Google Scholar 

  86. Oumeziane YA et al (2016) Influence of temperature on sorption process in hemp concrete. Constr Build Mater 106:600–607

    Google Scholar 

  87. Pellenq RJM et al (2009) Simple model for phase transition in confined geometry. 2: Capillary condensation/evaporation in cylindrical pores. Langmuir 25:1393–1402

    Google Scholar 

  88. Peng C, Wu Z (2008) In situ measuring and evaluating the thermal resistance of building construction. Energy Build 40:2076–2082. https://doi.org/10.1016/j.enbuild.2008.05.012

    Article  Google Scholar 

  89. Piot A et al (2011) Experimental wooden frame house for the validation of whole building heat and moisture transfer numerical models. Energy Build 43(6):1322–1328

    Google Scholar 

  90. Pusch R, Young R (2006) Microstructure of Smectite and engineering performance. Taylor & Francis Group, London

    Google Scholar 

  91. Ridley I et al (2013) The monitored performance of the first new London dwelling certified to the Passive House standard. Energy Build 63:67–78. https://doi.org/10.1016/j.enbuild.2013.03.052

  92. Ridley I et al (no date) The side by side in use monitored performance of two passive and low carbon Welsh houses. Energy Build 82(2014):13–26. https://doi.org/10.1016/j.enbuild.2014.06.038

  93. Rincón L et al (2015) Experimental rammed earth prototypes in Mediterranean climate. In: Mileto V, Soriano G (eds) Earthen architecture: past, present and future. Taylor & Francis, London, pp 311–316

    Google Scholar 

  94. Rode C et al (2005) Nordic Innovation Centre: moisture buffer value of building materials. Technical Report of the Technical University of Denmark

    Google Scholar 

  95. Roels S et al (2004) Interlaboratory comparison of hygric properties of porous building materials. J Thermal Envelope Build Sci 27(4):307–325. https://doi.org/10.1177/1097196304042119

  96. Scheffler G, Grunewald J (2003) Material development and optimisation supported by numerical simulation for a capillary-active inside insulation material. In: Vermeir GLG, Hens H, Carmeliet J (eds) Research in building physics—proceedings of the 2nd CIB co-sponsored international conference on building physics. In-house Publishing

    Google Scholar 

  97. Schroeder H (2010) Lehmbau. Vieweg+Teubner, Wiesbaden

    Google Scholar 

  98. Shea A, Beadle K, Walker P (2010) Dynamic simulation and full-scale testing of a pre-fabricated straw-bale house. ICSBE 2010:101–107

    Google Scholar 

  99. Shea A, Lawrence M, Walker P (2012) Hygrothermal performance of an experimental hemp—lime building Construction and Building Materials. Constr Build Mater 36:270–275. https://doi.org/10.1016/j.conbuildmat.2012.04.123

    Article  Google Scholar 

  100. Soebarto V (2009) Analysis of indoor performance of houses using rammed earth walls. In: Eleventh international IBPSA conference. Glasgow

    Google Scholar 

  101. Soudani L, Fabbri A et al (2016) Assessment of the validity of some common assumptions in hygrothermal modeling of earth based materials. Energy Build 116:498–511

    Google Scholar 

  102. Soudani L, Woloszyn M, Fabbri A, Morel JC, Grillet AC (2017) Energy evaluation of rammed earth walls using long term in-situ measurements. Sol Energy 141:70–80. https://doi.org/10.1016/j.solener.2016.11.002

  103. Stefanoiu AM et al (2016) Comparison between the design phase and the real behavioral measurements of an Energy Efficient Building. In: IBPSA France, pp 1–8

    Google Scholar 

  104. Svennberg K (2006) Moisture buffering in the indoor environment. Lund University, LTH

    Google Scholar 

  105. Taylor P, Fuller RJ, Luther MB (2008) Energy use and thermal comfort in a rammed earth office building. Energy Build 40:793–800

    Google Scholar 

  106. Taylor P, Luther MB (2004) Evaluating rammed earth walls: a case study. Sol Energy 76(1–3):79–84. https://doi.org/10.1016/j.solener.2003.08.026

    Article  Google Scholar 

  107. Vereecken E, Roels S (2013) Hygric performance of a massive masonry wall: how do the mortar joints influence the moisture flux? Constr Build Mater 41:697–707

    Google Scholar 

  108. Volhard F (1983) Leichtlehmbau: alter Baustoff - neue Technik. Karlsruhe

    Google Scholar 

  109. Volhard F (2016) Construire en terre allégée. Actes Sud

    Google Scholar 

  110. Vololonirina O, Perrin B (2016) Inquiries into the measurement of vapour permeability of permeable materials’, Construction and Building Materials. Constr Build Mater 102:338–348. https://doi.org/10.1016/j.conbuildmat.2015.10.126

    Article  Google Scholar 

  111. De Vries DA (1952) The thermal conductivity of soil. Mededelingen van de Landbouwhogeschool te Wageningen 52(1):1–73

    Google Scholar 

  112. Vries DA, Kruger AJ (1966) On the value of the diffusion coefficient of water vapour in air. Phénoménes de transport avec changement de phase dans les milieux poreux ou colloïdaux, pp 561–572

    Google Scholar 

  113. Walker P et al (2004) Rammed Earth: design and construction guidelines. In: Innovation Project: “Developing Rammed Earth for UK Housing”

    Google Scholar 

  114. Zhou A-N (2013) A contact angle-dependent hysteresis model for soil-water retention behaviour. Comput Geotech 49:36–42

    Google Scholar 

  115. Zillig W et al (2006) Liquid water transport in wood : towards a mesoscopic approach. In: Fazio P, Ge H, Rao J, Desmarais G (eds) Research in building physics engineering. CRC Press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonin Fabbri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 RILEM

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fabbri, A. et al. (2022). Hygrothermal and Acoustic Assessment of Earthen Materials. In: Fabbri, A., Morel, JC., Aubert, JE., Bui, QB., Gallipoli, D., Reddy, B.V. (eds) Testing and Characterisation of Earth-based Building Materials and Elements. RILEM State-of-the-Art Reports, vol 35. Springer, Cham. https://doi.org/10.1007/978-3-030-83297-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83297-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83296-4

  • Online ISBN: 978-3-030-83297-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics