Skip to main content

Computerized Detection of Lesions in Diagnostic Images with Early Deep Learning Models

  • Chapter
  • First Online:
Machine and Deep Learning in Oncology, Medical Physics and Radiology
  • 1334 Accesses

Abstract

Computer-aided detection (CADe) and diagnosis (CADx) have been active research areas in medical imaging. As imaging technologies advance, a large number of medical images are produced which physicians/radiologists must read. They may overlook lesions from such a large number of medical images. Consequently, CADe that provides suspicious lesions with radiologists/physicians is developed and becoming indispensable in their decision-making to prevent them from overlooking lesions. Machine learning (ML) plays an essential role in CADe and CADx, because lesions and organs in medical images may be too complex to be represented accurately by a simple equation; modeling of such complex objects often requires a number of parameters that have to be determined by data. In this chapter, ML techniques (feature-based ML) and early deep learning models (called massive-training artificial neural networks (MTANNs)) used in CADe and CADx schemes for lung nodules in chest radiography and thoracic CT and those for the detection of polyps in CTC are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Doi K. Current status and future potential of computer-aided diagnosis in medical imaging. Br J Radiol. 2005;78(Spec No 1): S3–19.

    Google Scholar 

  2. Doi K. Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput Med Imaging Graph. 2007;31:198–211.

    Article  Google Scholar 

  3. Giger ML, Chan HP, Boone J. Anniversary paper: history and status of CAD and quantitative image analysis: the role of Medical Physics and AAPM. Med Phys. 2008;35:5799–820.

    Article  Google Scholar 

  4. Giger ML, Suzuki K. Computer-aided diagnosis (CAD). In: Feng DD, editor. Biomedical information technology. San Diego: Academic Press; 2007. p. 359–74.

    Google Scholar 

  5. Chan HP, Sahiner B, Helvie MA, Petrick N, Roubidoux MA, Wilson TE, Adler DD, Paramagul C, Newman JS, Sanjay-Gopal S. Improvement of radiologists’ characterization of mammographic masses by using computer-aided diagnosis: an ROC study. Radiology. 1999;212:817–27.

    Article  Google Scholar 

  6. Dachman AH, Obuchowski NA, Hoffmeister JW, Hinshaw JL, Frew MI, Winter TC, Van Uitert RL, Periaswamy S, Summers RM, Hillman BJ. Effect of computer-aided detection for CT colonography in a multireader, multicase trial. Radiology. 2010;256:827–35. https://doi.org/10.1148/radiol.10091890.

    Article  Google Scholar 

  7. Dean JC, Ilvento CC. Improved cancer detection using computer-aided detection with diagnostic and screening mammography: prospective study of 104 cancers. AJR Am J Roentgenol. 2006;187:20–8.

    Article  Google Scholar 

  8. Li F, Aoyama M, Shiraishi J, Abe H, Li Q, Suzuki K, Engelmann R, Sone S, Macmahon H, Doi K. Radiologists’ performance for differentiating benign from malignant lung nodules on high-resolution CT using computer-estimated likelihood of malignancy. AJR Am J Roentgenol. 2004;183:1209–15.

    Article  Google Scholar 

  9. Li F, Arimura H, Suzuki K, Shiraishi J, Li Q, Abe H, Engelmann R, Sone S, MacMahon H, Doi K. Computer-aided detection of peripheral lung cancers missed at CT: ROC analyses without and with localization. Radiology. 2005;237:684–90.

    Article  Google Scholar 

  10. Petrick N, Haider M, Summers RM, Yeshwant SC, Brown L, Iuliano EM, Louie A, Choi JR, Pickhardt PJ. CT colonography with computer-aided detection as a second reader: observer performance study. Radiology. 2008;246:148–56.

    Article  Google Scholar 

  11. Suzuki K, Hori M, McFarland E, Friedman AC, Rockey DC, Dachman AH. Can CAD help improve the performance of radiologists in detection of difficult polyps in CT colonography? In: Proceedings of RSNA annual meeting, Chicago; 2009. p. 872.

    Google Scholar 

  12. Giger ML, Doi K, MacMahon H. Image feature analysis and computer-aided diagnosis in digital radiography. 3. Automated detection of nodules in peripheral lung fields. Med Phys. 1988;15:158–66.

    Article  Google Scholar 

  13. Suzuki K, Shiraishi J, Abe H, MacMahon H, Doi K. False-positive reduction in computer-aided diagnostic scheme for detecting nodules in chest radiographs by means of massive training artificial neural network. Acad Radiol. 2005;12:191–201.

    Article  Google Scholar 

  14. van Ginneken B, ter Haar Romeny BM, Viergever MA. Computer-aided diagnosis in chest radiography: a survey. IEEE Trans Med Imaging. 2001;20:1228–41.

    Article  Google Scholar 

  15. Arimura H, Katsuragawa S, Suzuki K, Li F, Shiraishi J, Sone S, Doi K. Computerized scheme for automated detection of lung nodules in low-dose computed tomography images for lung cancer screening. Acad Radiol. 2004;11:617–29.

    Article  Google Scholar 

  16. Armato SG 3rd, Li F, Giger ML, MacMahon H, Sone S, Doi K. Lung cancer: performance of automated lung nodule detection applied to cancers missed in a CT screening program. Radiology. 2002;225:685–92.

    Article  Google Scholar 

  17. Suzuki K, Armato SG, Li F, Sone S, Doi K. Massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose CT. Med Phys. 2003;30:1602–17.

    Article  Google Scholar 

  18. Chan HP, Doi K, Galhotra S, Vyborny CJ, MacMahon H, Jokich PM. Image feature analysis and computer-aided diagnosis in digital radiography. I. Automated detection of microcalcifications in mammography. Med Phys. 1987;14:538–48.

    Article  Google Scholar 

  19. Gilhuijs KG, Giger ML, Bick U. Computerized analysis of breast lesions in three dimensions using dynamic magnetic-resonance imaging. Med Phys. 1998;25:1647–54.

    Article  Google Scholar 

  20. Drukker K, Giger ML, Metz CE. Robustness of computerized lesion detection and classification scheme across different breast US platforms. Radiology. 2005;237:834–40.

    Article  Google Scholar 

  21. Summers RM, Beaulieu CF, Pusanik LM, Malley JD, Jeffrey RB Jr, Glazer DI, Napel S. Automated polyp detector for CT colonography: feasibility study. Radiology. 2000;216:284–90.

    Article  Google Scholar 

  22. Suzuki K, Yoshida H, Nappi J, Armato SG 3rd, Dachman AH. Mixture of expert 3D massive-training ANNs for reduction of multiple types of false positives in CAD for detection of polyps in CT colonography. Med Phys. 2008;35:694–703.

    Article  Google Scholar 

  23. Suzuki K, Yoshida H, Nappi J, Dachman AH. Massive-training artificial neural network (MTANN) for reduction of false positives in computer-aided detection of polyps: Suppression of rectal tubes. Med Phys. 2006;33:3814–24.

    Article  Google Scholar 

  24. Suzuki K. Pixel-based Machine Learning (PML) in medical imaging. Int J Biomed Imaging. 2012;2012:792079, 18p.

    Google Scholar 

  25. Suzuki K. A review of computer-aided diagnosis in thoracic and colonic imaging. Quant Imaging Med Surg. 2012;2:163–76. https://doi.org/10.3978/j.issn.2223-4292.2012.09.02.

    Article  Google Scholar 

  26. Suzuki K. Machine learning in computer-aided diagnosis of the thorax and colon in CT: a survey. IEICE Trans Inf Syst. 2013;E96-D:772–83.

    Article  ADS  Google Scholar 

  27. Li F, Sone S, Abe H, MacMahon H, Armato SG 3rd, Doi K. Lung cancers missed at low-dose helical CT screening in a general population: comparison of clinical, histopathologic, and imaging findings. Radiology. 2002;225:673–83.

    Article  Google Scholar 

  28. Lostumbo A, Wanamaker C, Tsai J, Suzuki K, Dachman AH. Comparison of 2D and 3D views for evaluation of flat lesions in CT colonography. Acad Radiol. 2010;17:39–47. https://doi.org/10.1016/j.acra.2009.07.004. pii: S1076-6332(09)00400-0.

    Article  Google Scholar 

  29. Soetikno RM, Kaltenbach T, Rouse RV, Park W, Maheshwari A, Sato T, Matsui S, Friedland S. Prevalence of nonpolypoid (flat and depressed) colorectal neoplasms in asymptomatic and symptomatic adults. JAMA. 2008;299:1027–35.

    Article  Google Scholar 

  30. Shen D, Wu G, Zhang D, Suzuki K, Wang F, Yan P. Machine learning in medical imaging. Comput Med Imaging Graph. 2015;41:1–2. https://doi.org/10.1016/j.compmedimag.2015.02.001.

    Article  Google Scholar 

  31. Suzuki K, Zhou L, Wang Q. Machine learning in medical imaging. Pattern Recognit. 2017;63:465–7. https://doi.org/10.1016/j.patcog.2016.10.020.

    Article  ADS  Google Scholar 

  32. Yan P, Suzuki K, Wang F, Shen D. Machine learning in medical imaging. Mach Vis Appl. 2013;24:1327–9. https://doi.org/10.1007/s00138-013-0543-8.

    Article  Google Scholar 

  33. Shen D, Wu G, Zhang D, Yan P, Suzuki K, Wang F. Machine learning in medical imaging. Comput Med Imaging Graph. 2014;41:1–2.

    Article  Google Scholar 

  34. Suzuki K. Machine learning for medical imaging. Algorithms; 2010.

    Google Scholar 

  35. Suzuki K. Machine learning for medical imaging 2012. Algorithms; 2012.

    Google Scholar 

  36. Suzuki K, Yan P, Wang F, Shen D. Machine learning in medical imaging. Int J Biomed Imaging. 2012;2012:123727. https://doi.org/10.1155/2012/123727.

    Article  Google Scholar 

  37. Yan P, Suzuki K, Wang F, Shen D. Machine learning in medical imaging. Mach Vis Appl. 2012;24:1327.

    Article  Google Scholar 

  38. Suzuki K, Wang F, Shen D, Yan P. Machine learning in medical imaging (MLMI). Lecture notes in computer science, vol. 7009. Berlin: Springer; 2011. p. 355.

    Book  Google Scholar 

  39. Wang F, Shen D, Yan P, Suzuki K. Machine learning in medical imaging (MLMI). Lecture notes in computer science, vol. 7588. Berlin: Springer; 2012. p. 276.

    Book  Google Scholar 

  40. Wang F, Yan P, Suzuki K, Shen D. Machine learning in medical imaging (MLMI). Lecture notes in computer science, vol. 6357. Berlin: Springer; 2010. p. 192.

    Book  Google Scholar 

  41. Wu G, Zhang D, Shen D, Yan P, Suzuki K, Wang F. Machine learning in medical imaging (MLMI). Lecture notes in computer science, vol. 8184. Berlin: Springer; 2013. p. 262.

    Book  Google Scholar 

  42. Duda RO, Hart PE, Stork DG. Pattern recognition. 2nd ed. Hoboken: Wiley Interscience; 2001.

    MATH  Google Scholar 

  43. Fukunaga K. Introduction to statistical pattern recognition. 2nd ed. San Diego: Academic Press; 1990.

    MATH  Google Scholar 

  44. Rumelhart DE, Hinton GE, Williams RJ. Learning internal representations by error propagation. Parallel Distrib Process. 1986;1:318–62.

    Google Scholar 

  45. Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature. 1986;323:533–6.

    Article  MATH  ADS  Google Scholar 

  46. Vapnik VN. The nature of statistical learning theory. Berlin: Springer; 1995.

    Book  MATH  Google Scholar 

  47. Vapnik VN. Statistical learning theory. New York: Wiley; 1998.

    MATH  Google Scholar 

  48. Chen S, Suzuki K, MacMahon H. A computer-aided diagnostic scheme for lung nodule detection in chest radiographs by means of two-stage nodule-enhancement with support vector classification. Med Phys. 2011;38:1844–58.

    Article  Google Scholar 

  49. Coppini G, Diciotti S, Falchini M, Villari N, Valli G. Neural networks for computer-aided diagnosis: detection of lung nodules in chest radiograms. IEEE Trans Inf Technol Biomed. 2003;7:344–57.

    Article  Google Scholar 

  50. Hardie RC, Rogers SK, Wilson T, Rogers A. Performance analysis of a new computer aided detection system for identifying lung nodules on chest radiographs. Med Image Anal. 2008;12:240–58. https://doi.org/10.1016/j.media.2007.10.004. pii: S1361-8415(07)00103-X.

    Article  Google Scholar 

  51. Shiraishi J, Li Q, Suzuki K, Engelmann R, Doi K. Computer-aided diagnostic scheme for the detection of lung nodules on chest radiographs: localized search method based on anatomical classification. Med Phys. 2006;33:2642–53.

    Article  Google Scholar 

  52. Armato SG 3rd, Giger ML, MacMahon H. Automated detection of lung nodules in CT scans: preliminary results. Med Phys. 2001;28:1552–61.

    Article  Google Scholar 

  53. Way TW, Sahiner B, Chan HP, Hadjiiski L, Cascade PN, Chughtai A, Bogot N, Kazerooni E. Computer-aided diagnosis of pulmonary nodules on CT scans: improvement of classification performance with nodule surface features. Med Phys. 2009;36:3086–98.

    Article  Google Scholar 

  54. Ye X, Lin X, Dehmeshki J, Slabaugh G, Beddoe G. Shape-based computer-aided detection of lung nodules in thoracic CT images. IEEE Trans Biomed Eng. 2009;56:1810–20. https://doi.org/10.1109/TBME.2009.2017027.

    Article  Google Scholar 

  55. El-Naqa I, Yang Y, Wernick MN, Galatsanos NP, Nishikawa RM. A support vector machine approach for detection of microcalcifications. IEEE Trans Med Imaging. 2002;21:1552–63.

    Article  Google Scholar 

  56. Ge J, Sahiner B, Hadjiiski LM, Chan HP, Wei J, Helvie MA, Zhou C. Computer aided detection of clusters of microcalcifications on full field digital mammograms. Med Phys. 2006;33:2975–88.

    Article  Google Scholar 

  57. Wu Y, Doi K, Giger ML, Nishikawa RM. Computerized detection of clustered microcalcifications in digital mammograms: applications of artificial neural networks. Med Phys. 1992;19:555–60.

    Article  Google Scholar 

  58. Yu SN, Li KY, Huang YK. Detection of microcalcifications in digital mammograms using wavelet filter and Markov random field model. Comput Med Imaging Graph. 2006;30:163–73.

    Article  Google Scholar 

  59. Wu YT, Wei J, Hadjiiski LM, Sahiner B, Zhou C, Ge J, Shi J, Zhang Y, Chan HP. Bilateral analysis based false positive reduction for computer-aided mass detection. Med Phys. 2007;34:3334–44.

    Article  Google Scholar 

  60. Jerebko AK, Summers RM, Malley JD, Franaszek M, Johnson CD. Computer-assisted detection of colonic polyps with CT colonography using neural networks and binary classification trees. Med Phys. 2003;30:52–60.

    Article  Google Scholar 

  61. Wang S, Yao J, Summers RM. Improved classifier for computer-aided polyp detection in CT colonography by nonlinear dimensionality reduction. Med Phys. 2008;35:1377–86.

    Article  Google Scholar 

  62. Yoshida H, Nappi J. Three-dimensional computer-aided diagnosis scheme for detection of colonic polyps. IEEE Trans Med Imaging. 2001;20:1261–74.

    Article  Google Scholar 

  63. Muramatsu C, Li Q, Schmidt R, Suzuki K, Shiraishi J, Newstead G, Doi K. Experimental determination of subjective similarity for pairs of clustered microcalcifications on mammograms: observer study results. Med Phys. 2006;33:3460–8.

    Article  Google Scholar 

  64. Muramatsu C, Li Q, Schmidt RA, Shiraishi J, Suzuki K, Newstead GM, Doi K. Determination of subjective similarity for pairs of masses and pairs of clustered microcalcifications on mammograms: comparison of similarity ranking scores and absolute similarity ratings. Med Phys. 2007;34:2890–5.

    Article  Google Scholar 

  65. Muramatsu C, Li Q, Suzuki K, Schmidt RA, Shiraishi J, Newstead GM, Doi K. Investigation of psychophysical measure for evaluation of similar images for mammographic masses: preliminary results. Med Phys. 2005;32:2295–304.

    Article  Google Scholar 

  66. Arimura H, Li Q, Korogi Y, Hirai T, Katsuragawa S, Yamashita Y, Tsuchiya K, Doi K. Computerized detection of intracranial aneurysms for three-dimensional MR angiography: feature extraction of small protrusions based on a shape-based difference image technique. Med Phys. 2006;33:394–401.

    Article  Google Scholar 

  67. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44. https://doi.org/10.1038/nature14539.

    Article  ADS  Google Scholar 

  68. Suzuki K. Overview of deep learning in medical imaging. Radiol Phys Technol. 2017;10:257–73. https://doi.org/10.1007/s12194-017-0406-5.

    Article  Google Scholar 

  69. Suzuki K. Survey of deep learning applications to medical image analysis. Med Imaging Technol. 2017;35:212–26.

    Google Scholar 

  70. Lawrence S, Giles CL, Tsoi AC, Back AD. Face recognition: a convolutional neural-network approach. IEEE Trans Neural Netw. 1997;8:98–113.

    Article  Google Scholar 

  71. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst. 2012;25:1097–105.

    Google Scholar 

  72. Suzuki K, Doi K. Massive training artificial neural network (MTANN) for detecting abnormalities in medical images. United States Patent; 2002.

    Google Scholar 

  73. Suzuki K, Armato SG 3rd, Li F, Sone S, Doi K. Massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose computed tomography. Med Phys. 2003;30:1602–17.

    Article  Google Scholar 

  74. Suzuki K. A supervised ‘lesion-enhancement’ filter by use of a massive-training artificial neural network (MTANN) in computer-aided diagnosis (CAD). Phys Med Biol. 2009;54:S31–45. https://doi.org/10.1088/0031-9155/54/18/S03. pii: S0031-9155(09)14266-5.

    Article  ADS  Google Scholar 

  75. Suzuki K, Abe H, Li F, Doi K. Suppression of the contrast of ribs in chest radiographs by means of massive training artificial neural network. In: Proceedings of SPIE medical imaging (SPIE MI), San Diego; 2004, p. 1109–9.

    Google Scholar 

  76. Suzuki K, Abe H, MacMahon H, Doi K. Image-processing technique for suppressing ribs in chest radiographs by means of massive training artificial neural network (MTANN). IEEE Trans Med Imaging. 2006;25:406–16. https://doi.org/10.1109/TMI.2006.871549.

    Article  Google Scholar 

  77. Suzuki K, Liu Y, Higaki T, Funama Y, Awai K. Supervised conversion of ultra-low-dose to higher-dose CT images by using pixel-based machine learning: phantom and initial patient studies. In: Program of scientific assembly and annual meeting of Radiological Society of North America (RSNA), SST14-06, Chicago, vol. SST14-06; 2013.

    Google Scholar 

  78. He L, Chao YKS, Yu Q, Tang W, Shi Z. An algorithm for labeling connected components and holes. Am J Eng Technol Res. 2011;11:2149–54.

    Google Scholar 

  79. He L, Chao Y, Suzuki K. A run-based two-scan labeling algorithm. IEEE Trans Image Process. 2008;17:749–56. https://doi.org/10.1109/TIP.2008.919369.

    Article  MathSciNet  ADS  Google Scholar 

  80. He L, Chao Y, Suzuki K. Two efficient label-equivalence-based connected-component labeling algorithms for 3-D binary images. IEEE Trans Image Process. 2011;20:2122–34. https://doi.org/10.1109/TIP.2011.2114352.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  81. He L, Chao Y, Suzuki K. A new first-scan method for two-scan labeling algorithms. In: Computer-aided diagnosis systems for lung cancer, vol. E95-D; 2012. p. 2142–5.

    Google Scholar 

  82. He L, Chao Y, Suzuki K. Configuration-transition-based connected-component labeling. IEEE Trans Image Process. 2014;23:943–51. https://doi.org/10.1109/TIP.2013.2289968.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  83. He L, Chao Y, Suzuki K, Nakamura T. A new first-scan strategy for raster-scan-based labeling algorithms. J Inf Process Soc Jpn. 2011;52:1813–9.

    Google Scholar 

  84. He L, Chao Y, Suzuki K, Wu K. Fast connected-component labeling. Pattern Recognit. 2009;42:1977–87.

    Article  MATH  ADS  Google Scholar 

  85. He L, Chao Y, Yang Y, Li S, Zhao X, Suzuki K. A novel two-scan connected-component labeling algorithm. IAENG Trans Eng Technol. 2013:445–59.

    Google Scholar 

  86. Suzuki K, Horiba I, Sugie N. Linear-time connected-component labeling based on sequential local operations. Comput Vis Image Understand. 2003;89:1–23.

    Article  MATH  Google Scholar 

  87. Suzuki K. Determining the receptive field of a neural filter. J Neural Eng. 2004;1:228–37. https://doi.org/10.1088/1741-2560/1/4/006. pii: S1741-2560(04)85485-5.

    Article  Google Scholar 

  88. Suzuki K, Horiba I, Sugie N. A simple neural network pruning algorithm with application to filter synthesis. Neural Process Lett. 2001;13:43–53.

    Article  MATH  Google Scholar 

  89. Xu J-W, Suzuki K. Max-AUC feature selection in computer-aided detection of polyps in CT colonography. IEEE J Biomed Health Inform. 2014;18:585–93. https://doi.org/10.1109/JBHI.2013.2278023.

    Article  Google Scholar 

  90. Bishop CM. Neural networks for pattern recognition. New York: Oxford University Press; 1995.

    MATH  Google Scholar 

  91. Lin JS, Lo SB, Hasegawa A, Freedman MT, Mun SK. Reduction of false positives in lung nodule detection using a two-level neural classification. IEEE Trans Med Imaging. 1996;15:206–17. https://doi.org/10.1109/42.491422.

    Article  Google Scholar 

  92. Lo SB, Lou SA, Lin JS, Freedman MT, Chien MV, Mun SK. Artificial convolution neural network techniques and applications for lung nodule detection. IEEE Trans Med Imaging. 1995;14:711–8. https://doi.org/10.1109/42.476112.

    Article  Google Scholar 

  93. Lo SC, Li H, Wang Y, Kinnard L, Freedman MT. A multiple circular path convolution neural network system for detection of mammographic masses. IEEE Trans Med Imaging. 2002;21:150–8. https://doi.org/10.1109/42.993133.

    Article  Google Scholar 

  94. Lo SCB, Chan HP, Lin JS, Li H, Freedman MT, Mun SK. Artificial convolution neural network for medical image pattern recognition. Neural Netw. 1995;8:1201–14.

    Article  Google Scholar 

  95. Neubauer C. Evaluation of convolutional neural networks for visual recognition. IEEE Trans Neural Netw. 1998;9:685–96.

    Article  Google Scholar 

  96. Sahiner B, Chan HP, Petrick N, Wei D, Helvie MA, Adler DD, Goodsitt MM. Classification of mass and normal breast tissue: a convolution neural network classifier with spatial domain and texture images. IEEE Trans Med Imaging. 1996;15:598–610. https://doi.org/10.1109/42.538937.

    Article  Google Scholar 

  97. Wei D, Nishikawa RM, Doi K. Application of texture analysis and shift-invariant artificial neural network to microcalcification cluster detection. Radiology. 1996;201:696.

    Google Scholar 

  98. Zhang W, Doi K, Giger ML, Nishikawa RM, Schmidt RA. An improved shift-invariant artificial neural network for computerized detection of clustered microcalcifications in digital mammograms. Med Phys. 1996;23:595–601.

    Article  Google Scholar 

  99. Zhang W, Doi K, Giger ML, Wu Y, Nishikawa RM, Schmidt RA. Computerized detection of clustered microcalcifications in digital mammograms using a shift-invariant artificial neural network. Med Phys. 1994;21:517–24.

    Article  Google Scholar 

  100. Suzuki K, Horiba I, Sugie N. Efficient approximation of neural filters for removing quantum noise from images. IEEE Trans Signal Process. 2002;50:1787–99.

    Article  ADS  Google Scholar 

  101. Suzuki K, Horiba I, Sugie N, Nanki M. Neural filter with selection of input features and its application to image quality improvement of medical image sequences. IEICE Trans Inf Syst. 2002;E85-D:1710–8.

    Google Scholar 

  102. Suzuki K, Horiba I, Sugie N. Neural edge enhancer for supervised edge enhancement from noisy images. IEEE Trans Pattern Anal Mach Intell. 2003;25:1582–96.

    Article  Google Scholar 

  103. Suzuki K, Horiba I, Sugie N, Nanki M. Extraction of left ventricular contours from left ventriculograms by means of a neural edge detector. IEEE Trans Med Imaging. 2004;23:330–9.

    Article  Google Scholar 

  104. Oda S, Awai K, Suzuki K, Yanaga Y, Funama Y, MacMahon H, Yamashita Y. Performance of radiologists in detection of small pulmonary nodules on chest radiographs: effect of rib suppression with a massive-training artificial neural network. AJR Am J Roentgenol. 2009;193:W397–402. https://doi.org/10.2214/AJR.09.2431. pii: 193/5/W397.

    Article  Google Scholar 

  105. Suzuki K, Li F, Sone S, Doi K. Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural network. IEEE Trans Med Imaging. 2005;24:1138–50.

    Article  Google Scholar 

  106. Suzuki K, Rockey DC, Dachman AH. CT colonography: advanced computer-aided detection scheme utilizing MTANNs for detection of “missed” polyps in a multicenter clinical trial. Med Phys. 2010;37:12–21.

    Article  Google Scholar 

  107. Suzuki K, Zhang J, Xu J. Massive-training artificial neural network coupled with Laplacian-eigenfunction-based dimensionality reduction for computer-aided detection of polyps in CT colonography. IEEE Trans Med Imaging. 2010;29:1907–17. https://doi.org/10.1109/TMI.2010.2053213.

    Article  Google Scholar 

  108. Xu J, Suzuki K. Massive-training support vector regression and Gaussian process for false-positive reduction in computer-aided detection of polyps in CT colonography. Med Phys. 2011;38:1888–902.

    Article  Google Scholar 

  109. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–40.

    Google Scholar 

  110. Chen S, Suzuki K. Computerized detection of lung nodules by means of “virtual dual-energy” radiography. IEEE Trans Biomed Eng. 2013;60:369–78. https://doi.org/10.1109/TBME.2012.2226583.

    Article  Google Scholar 

  111. Chen S, Suzuki K. Separation of bones from chest radiographs by means of anatomically specific multiple massive-training ANNs combined with total variation minimization smoothing. IEEE Trans Med Imaging. 2014;33:246–57. https://doi.org/10.1109/TMI.2013.2284016.

    Article  Google Scholar 

  112. Chen S, Zhong S, Yao L, Shang Y, Suzuki K. Enhancement of chest radiographs obtained in the intensive care unit through bone suppression and consistent processing. Phys Med Biol. 2016;61:2283–301. https://doi.org/10.1088/0031-9155/61/6/2283.

    Article  Google Scholar 

  113. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: MICCAI international conference on medical image computing and computer-assisted intervention. New York: Springer; 2015. p. 234–41.

    Google Scholar 

  114. Henschke CI, McCauley DI, Yankelevitz DF, Naidich DP, McGuinness G, Miettinen OS, Libby DM, Pasmantier MW, Koizumi J, Altorki NK, Smith JP. Early Lung Cancer Action Project: overall design and findings from baseline screening. Lancet. 1999;354:99–105.

    Article  Google Scholar 

  115. Kaneko M, Eguchi K, Ohmatsu H, Kakinuma R, Naruke T, Suemasu K, Moriyama N. Peripheral lung cancer: screening and detection with low-dose spiral CT versus radiography. Radiology. 1996;201:798–802.

    Article  Google Scholar 

  116. Miettinen OS, Henschke CI. CT screening for lung cancer: coping with nihilistic recommendations. Radiology. 2001;221:592–6.

    Article  Google Scholar 

  117. Sone S, Takashima S, Li F, Yang Z, Honda T, Maruyama Y, Hasegawa M, Yamanda T, Kubo K, Hanamura K, Asakura K. Mass screening for lung cancer with mobile spiral computed tomography scanner. Lancet. 1998;351:1242–5.

    Article  Google Scholar 

  118. Henschke CI, Yankelevitz DF, Naidich DP, McCauley DI, McGuinness G, Libby DM, Smith JP, Pasmantier MW, Miettinen OS. CT screening for lung cancer: suspiciousness of nodules according to size on baseline scans. Radiology. 2004;231:164–8.

    Article  Google Scholar 

  119. Swensen SJ, Jett JR, Hartman TE, Midthun DE, Sloan JA, Sykes AM, Aughenbaugh GL, Clemens MA. Lung cancer screening with CT: Mayo Clinic experience. Radiology. 2003;226:756–61.

    Article  Google Scholar 

  120. Heelan RT, Flehinger BJ, Melamed MR, Zaman MB, Perchick WB, Caravelli JF, Martini N. Non-small-cell lung cancer: results of the New York screening program. Radiology. 1984;151:289–93.

    Article  Google Scholar 

  121. Gurney JW. Missed lung cancer at CT: imaging findings in nine patients. Radiology. 1996;199:117–22.

    Article  Google Scholar 

  122. Giger ML, Bae KT, MacMahon H. Computerized detection of pulmonary nodules in computed tomography images. Invest Radiol. 1994;29:459–65.

    Article  Google Scholar 

  123. Armato SG 3rd, Giger ML, Moran CJ, Blackburn JT, Doi K, MacMahon H. Computerized detection of pulmonary nodules on CT scans. Radiographics. 1999;19:1303–11.

    Article  Google Scholar 

  124. Gurcan MN, Sahiner B, Petrick N, Chan HP, Kazerooni EA, Cascade PN, Hadjiiski L. Lung nodule detection on thoracic computed tomography images: preliminary evaluation of a computer-aided diagnosis system. Med Phys. 2002;29:2552–8.

    Article  Google Scholar 

  125. Lee Y, Hara T, Fujita H, Itoh S, Ishigaki T. Automated detection of pulmonary nodules in helical CT images based on an improved template-matching technique. IEEE Trans Med Imaging. 2001;20:595–604.

    Article  Google Scholar 

  126. Chan HP, Sahiner B, Wagner RF, Petrick N. Classifier design for computer-aided diagnosis: effects of finite sample size on the mean performance of classical and neural network classifiers. Med Phys. 1999;26:2654–68.

    Article  Google Scholar 

  127. Sahiner B, Chan HP, Hadjiiski L. Classifier performance prediction for computer-aided diagnosis using a limited dataset. Med Phys. 2008;35:1559–70.

    Article  Google Scholar 

  128. Suzuki K, Doi K. How can a massive training artificial neural network (MTANN) be trained with a small number of cases in the distinction between nodules and vessels in thoracic CT? Acad Radiol. 2005;12:1333–41.

    Article  Google Scholar 

  129. Farag AA, El-Baz A, Gimelfarb G, El-Ghar MA, Eldiasty T. Quantitative nodule detection in low dose chest CT scans: new template modeling and evaluation for CAD system design. Med Image Comput Comput Assist Interv. 2005;8:720–8.

    Google Scholar 

  130. Ge Z, Sahiner B, Chan HP, Hadjiiski LM, Cascade PN, Bogot N, Kazerooni EA, Wei J, Zhou C. Computer-aided detection of lung nodules: false positive reduction using a 3D gradient field method and 3D ellipsoid fitting. Med Phys. 2005;32:2443–54.

    Article  Google Scholar 

  131. Matsumoto S, Kundel HL, Gee JC, Gefter WB, Hatabu H. Pulmonary nodule detection in CT images with quantized convergence index filter. Med Image Anal. 2006;10:343–52. https://doi.org/10.1016/j.media.2005.07.001.

    Article  Google Scholar 

  132. Yuan R, Vos PM, Cooperberg PL. Computer-aided detection in screening CT for pulmonary nodules. AJR Am J Roentgenol. 2006;186:1280–7. https://doi.org/10.2214/AJR.04.1969.

    Article  Google Scholar 

  133. Pu J, Zheng B, Leader JK, Wang XH, Gur D. An automated CT based lung nodule detection scheme using geometric analysis of signed distance field. Med Phys. 2008;35:3453–61.

    Article  Google Scholar 

  134. Retico A, Delogu P, Fantacci ME, Gori I, Preite Martinez A. Lung nodule detection in low-dose and thin-slice computed tomography. Comput Biol Med. 2008;38:525–34. https://doi.org/10.1016/j.compbiomed.2008.02.001.

    Article  Google Scholar 

  135. Golosio B, Masala GL, Piccioli A, Oliva P, Carpinelli M, Cataldo R, Cerello P, De Carlo F, Falaschi F, Fantacci ME, Gargano G, Kasae P, Torsello M. A novel multithreshold method for nodule detection in lung CT. Med Phys. 2009;36:3607–18.

    Article  Google Scholar 

  136. Armato SG III, McLennan G, McNitt-Gray MF, Meyer CR, Yankelevitz D, Aberle DR, Henschke CI, Hoffman EA, Kazerooni EA, MacMahon H, Reeves AP, Croft BY, Clarke LP. Lung image database consortium: developing a resource for the medical imaging research community. Radiology. 2004;232:739–48.

    Article  Google Scholar 

  137. Murphy K, van Ginneken B, Schilham AM, de Hoop BJ, Gietema HA, Prokop M. A large-scale evaluation of automatic pulmonary nodule detection in chest CT using local image features and k-nearest-neighbour classification. Med Image Anal. 2009;13:757–70. https://doi.org/10.1016/j.media.2009.07.001.

    Article  Google Scholar 

  138. Tan M, Deklerck R, Jansen B, Bister M, Cornelis J. A novel computer-aided lung nodule detection system for CT images. Med Phys. 2011;38:5630–45. https://doi.org/10.1118/1.3633941.

    Article  Google Scholar 

  139. Messay T, Hardie RC, Rogers SK. A new computationally efficient CAD system for pulmonary nodule detection in CT imagery. Med Image Anal. 2010;14:390–406. https://doi.org/10.1016/j.media.2010.02.004.

    Article  Google Scholar 

  140. Riccardi A, Petkov TS, Ferri G, Masotti M, Campanini R. Computer-aided detection of lung nodules via 3D fast radial transform, scale space representation, and Zernike MIP classification. Med Phys. 2011;38:1962–71.

    Article  Google Scholar 

  141. Bunch PC, Hamilton JF, Sanderson GK, Simmons AH. A free-response approach to the measurement and characterization of radiographic-observer performance. J Appl Photogr Eng. 1978;4:166–71.

    Google Scholar 

  142. Tajbakhsh N, Suzuki K. Comparing two classes of end-to-end learning machines for lung nodule detection and classification: MTANNs vs. CNNs. Pattern Recognit. 2017;63:476–86.

    Article  ADS  Google Scholar 

  143. Murphy GP, Lawrence W, Lenhard RE, American Cancer Society. American Cancer Society textbook of clinical oncology. 2nd ed. Atlanta: The Society; 1995.

    Google Scholar 

  144. Zhao H, Lo SC, Freedman M, Wang Y. Enhanced lung cancer detection in temporal subtraction chest radiography using directional edge filtering techniques. In: Proceedings of SPIE medical imaging: image processing, San Diego, vol. 4684; 2002

    Google Scholar 

  145. Giger ML, Ahn N, Doi K, MacMahon H, Metz CE. Computerized detection of pulmonary nodules in digital chest images: use of morphological filters in reducing false-positive detections. Med Phys. 1990;17:861–5.

    Article  Google Scholar 

  146. Lo SC, Freedman MT, Lin JS, Mun SK. Automatic lung nodule detection using profile matching and back-propagation neural network techniques. J Digit Imaging. 1993;6:48–54.

    Article  Google Scholar 

  147. Lo SC, Lou SL, Lin JS, Freedman MT, Chien MV, Mun SK. Artificial convolution neural network techniques and applications to lung nodule detection. IEEE Trans Med Imaging. 1995;14:711–8.

    Article  Google Scholar 

  148. Penedo MG, Carreira MJ, Mosquera A, Cabello D. Computer-aided diagnosis: a neural-network-based approach to lung nodule detection. IEEE Trans Med Imaging. 1998;17:872–80.

    Article  Google Scholar 

  149. Austin JH, Romney BM, Goldsmith LS. Missed bronchogenic carcinoma: radiographic findings in 27 patients with a potentially resectable lesion evident in retrospect. Radiology. 1992;182:115–22.

    Article  Google Scholar 

  150. Shah PK, Austin JH, White CS, Patel P, Haramati LB, Pearson GD, Shiau MC, Berkmen YM. Missed non-small cell lung cancer: radiographic findings of potentially resectable lesions evident only in retrospect. Radiology. 2003;226:235–41.

    Article  Google Scholar 

  151. Suzuki K, Abe H, Li F, Doi K. Suppression of the contrast of ribs in chest radiographs by means of massive training artificial neural network. Proc SPIE Med Imaing (SPIE MI). 2004;5370:1109.

    Article  ADS  Google Scholar 

  152. Akansu AN, Haddad RA. Multiresolution signal decomposition. Boston: Academic Press; 1992.

    MATH  Google Scholar 

  153. Stephane GM. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell. 1989;11:674–93.

    Article  MATH  Google Scholar 

  154. Zarshenas A, Liu J, Forti P, Suzuki K. Separation of bones from soft tissue in chest radiographs: anatomy-specific orientation-frequency-specific deep neural network convolution. Med Phys. 2019;46:2232–42. https://doi.org/10.1002/mp.13468.

    Article  Google Scholar 

  155. Chen S, Suzuki K, MacMahon H. Development and evaluation of a computer-aided diagnostic scheme for lung nodule detection in chest radiographs by means of two-stage nodule enhancement with support vector classification. Med Phys. 2011;38:1844–58.

    Article  Google Scholar 

  156. Wei J, Hagihara Y, Shimizu A, Kobatake H. Optimal image feature set for detecting lung nodules on chest X-ray images. In: Computer assisted radiology and surgery; 2002. p. 706–11.

    Google Scholar 

  157. Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, Ghafoor A, Feuer EJ, Thun MJ. Cancer statistics, 2005. CA Cancer J Clin. 2005;55:10–30.

    Article  Google Scholar 

  158. Dachman AH. Atlas of virtual colonoscopy. New York: Springer; 2003.

    Book  Google Scholar 

  159. Winawer SJ, Fletcher RH, Miller L, Godlee F, Stolar MH, Mulrow CD, Woolf SH, Glick SN, Ganiats TG, Bond JH, Rosen L, Zapka JG, Olsen SJ, Giardiello FM, Sisk JE, Van Antwerp R, Brown-Davis C, Marciniak DA, Mayer RJ. Colorectal cancer screening: clinical guidelines and rationale. Gastroenterology. 1997;112:594–642.

    Article  Google Scholar 

  160. Macari M, Bini EJ. CT colonography: where have we been and where are we going? Radiology. 2005;237:819–33.

    Article  Google Scholar 

  161. Fletcher JG, Booya F, Johnson CD, Ahlquist D. CT colonography: unraveling the twists and turns. Curr Opin Gastroenterol. 2005;21:90–8.

    Google Scholar 

  162. Suzuki K, Dachman AH. Computer-aided diagnosis in CT colonography. In: Dachman AH, Laghi A, editors. Atlas of virtual colonoscopy. 2nd ed. New York: Springer; 2011. p. 163–82.

    Chapter  Google Scholar 

  163. Yoshida H, Dachman AH. Computer-aided diagnosis for CT colonography. Semin Ultrasound CT MR. 2004;25:419–31.

    Article  Google Scholar 

  164. Yoshida H, Dachman AH. CAD techniques, challenges, and controversies in computed tomographic colonography. Abdom Imaging. 2005;30:26–41.

    Article  Google Scholar 

  165. Kiss G, Van Cleynenbreugel J, Thomeer M, Suetens P, Marchal G. Computer-aided diagnosis in virtual colonography via combination of surface normal and sphere fitting methods. Eur Radiol. 2002;12:77–81.

    Article  Google Scholar 

  166. Paik DS, Beaulieu CF, Rubin GD, Acar B, Jeffrey RB Jr, Yee J, Dey J, Napel S. Surface normal overlap: a computer-aided detection algorithm with application to colonic polyps and lung nodules in helical CT. IEEE Trans Med Imaging. 2004;23:661–75.

    Article  Google Scholar 

  167. Summers RM, Johnson CD, Pusanik LM, Malley JD, Youssef AM, Reed JE. Automated polyp detection at CT colonography: feasibility assessment in a human population. Radiology. 2001;219:51–9.

    Article  Google Scholar 

  168. Summers RM, Yao J, Pickhardt PJ, Franaszek M, Bitter I, Brickman D, Krishna V, Choi JR. Computed tomographic virtual colonoscopy computer-aided polyp detection in a screening population. Gastroenterology. 2005;129:1832–44.

    Article  Google Scholar 

  169. Yoshida H, Masutani Y, MacEneaney P, Rubin DT, Dachman AH. Computerized detection of colonic polyps at CT colonography on the basis of volumetric features: pilot study. Radiology. 2002;222:327–36.

    Article  Google Scholar 

  170. Yoshida H, Nappi J, MacEneaney P, Rubin DT, Dachman AH. Computer-aided diagnosis scheme for detection of polyps at CT colonography. Radiographics. 2002;22:963–79.

    Article  Google Scholar 

  171. Gokturk SB, Tomasi C, Acar B, Beaulieu CF, Paik DS, Jeffrey RB Jr, Yee J, Napel S. A statistical 3-D pattern processing method for computer-aided detection of polyps in CT colonography. IEEE Trans Med Imaging. 2001;20:1251–60.

    Article  Google Scholar 

  172. Nappi J, Yoshida H. Automated detection of polyps with CT colonography: evaluation of volumetric features for reduction of false-positive findings. Acad Radiol. 2002;9:386–97.

    Article  Google Scholar 

  173. Acar B, Beaulieu CF, Gokturk SB, Tomasi C, Paik DS, Jeffrey RB Jr, Yee J, Napel S. Edge displacement field-based classification for improved detection of polyps in CT colonography. IEEE Trans Med Imaging. 2002;21:1461–7.

    Article  Google Scholar 

  174. Jerebko AK, Malley JD, Franaszek M, Summers RM. Multiple neural network classification scheme for detection of colonic polyps in CT colonography data sets. Acad Radiol. 2003;10:154–60.

    Article  Google Scholar 

  175. Jerebko AK, Malley JD, Franaszek M, Summers RM. Support vector machines committee classification method for computer-aided polyp detection in CT colonography. Acad Radiol. 2005;12:479–86.

    Article  Google Scholar 

  176. Wang Z, Liang Z, Li L, Li X, Li B, Anderson J, Harrington D. Reduction of false positives by internal features for polyp detection in CT-based virtual colonoscopy. Med Phys. 2005;32:3602–16.

    Article  Google Scholar 

  177. Li J, Van Uitert R, Yao J, Petrick N, Franaszek M, Huang A, Summers RM. Wavelet method for CT colonography computer-aided polyp detection. Med Phys. 2008;35:3527–38.

    Article  Google Scholar 

  178. Yao J, Li J, Summers RM. Employing topographical height map in colonic polyp measurement and false positive reduction. Pattern Recognit. 2009;42:1029–40. https://doi.org/10.1016/j.patcog.2008.09.034.

    Article  ADS  Google Scholar 

  179. Doshi T, Rusinak D, Halvorsen RA, Rockey DC, Suzuki K, Dachman AH. CT colonography: false-negative interpretations. Radiology. 2007;244:165–73.

    Article  Google Scholar 

  180. Rockey DC, Paulson E, Niedzwiecki D, Davis W, Bosworth HB, Sanders L, Yee J, Henderson J, Hatten P, Burdick S, Sanyal A, Rubin DT, Sterling M, Akerkar G, Bhutani MS, Binmoeller K, Garvie J, Bini EJ, McQuaid K, Foster WL, Thompson WM, Dachman A, Halvorsen R. Analysis of air contrast barium enema, computed tomographic colonography, and colonoscopy: prospective comparison. Lancet. 2005;365:305–11. https://doi.org/10.1016/S0140-6736(05)17784-8. pii: S0140673605177848.

    Article  Google Scholar 

  181. Suzuki K, Wu J, Sheu I. Principal-component massive-training machine-learning regression for false-positive reduction in computer-aided detection of polyps in CT colonography. Lecture notes in computer science, machine learning in medical imaging (MLMI), vol. 6357. Beijing: Springer; 2010. p. 182–9.

    Google Scholar 

  182. Zhu H, Liang Z, Pickhardt PJ, Barish MA, You J, Fan Y, Lu H, Posniak EJ, Richards RJ, Cohen HL. Increasing computer-aided detection specificity by projection features for CT colonography. Med Phys. 2010;37:1468–81.

    Article  Google Scholar 

  183. Wang S, Yao J, Petrick N, Summers RM. Combining statistical and geometric features for colonic polyp detection in CTC based on multiple kernel learning. Int J Comput Intell Appl. 2010;9:1–15. https://doi.org/10.1142/S1469026810002744.

    Article  Google Scholar 

  184. Lostumbo A, Suzuki K, Dachman AH. Flat lesions in CT colonography. Abdom Imaging. 2010;35:578–83. https://doi.org/10.1007/s00261-009-9562-3.

    Article  Google Scholar 

  185. Suzuki K, Sheu I, Kawaler E, Ferraro F, Rockey DC, Dachman AH. Computer-aided detection (CADe) of flat lesions in CT colonography (CTC) by means of a spinning-tangent technique. In: Program of RSNA; 2010. p. 319.

    Google Scholar 

Download references

Acknowledgments

This work would not have been possible without the help and support of countless people. The author is grateful to all members in the Suzuki laboratory, i.e., postdoctoral scholars, computer scientists, visiting scholars/professors, medical students, graduate/undergraduate students, research technicians, research volunteers, and support staff, in the Department of Radiology at the University of Chicago, in the Medical Imaging Research Center at the Illinois Institute of Technology, for their invaluable assistance in the studies, to colleagues and collaborators for their valuable suggestions. CAD technologies, MTANNs technologies, the bone separation technology, and their source code developed at the University of Chicago have been licensed to companies including R2 Technology (Hologic), Riverain Medical (Riverain Technologies), Median Technologies, and AlgoMedica.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Suzuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Suzuki, K. (2022). Computerized Detection of Lesions in Diagnostic Images with Early Deep Learning Models. In: El Naqa, I., Murphy, M.J. (eds) Machine and Deep Learning in Oncology, Medical Physics and Radiology. Springer, Cham. https://doi.org/10.1007/978-3-030-83047-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83047-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83046-5

  • Online ISBN: 978-3-030-83047-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics